88
PFISR Experiment, Data Reduction, and Analysis Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008 SRI International

Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

PFISR Experiment, Data Reduction, and Analysis

Michael J. Nicolls and Craig J. Heinselman

CEDAR, 21 June 2008

SRIInternational

Page 2: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Outline1 Standard Experiments

System InfoBeam PointingF -Region ExperimentsE -Region ExperimentsD-Region Experiments

2 Level-0 ProcessingGeneralPower EstimationACF / Spectra Estimation

3 Level-1 ProcessingNe EstimationACF / Spectral FitsACF / Spectral Fits

4 Level-2 ProcessingVector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

5 The Future

Page 3: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

System InfoBeam PointingF -Region ExperimentsE -Region ExperimentsD-Region Experiments

System Information

128-panel AMISR system (upgraded from 96 in Sep. 07)

Pulse-to-pulse phase capability

∼1.6 MW peak Tx (upgraded from ∼1.3 MW)

∼10% max duty cycle

4 reception channels

Tx band 449-450 MHz

3.5 MHz max Rx bandwidth

4 µs min pulsewidth (freq. allocation limitation)

Fully programmable, remotely operable/ted

Graceful degradation - reliable operations

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 4: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

System InfoBeam PointingF -Region ExperimentsE -Region ExperimentsD-Region Experiments

Beam Pointing

Range of pointingpositions within gratinglobe limits

”Normal” experimentsinclude ∼1-10 beams

Main limitation isintegration time /sensitivity

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 5: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Beam Pointing

Page 6: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

System InfoBeam PointingF -Region ExperimentsE -Region ExperimentsD-Region Experiments

Standard F -region Experiment

0 t1

Time

Range

Tp

h2

h1

t1+8τt2+2τt2

T f

Farley and Hagfors [2005]

At high altitudes, use a single long pulse withmismatched filter (oversampled) to measureall lags of the ACF at once

Sacrifice range resolution

Typically use a 480 µs pulse (F region) or 1ms pulse (topside)

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 7: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard F -region Experiment - Ambiguity Function

Ambiguity function including filter effects.

480 µs long pulse, 30 µs sampling.

Page 8: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

System InfoBeam PointingF -Region ExperimentsE -Region ExperimentsD-Region Experiments

Standard E/F -region Power Measurement

+

ts0

Range

Time

+

+−

+

+ ++ −

++

+

+

++

+

+

+

++ +

+

+

− −

−−

−−

++ ++ −

Farley and Hagfors [2005]

Pulse compression code allow for highsensitivity, high range resolution powermeasurements.

Plasma must remain correlated over pulselength (limits range of use for most systems).

Typical code is 13-baud Barker code, 130 µs.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 9: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

E/F -region Power Measurement - Ambiguity Function

Ambiguity function including filter effects.

130 µs (13-baud, 10 µs baud, 5 µs sampling).

Page 10: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

System InfoBeam PointingF -Region ExperimentsE -Region ExperimentsD-Region Experiments

Standard E -region Experiment

Draft DF November 1, 2005

h

0

Time

Range

t0 t1 t2 t3

a0 a1 a2 a3

Farley and Hagfors [2005]

At lower altitudes, we require better rangeresolution.

For this, we utilize binary coded pulse ACFmeasurements (do not compress pulse oreliminate clutter like BC - eliminatecorrelation of clutter)

Random (CLP) or alternating (cyclic codes)

Standard experiment is 480 µs, 16-baud (4.5km), randomized strong code.

Include an uncoded 30 µs pulse for zero-lagnormalization.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 11: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard E -region Experiment - Ambiguity Function

Ambiguity function including filter effects.

480 µs (16-baud, 30 µs baud, 32 pulse).

Page 12: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

System InfoBeam PointingF -Region ExperimentsE -Region ExperimentsD-Region Experiments

Standard D-region Experiments

h

0 ts

Time

Range

τ ts+τ

Long correlation times (narrow spectralwidths) in the D region require pulse-to-pulsetechniques

We employ coded double-pulse techniquesthat give range resolutions up to 600 m andspectral resolutions up to 1 Hz.

Mode Pulse Baud δR τ IPP δf Nyquist δt

0 130 µs 10 µs 1.5 km 5 µs (0.75 km) 2 ms 2 Hz 250 Hz 1 s1 260 µs 10 µs 1.5 km 5 µs (0.75 km) 4 ms 1 Hz 125 Hz 2.5 s2 130 µs 10 µs 1.5 km 5 µs (0.75 km) 2 ms 2 Hz 250 Hz 1.8 s3 280 µs 10 µs 1.5 km 5 µs (0.75 km) 3 ms 1.3 Hz 167 Hz 2.7 s4 112 µs 4 µs 0.6 km 2 µs (0.3 km) 3 ms 1.3 Hz 167 Hz 2.7 s

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 13: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

GeneralPower EstimationACF / Spectra Estimation

General

A typical experiment consists of:

Data samples

Noise samples

Cal pulse samples

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 14: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

GeneralPower EstimationACF / Spectra Estimation

General

A typical experiment consists of:

Data samples

Noise samples

Cal pulse samples

Given experiment is complicated by:

Interleaving of pulses (possiblyon different frequencies)

Clutter considerations, Noiseand Cal sample placement

Maximization of duty cycle

Beam pointing, Distribution ofpulses, Integration timeconsiderations

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 15: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

GeneralPower EstimationACF / Spectra Estimation

General

A typical experiment consists of:

Data samples

Noise samples

Cal pulse samples

Given experiment is complicated by:

Interleaving of pulses (possiblyon different frequencies)

Clutter considerations, Noiseand Cal sample placement

Maximization of duty cycle

Beam pointing, Distribution ofpulses, Integration timeconsiderations

Raw

Samples

Decoded

Samples

Power

Lag Profile

Matrix

Decoding

Process

Noise subtraction

and Calibration

Noise subtraction

and Calibration

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 16: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

GeneralPower EstimationACF / Spectra Estimation

Power Estimation

Received power can be written as

Pr =Ptτp

r2Ksys

Ne

(1 + k2λ2D)(1 + k2λ2

D + Tr )Watts

wherePr - received power (Watts)Pt - transmit power (Watts)τp - pulse length (seconds)r - range (meters)Ne - electron density (m−3)k - Bragg scattering wavenumber (rad/m)λD - Debye length (m)Tr - electron to ion temperature ratio

Ksys - system constant (m5/s)

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 17: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

GeneralPower EstimationACF / Spectra Estimation

Power Estimation

Received signal power needs to be calibrated to absolute units of Watts. To do this, we ingeneral (a) take noise samples and (b) inject a calibration pulse at each AEU, which isthen summed in the same way as the signal. The absolute calibration power in Watts is:

Pcal = kBTcalB Watts

wherekB - Boltzmann constant (J/kg K)Tcal - temperature of calibration source (K)B - receiver bandwidth (Hz)

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 18: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

GeneralPower EstimationACF / Spectra Estimation

Power Estimation

Received signal power needs to be calibrated to absolute units of Watts. To do this, we ingeneral (a) take noise samples and (b) inject a calibration pulse at each AEU, which isthen summed in the same way as the signal. The absolute calibration power in Watts is:

Pcal = kBTcalB Watts

wherekB - Boltzmann constant (J/kg K)Tcal - temperature of calibration source (K)B - receiver bandwidth (Hz)

The measurement of the calibration power (after noise subtraction) can then be used as ayardstick to convert the received power to Watts. This is done as,

Pr = Pcal ∗ (Signal − Noise)/(Cal − Noise) Watts

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 19: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

GeneralPower EstimationACF / Spectra Estimation

ACF / Spectra Estimation - E/F region

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 20: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

GeneralPower EstimationACF / Spectra Estimation

ACF / Spectra Estimation - E/F region

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 21: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

GeneralPower EstimationACF / Spectra Estimation

ACF / Spectra Estimation - D region

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 22: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Electron Density

Recall,

Pr =Ptτp

r2Ksys

Ne

(1 + k2λ2D)(1 + k2λ2

D + Tr )Watts

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 23: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Electron Density

Recall,

Pr =Ptτp

r2Ksys

Ne

(1 + k2λ2D)(1 + k2λ2

D + Tr )Watts

Calibrated received power can easily be inverted to determine Ne (if onemakes assumptions about Tr ), but what about Ksys?

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 24: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Electron Density

Recall,

Pr =Ptτp

r2Ksys

Ne

(1 + k2λ2D)(1 + k2λ2

D + Tr )Watts

Calibrated received power can easily be inverted to determine Ne (if onemakes assumptions about Tr ), but what about Ksys?

Within Ksys is embedded information on the gain, which for a phased-arrayvaries with the look-angle off boresight, as well as the proximity to thegrating lobe limits.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 25: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Electron Density

f2r ≈ f

2p +

3k2

4π2

kBTe

me

+ f2c sin2 α

wherefr - plasma line frequency (Hz)fp - plasma frequency (Hz)Te - electron temperature (K)me - electron mass (kg)fc - electron cyclotron frequency (Hz)α - magnetic aspect angle

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 26: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Electron Density

Ksys = A cosB(θBS) m5/s

θBS - angle off boresightA,B - constants

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 27: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Fitting Spectra

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 28: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Fitting Spectra

General Complicating Factors:

Range smearing

Lag smearing

Pulse coding effects / ”Self”-clutter

Clutter (geophysical and not - e.g., mountains,irregularities, turbulence, non-Maxwellian)

Signal strength / statistics

Time stationarity

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 29: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Fitting Spectra

General Complicating Factors:

Range smearing

Lag smearing

Pulse coding effects / ”Self”-clutter

Clutter (geophysical and not - e.g., mountains,irregularities, turbulence, non-Maxwellian)

Signal strength / statistics

Time stationarity

Specific Based on Altitude:

F -region/Topside - Light ion composition

Bottomside - Molecular ion composition

E -region - Collision frequency, Temperature

D-region - Complete ambiguity

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 30: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Fitting Spectra

General Complicating Factors:

Range smearing

Lag smearing

Pulse coding effects / ”Self”-clutter

Clutter (geophysical and not - e.g., mountains,irregularities, turbulence, non-Maxwellian)

Signal strength / statistics

Time stationarity

Specific Based on Altitude:

F -region/Topside - Light ion composition

Bottomside - Molecular ion composition

E -region - Collision frequency, Temperature

D-region - Complete ambiguity

Approach:

F -region - Te , Ti , vlos , Ne

Bottomside - Assume a composition profile

E -region - <∼ 105km, assume Te = Ti

D-region - Fit a Lorentzian (width, Doppler, Ne )

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 31: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Ne EstimationACF / Spectral FitsACF / Spectral Fits

Fitting Spectra - Example

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 32: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Fitting Spectra - Example

Page 33: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Preliminaries

LOS Velocity measurement can be represented as:

v ilos = k i

xvx + k iyvy + k i

zvz

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 34: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Preliminaries

LOS Velocity measurement can be represented as:

v ilos = k i

xvx + k iyvy + k i

zvz

where the radar k vector in geographic coordinates is:

k =

ke

kn

kz

=

cosαcosβcos γ

=

x

y

z

R−1

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 35: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Preliminaries

LOS Velocity measurement can be represented as:

v ilos = k i

xvx + k iyvy + k i

zvz

where the radar k vector in geographic coordinates is:

k =

ke

kn

kz

=

cosαcosβcos γ

=

x

y

z

R−1

If we can neglect Earth curvature (“high enough” elevation angles),

k =

ke

kn

kz

=

cos θ sinφcos θ cosφ

sin θ

where θ, φ are elevation and azimuth angles, respectively.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 36: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Preliminaries

For a local geomagnetic coordinate system we can use the rotation matrix,

Rgeo→gmag =

cos δ − sin δ 0sin I sin δ cos δ sin I cos I

− cos I sin δ − cos I cos δ sin I

where δ (∼ 22) and I (∼ 77.5) are the declination and dip angles, respectively.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 37: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Preliminaries

For a local geomagnetic coordinate system we can use the rotation matrix,

Rgeo→gmag =

cos δ − sin δ 0sin I sin δ cos δ sin I cos I

− cos I sin δ − cos I cos δ sin I

where δ (∼ 22) and I (∼ 77.5) are the declination and dip angles, respectively.Then,

k =

kpe

kpn

kap

=

ke cos δ − kn sin δkz cos I + sin I (kn cos δ + ke sin δ)kz sin I − cos I (kn cos δ + ke sin δ)

.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 38: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Two Point

Two LOS velocity measurements can be written as,

[

v1los

v2los

]

=

[

k1pe k1

pn k1ap

k2pe k2

pn k2ap

]

vpe

vpn

vap

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 39: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Two Point

Two LOS velocity measurements can be written as,

[

v1los

v2los

]

=

[

k1pe k1

pn k1ap

k2pe k2

pn k2ap

]

vpe

vpn

vap

Can be solved for vpn and vpe assuming vap ≈ 0,

vpn =v1los −

k1pe

k2pe

v2los − vap

(

k1ap − k2

ap

k1pe

k2pe

)

k1pn

(

1 −k2

pn

k1pn

k1pe

k2pe

) ≈

v1los −

k1pe

k2pe

v2los

k1pn

(

1 −k2

pn

k1pn

k1pe

k2pe

)

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 40: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Two Point

Two LOS velocity measurements can be written as,

[

v1los

v2los

]

=

[

k1pe k1

pn k1ap

k2pe k2

pn k2ap

]

vpe

vpn

vap

Can be solved for vpn and vpe assuming vap ≈ 0,

vpn =v1los −

k1pe

k2pe

v2los − vap

(

k1ap − k2

ap

k1pe

k2pe

)

k1pn

(

1 −k2

pn

k1pn

k1pe

k2pe

) ≈

v1los −

k1pe

k2pe

v2los

k1pn

(

1 −k2

pn

k1pn

k1pe

k2pe

)

Implies that you need look directions with different k vectors.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 41: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Generalization

Multiple measurements can be written as,

v1los

v2los...

vnlos

=

k1pe k1

pn k1ap

k2pe k2

pn k2ap

......

...knpe kn

pn knap

vpe

vpn

vap

+

e1los

e2los...

enlos

orvlos = Avi + elos

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 42: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Generalization

Multiple measurements can be written as,

v1los

v2los...

vnlos

=

k1pe k1

pn k1ap

k2pe k2

pn k2ap

......

...knpe kn

pn knap

vpe

vpn

vap

+

e1los

e2los...

enlos

orvlos = Avi + elos

Treat vi as a Gaussian random variable (Bayesian), use linear theory to derive aleast-squares estimator.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 43: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Generalization

Multiple measurements can be written as,

v1los

v2los...

vnlos

=

k1pe k1

pn k1ap

k2pe k2

pn k2ap

......

...knpe kn

pn knap

vpe

vpn

vap

+

e1los

e2los...

enlos

orvlos = Avi + elos

Treat vi as a Gaussian random variable (Bayesian), use linear theory to derive aleast-squares estimator. vi zero mean, Σv (a priori). Measurements zero mean,covariance Σe .

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 44: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Vector Velocities - Generalization

Multiple measurements can be written as,

v1los

v2los...

vnlos

=

k1pe k1

pn k1ap

k2pe k2

pn k2ap

......

...knpe kn

pn knap

vpe

vpn

vap

+

e1los

e2los...

enlos

orvlos = Avi + elos

Treat vi as a Gaussian random variable (Bayesian), use linear theory to derive aleast-squares estimator. vi zero mean, Σv (a priori). Measurements zero mean,covariance Σe . Solution,

vi = ΣvAT (AΣvA

T + Σe)−1vlos

Error covariance,

Σv = Σv − ΣvAT (AΣvA

T + Σe)−1AΣv = (ATΣ−1

e A + Σ−1v )−1

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 45: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Electric Fields

While above approach can be used to resolve vectors as a function of altitude(or anything else), we often want to resolve vectors as a function of invariantlatitude.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 46: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Electric Fields

While above approach can be used to resolve vectors as a function of altitude(or anything else), we often want to resolve vectors as a function of invariantlatitude.

In the F region (above ∼ 150 − 175 km), plasma is E × B drifting.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 47: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Electric Fields

While above approach can be used to resolve vectors as a function of altitude(or anything else), we often want to resolve vectors as a function of invariantlatitude.

In the F region (above ∼ 150 − 175 km), plasma is E × B drifting.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 48: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Electric Fields - Example

Electron Density

LOS Velocities

Page 49: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Electric Fields - Example

Resolved Vectors

Page 50: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Electric Fields - Example

Comparison to rocket-measured E-fields.

Page 51: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Experiment PlanningThe approach also allows for an efficient means of experiment planning, since the outputcovariance of the measurements is independent of the actual measurements.

Page 52: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Experiment PlanningThe approach also allows for an efficient means of experiment planning, since the outputcovariance of the measurements is independent of the actual measurements.

Page 53: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

At lower altitudes, the ions become collisional and transition from E×B drifting athigh altitudes to drifting with the neutral winds at low altitudes.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 54: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

At lower altitudes, the ions become collisional and transition from E×B drifting athigh altitudes to drifting with the neutral winds at low altitudes.The steady state ion momentum equations relate the vector velocities (as afunction of altitude) to electric fields and neutral winds

0 = e(E + vi × B) − miνin(vi − u)

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 55: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

At lower altitudes, the ions become collisional and transition from E×B drifting athigh altitudes to drifting with the neutral winds at low altitudes.The steady state ion momentum equations relate the vector velocities (as afunction of altitude) to electric fields and neutral winds

0 = e(E + vi × B) − miνin(vi − u)

Defining the matrix C as,

C =

(1 + κ2i )

−1−κi(1 + κ2

i )−1 0

κi(1 + κ2i )

−1 (1 + κ2i )

−1 00 0 1

where κi = eB/miνin = Ωi/νin.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 56: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

At lower altitudes, the ions become collisional and transition from E×B drifting athigh altitudes to drifting with the neutral winds at low altitudes.The steady state ion momentum equations relate the vector velocities (as afunction of altitude) to electric fields and neutral winds

0 = e(E + vi × B) − miνin(vi − u)

Defining the matrix C as,

C =

(1 + κ2i )

−1−κi(1 + κ2

i )−1 0

κi(1 + κ2i )

−1 (1 + κ2i )

−1 00 0 1

where κi = eB/miνin = Ωi/νin. The vector velocity can then be solved for

vi = biCE + Cu

where bi = e/miνin = κi/B

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 57: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

vi = biCE + Cu

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 58: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

vi = biCE + Cu

Defining a new matrix asD = [biC C ]

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 59: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

vi = biCE + Cu

Defining a new matrix asD = [biC C ]

we can write the forward model

vlos = (A · D)x + elos .

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 60: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

vi = biCE + Cu

Defining a new matrix asD = [biC C ]

we can write the forward model

vlos = (A · D)x + elos .

An obvious problem is the ambiguity in terms of E and u. Solution is to invert allmeasurements from all altitudes at once, allowing winds to vary with altitude butthe electric field to map along field lines.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 61: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

vi = biCE + Cu

Defining a new matrix asD = [biC C ]

we can write the forward model

vlos = (A · D)x + elos .

An obvious problem is the ambiguity in terms of E and u. Solution is to invert allmeasurements from all altitudes at once, allowing winds to vary with altitude butthe electric field to map along field lines. Forward model becomes,

x = [Epe Epn E|| u1pe u1

pn u1|| u2

pe u2pn u2

|| ... unpe un

pn un||]

T

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 62: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

E-Region Winds

vi = biCE + Cu

Defining a new matrix asD = [biC C ]

we can write the forward model

vlos = (A · D)x + elos .

An obvious problem is the ambiguity in terms of E and u. Solution is to invert allmeasurements from all altitudes at once, allowing winds to vary with altitude butthe electric field to map along field lines. Forward model becomes,

x = [Epe Epn E|| u1pe u1

pn u1|| u2

pe u2pn u2

|| ... unpe un

pn un||]

T

This allows for direct constraint of both the vertical wind and the parallel electricfield, both of which we expect to be small.

Σgmagv = Jgeo→gmagΣgeo

v JTgeo→gmag

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 63: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

E-Region Winds - Example

Page 64: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

E-Region Winds - Example

Page 65: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

E-Region Winds - Example

Alti

tude

(km

)

01/23−00 01/23−12 01/24−00 01/24−12 01/25−00 01/25−12 01/26−00 01/26−12 01/27−00

85

90

95

100

105

110

115

120

125

Ver

tical

(m

/s)

−30

−20

−10

0

10

20

30

Alti

tude

(km

)

01/23−00 01/23−12 01/24−00 01/24−12 01/25−00 01/25−12 01/26−00 01/26−12 01/27−00

85

90

95

100

105

110

115

120

125

Mer

idio

nal (

m/s

)

−200

−100

0

100

200

Alti

tude

(km

)

01/23−00 01/23−12 01/24−00 01/24−12 01/25−00 01/25−12 01/26−00 01/26−12 01/27−00

85

90

95

100

105

110

115

120

125

Zon

al (

m/s

)

−200

−100

0

100

200

01/23−00 01/23−12 01/24−00 01/24−12 01/25−00 01/25−12 01/26−00 01/26−12 01/27−00−0.05

0

0.05

Time UT

E−

field

(V

/m)

10

20

30

40

50

60ZonalMeridional

Page 66: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency

Two approaches (that I know of) for assessing collision frequency:

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 67: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency

Two approaches (that I know of) for assessing collision frequency:

1 Direct fits at lower altitudes (spectral width ∼∝ Tn/νin)

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 68: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency

Two approaches (that I know of) for assessing collision frequency:

1 Direct fits at lower altitudes (spectral width ∼∝ Tn/νin)

2 Examination of variation of LOS velocity with altitude

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 69: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 1

Semi-diurnal variation overseveral days.

4

4.2

4.4

4.6

4.8

5Vertical Beam

log

10

ν in (

s−

1) 87.8 km

3.8

4

4.2

4.4

4.6

log

10

ν in (

s−

1) 92.3 km

3.5

4

4.5

log

10

ν in (

s−

1) 96.8 km

12/16−12 12/17−00 12/17−12 12/18−00 12/18−12 12/19−00 12/19−12 12/20−00

3.4

3.6

3.8

4

4.2

log

10

ν in (

s−

1) 101.3 km

Up B Beam

85.7 km

90.1 km

94.5 km

12/16−12 12/17−00 12/17−12 12/18−00 12/18−12 12/19−00 12/19−12 12/20−00

98.9 km

Altitude profile andextrapolation.

10−2

10−1

100

101

102

80

85

90

95

100

105

110

115

120

125

130

Alti

tud

e (

km)

Ωi/ ν

in

Beam 1

H=5.9 km

10−2

10−1

100

101

102

80

85

90

95

100

105

110

115

120

125

130

Ωi/ ν

in

Beam 2

H=6.1 km

10−2

10−1

100

101

102

80

85

90

95

100

105

110

115

120

125

130

Ωi/ ν

in

Beam 3

H=4.5 km

10−2

10−1

100

101

102

80

85

90

95

100

105

110

115

120

125

130

Ωi/ ν

in

Beam 4

H=6.4 km

10−2

10−1

100

101

102

80

85

90

95

100

105

110

115

120

125

130A

ltitu

de

(km

)

Ωi/ ν

in

Beam 5

H=6.2 km

10−2

10−1

100

101

102

80

85

90

95

100

105

110

115

120

125

130

Ωi/ ν

in

Beam 6

H=5.6 km

10−2

10−1

100

101

102

80

85

90

95

100

105

110

115

120

125

130

Ωi/ ν

in

Beam 7

H=6.3 km

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 70: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2 - Example

The rotation of the LOS velocity with altitude is a good indicator of collisionfrequency effects.

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 71: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2 - Example

The rotation of the LOS velocity with altitude is a good indicator of collisionfrequency effects.E.g., take the vertical beam,

vz = v⊥n cos I + v|| sin I

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 72: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2 - Example

The rotation of the LOS velocity with altitude is a good indicator of collisionfrequency effects.E.g., take the vertical beam,

vz = v⊥n cos I + v|| sin I

Perp-north and parallel components given by,

v⊥n = κi (1 + κ2i )

−1 (biE⊥e + u⊥e) + (1 + κ2i )

−1 (biE⊥n + u⊥n)

v|| = u|| + biE||

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 73: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2 - Example

The rotation of the LOS velocity with altitude is a good indicator of collisionfrequency effects.E.g., take the vertical beam,

vz = v⊥n cos I + v|| sin I

Perp-north and parallel components given by,

v⊥n = κi (1 + κ2i )

−1 (biE⊥e + u⊥e) + (1 + κ2i )

−1 (biE⊥n + u⊥n)

v|| = u|| + biE||

Define a new variable,v ′z = vz − v|| sin I

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 74: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2 - Example

The rotation of the LOS velocity with altitude is a good indicator of collisionfrequency effects.E.g., take the vertical beam,

vz = v⊥n cos I + v|| sin I

Perp-north and parallel components given by,

v⊥n = κi (1 + κ2i )

−1 (biE⊥e + u⊥e) + (1 + κ2i )

−1 (biE⊥n + u⊥n)

v|| = u|| + biE||

Define a new variable,v ′z = vz − v|| sin I

Under strong convection (electric field) conditions, neglect winds

v ′z ∼ bi (1 + κ2

i )−1 [κiE⊥e + E⊥n] cos I

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 75: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2 - Example

v ′z ∼ bi (1 + κ2

i )−1 [κiE⊥e + E⊥n] cos I

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 76: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2 - Example

v ′z ∼ bi (1 + κ2

i )−1 [κiE⊥e + E⊥n] cos I

If κi(z) = κ0e(z−z0)/H , vertical ion velocity will maximize at

zmax v ′

z= z0 + H lnκ−1

0 + H ln

[

cosα ± 1

sin α

]

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 77: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2 - Example

v ′z ∼ bi (1 + κ2

i )−1 [κiE⊥e + E⊥n] cos I

If κi(z) = κ0e(z−z0)/H , vertical ion velocity will maximize at

zmax v ′

z= z0 + H lnκ−1

0 + H ln

[

cosα ± 1

sin α

]

−150 −100 −50 0 50 100 150100

110

120

130

140

150

160

α (degrees)

Altitude of Max Vz ′

NESE NWSW

−1 −0.5 0 0.5 1100

110

120

130

140

150

160

NS EW NESW SENW

Alti

tud

e (

km)

Normalized Vz ′

Vz′(z)

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 78: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 79: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Collision Frequency - Method 2

Profiles of v ′

z during high convection conditions.Dashed - with MSIS; Solid - scaled by a factor of 2.

−50 0 50 100100

110

120

130

140

150

16017/7.00−8.00 UT

Vz

′ (m/s)

Alti

tud

e (

km)

|E|=30 mV/m

α=89 °

−100 −50 0

17/12.15−12.50 UT

Vz

′ (m/s)

|E|=64 mV/m

α=−87 °

0 50 100

18/5.00−5.50 UT

Vz

′ (m/s)

|E|=35 mV/m

α=79 °

−100 −50 0 50

18/5.00−5.50 UT

Vz

′ (m/s)

|E|=35 mV/m

α=−95 °

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 80: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Vector Velocities / Electric FieldsE-Region WindsCollision Freqs. / Conductivities / Currents / Joule HeatingD-Region Parameters

Conductivities / Currents / Joule Heating Rates

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis

Page 81: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Conductivities / Currents / Joule Heating Rates

Page 82: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

D-Region Parameters - Raw Power and Spectra

Page 83: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

D-Region Parameters - Raw Power and Spectra

Page 84: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

D-Region Parameters - Ne and Spectral Widths

Page 85: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

D-Region Parameters - Ne and Spectral Widths

Page 86: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

D-Region Parameters - Velocities and Winds

Page 87: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

D-Region Parameters - Velocities and Winds

Page 88: Michael J. Nicolls and Craig J. Heinselman CEDAR, 21 June 2008isr.sri.com/iono/amisr/meetings/2008/2008-tutorials/Data Processing… · Michael J. Nicolls and Craig J. Heinselman

Standard ExperimentsLevel-0 ProcessingLevel-1 ProcessingLevel-2 Processing

The Future

Future

1 Move towards full profile techniques

2 Take advantage of space and time information

3 Standardize approaches

4 Molecular ion composition, height-resolved plasma lines,topside parameters, etc.

5 Make these products available to interested users

6 Extend our arsenal of products (e.g., D-regionmomentum fluxes, higher altitude winds, etc.)

Michael J. Nicolls and Craig J. Heinselman PFISR Experiment, Data Reduction, and Analysis