36
Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento di Energetica OPTICS BY THE NUMBERS L’Ottica Attraverso i Numeri Rome, April-May 2004

Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

Embed Size (px)

Citation preview

Page 1: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

Michael Scalora

U.S. Army Research, Development, and Engineering CenterRedstone Arsenal, Alabama, 35898-5000

&Universita' di Roma "La Sapienza"

Dipartimento di Energetica

OPTICS BY THE NUMBERS

L’Ottica Attraverso i Numeri

Rome, April-May 2004

Page 2: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

The Lorentz Oscillator Polarization

Intrinsic Optical Bistability

The FFT-Beam Propagation Method

Page 3: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

Classical Theory of MatterLorentz Atom: Electron on a Spring

Simple Harmonic Oscillator Under the action Of a driving force

Ex

e-

Nucleus: ~2000 times electron mass.In the language of theorists, this means infinite mass

Electron position is perturbedperiodically and predictably

Page 4: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

P=Nex Average number of dipoles per unit volume

xE

Driving Force

RestoringForce

mx kx mx eE Damping

Damped Harmonic Oscillator

e-

220( ) ( ) ( ) ( )

NeP t i P t P t E t

m

Perform Fourier Transform:

22 2

0( ) ( ) ( ) ( )Ne

P i P P Em

Page 5: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

: Dielectric SusceptibilityxE

Damped Harmonic Oscillator

e-

2

2 20

( / )( ) ( ) ( ) ( )

Ne mP E E

i

( ) ( ) ( ) ( ) i tP t FT P E e d

22 2

0( ) ( ) ( ) ( )Ne

P i P P Em

Page 6: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2

2 20

( / )( )

Ne m

i

-5.0

-2.5

0

2.5

5.0

0.5 1.0 1.5 2.0

Re(): Dispersion

Im(): Absorption

( ) ( ) ( )P E

Page 7: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

Away from any resonances, in regions of flat dispersion…

-5.0

-2.5

0

2.5

5.0

0.5 1.0 1.5 2.0

We will assume propagation occurs in a uniform medium with constant (i.e., dispersioness)

( ) ( ) ( ) ( ) ( )i tin inP t E e d E t

Page 8: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

450 550 650 750 850 950 1050 1150 1250 1350 1450 1550

Index of refraction of AlN

Index of refraction of GaN

Resonance is that way.

Practical Example

Page 9: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

xE

eExmxkxxm )( 3

ti

t

ti

t ePePP *ti

t

ti

t eEeEE *

2

2 2 20

( / )( )

3 | |t t in tin in t

ne mP E E

i P

2

2 2 20

( / )( )

3 | |inin in t

ne m

i P

tttttt Em

nePPPPiP

222

0 ||3

Component that oscillates at frequency is

<< kNonlinear Oscillator

Page 10: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2

2 2 20

( / )( )

3 | |t t in tin in t

ne mP E E

i P

2 2 20( 3 | | )t in in t tE i P P

0

5

10

15

20

0 2 4 6

|Et|2

|Pt|2

Page 11: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

Optical Bistability: Two Stable Output States Exits for the Same Input Intensity

0

5

10

15

20

0 2 4 6

|Et|2

|Pt|2

Page 12: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2

2 2 20

( / )( )

3 | |inin in t

ne m

i P

Expanding the denominator:

122

2 2 2 20 0

3 | |( / )( ) 1 t

inin in in in

Pne m

i i

224 6

2 2 2 20 0

3 | |( / )( ) 1 (| | ,| | ,...)t

in t tin in in in

Pne mP P

i i

Page 13: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

22

2 2 2 20 0

3 | |( / )( ) ( ) ( ) ( ) 1 ...tt in in in in

in in in in

Pne mP E E

i i

2 22

2 2 2 2 20 0

( / ) ( / )( ) ( ) 3 | | ( )

( )t in in t inin in in in

ne m ne mP E P E

i i

is of the form…( )t inP

2( ) ( ) ( ) ( ) | | ( )t in L in in in t inP E P E

* * * * 2 *( ) ( ) ( ) ( ) | | ( )t in L in in in t inP E P E Then…

* 2 2( ) ( ) | ( ) | | ( ) |t in t in L in inP P E higher order terms

Page 14: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

(3) 2( ) ( ) ( ) | |in L in in tE

2 22

2 2 2 2 20 0

( / ) ( / )( ) ( ) 3 | | ( )

( )t in in t inin in in in

ne m ne mP E P E

i i

Substituting and retaining terms of lowest order:

* 2 2( ) ( ) | ( ) | | ( ) |t in t in L in inP P E higher order terms

2(3) 2

2 2 20

( / )( ) | ( ) | 3

( )in L inin in

ne m

i

Page 15: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

Many Nonlinear Optical Effects Are of This Type and can Explain Everything From Optical

Bistability to Fiber Solitons. Continuing the expansion in a perturbative manner, one can show that…

(3) 2

(5) 4 ( ) 1

( ) ( ) ( ) | |

( ) | | ... ( ) | | ...

in L in in t

n nin t in t

E

E E

(3) 2( ) ( ) ( ) | |in L in in tE

Page 16: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

In GeneralFor Nonlinear Frequency Conversion, i.e.,

Harmonic Generation, & Sum-difference, andNearly all Nonlinear Optical Effects of Interest are

Described Well by the First Two Terms of the Nonlinear Oscillator Potential

2 3( )mx k xx mxx eE

Page 17: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

Away from sharp resonances and absorption lines,The index of refraction can be taken to be nearly

constant as a function of frequency.

4 4

D E E P E E

B H

Constitutive Relations: Assumptions as to how matter interacts with the propagating fields

21 4 n

It follows that once the suceptibility has been determined, an index of refraction can be assigned:

Page 18: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2

2 20

( / )( )in

in in

Ne m

i

-5.0

-2.5

0

2.5

5.0

0.5 1.0 1.5 2.0

Re(): Dispersion

Im(): Absorption

21 4 n In general, n is complex. But far from Absorption lines the imaginary part Is small and can usually be neglected.

Page 19: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

Beam Propagation In The Presence Of Matter

22

2 2

41

c t

E P

E

As we saw earlier using the nonlinear oscillator model, the total polarization P is composed of two parts:

a linear and a nonlinear response. Assuming only a third order Nonlinear potential, then, with…

(3) 2( ) ( ) ( ) | |in L in in tE

(3) 2( ) ( ) | |L in inP E E E

Assuming a single vector component, dropping the vector notation,And substituting above one finds:

Page 20: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2 2 (3) 2

2 22 2 2 2

4| |

n EE E E

c t c t

( )( , , , ) . .i k z tE x y z t e c c

2 2 22 2 2

2 2 2

(3) 2 2 22 2

2 2

2 2

4 | | | |2 | |

t

nik k i

z z c t t

ic t t

Page 21: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2 2 22 2 2

2 2 2

(3) 22

2 2

2 2

42

t

nik k i

z z c t t

p pi p

c t t

Once again, assuming CW operation, no boundaries or interfaces inthe longitudinal direction (z), we make the SVEA approximation, i.e., drop second order spatial (z) derivatives:

2 2 (3) 22 2 2

2 2

42 | |t

nik k

z c c

For A Uniform Medium, The Choice k=(/c)n is Appropriate. The result is:

(3) 22 2

2

4| |

2 2t

ii

z k c k

Page 22: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

(3) 22 2

2

4| |

2 2t

ii

z k c k

/ /z L x x L Using the scalings…

We can simplify the equation and rewrite it in simple form:

2(3) 2

2| |

ii

F x

where…2 (3)

(3) 4

in

L

n

0

4 nLF

and…

Page 23: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2(3) 2

2| |

ii

F x

Equation is of the form:

H

2(3) 2

2| |

iH i D V

F x

Formal Solution:

0

( , ) ( ,0) ( , ') ( , ') 'x x H x x d

Page 24: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

0

( , ) ( ,0) ( , ') ( , ') 'x x H x x d

Let’s assume that H varies slowly inside the interval.

0

( , ) ( ,0) ( ,0) ( , ') 'x x H x x d

0

( , ) ( ,0) ( ,0) ( , ') 'x x H x x d

For small Intervals:

2(3) 2

2| |

iH i

F x

Page 25: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

( ( ,,0)( ,0

)( , ) (

2) ,0)

xx H

xxx

1 ( ,0) ( , ) 1 ( ,0) ( ,0)2 2

H x x H x x

1

( , ) 1 ( ,0) 1 ( ,0) ( ,0)2 2

x H x H x x

22 3( , ) 1 ( ,0) ( ,0) ( ) ... ( ,0)

2x H x H x x

( ,0)( , ) ( ,0)H xx e x

Page 26: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

0( , )0 0( , ) ( , )H xx e x

H D V

We must expand the operator in order to evaluate it!

2( ) 2 21 ( ) ( ) ...

2D Ve D V D DV VD V

D and V generally DO NOT commute.

Page 27: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2 2

2 2

2 2 2

(1 / 2 ...)

(1 / 2 ...)

1 ( ) ( / 2 ....2 )

D Ve e D D

V V

D V D DV V

2 2

2 2

2 2 2

(1 / 2 ...)

(1 / 2 ...)

1 ( ) ( / 2 ....2 )

V De e V V

D D

D V D VD V

However, using the same sort of expansion of the operators,It can be shown that…

D and V generally DO NOT commute...

Page 28: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

/ 2 / 2 ( )D V D D Ve e e e Error

3( )Error

0( , )/ 2 / 2

0 0( , ) ( , )V xD De e ex x

Page 29: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

0( , )/ 2 / 2

0 0( , ) ( , )V xD De e ex x

The single mixed integration step (D+V) has been split into three parts:

(1) Free space propagation by half of the spatial step

(2) Interaction with the medium by the full propagation step

(3) Account for remaining half free space propagation step

Split-Step Beam Propagation Method, or more commonly known as FFT-BPM

Page 30: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

/ 2

1 0 0( , / 2) ( , )Dex x 1.

0( , )

2 0 1 0( , ) ( , / 2)V xex x 2.

/ 2

0 2 0( , ) ( , )Dex x 3.

By Construction, each free space propagation step requires two FFTs, for a total of four per interval. But there

Is some good news.

Page 31: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

/ 2 / 2 2 22

1 ( ) ( ) ...2

D V De e e D V D DV VD V

Then, given the symmetric disposition of each term, it must be true that…

/ 2 / 2 / 2 2 22

1 ( ) ( ) ...2

V D Ve e e D V D DV VD V

Which can be verified by direct substitution or by the simple transformationD->V V->D

Clearly this algorithm requires half as many FFTs per step, and so it is more efficient

Page 32: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

/ 2

1 0 0( , / 2) ( , )Vex x 1.

2 0 1 0( , ) ( , )Dex x 2.

/ 2

0 2 0( , ) ( , )Vex x 3.

Each free space propagation step requires only two FFTs per interval

with the same kind of accuracy.

Page 33: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

As usual, improved accuracy requires more work at the expense of efficiciency, and may

not always be worth it.( )

2 3 42 3 4 5

1

52

1 ( ) ( ) ( ) ( ) ( ) ...2 6 24

( )

D V

aD bV cD dV eD fV gD hV

e

D V D V D V D V

e e e e e e e e

C===========================================C a=0.05361185 b=0.62337932451322C===========================================C c=0.89277629949778 d=-0.12337932451322C===========================================C e=-0.1203850412143 f=-0.12337932451322C===========================================C g=0.17399689146541 h=0.62337932451322C===========================================C

Page 34: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

0 0( , ) ( , )Dex x

Actual Implementation of each step: free space

Is the solution of the equation

Using spectral methods:2( , )

( , )E q iq

E qF

2

2

( , ) ( , )E x i E x

F x

Solve numerically as follows:

2 ( ,0) ( , )( , ) ( ,0)

2

E q E qiqE q E q

F

Page 35: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

2 ( , )( ,0)

2

( , )( , )

E qiqE q

F

E qE q

2

2

12

( ,0)

12

( , )E q

iqF

E qiqF

Which gives a stable, third order accurate solution. Then…

1( , ) ( , )E x FT E q

2

1( , ) ( ,0)iq

FE x FT e FT E x

Page 36: Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, 35898-5000 & Universita' di Roma "La Sapienza" Dipartimento

Actual Implementation of each step: medium

/ 2

0 0( , / 2) ( , )Vex x

Is the solution of the equation( , )

( , )2

E x VE x

Solve numerically as usual:

2 ( ,0) ( , )( , / 2) ( ,0)

2 2

E x E xiqE x E x

F

2

2

14

( ,0)

14

( , / 2)E x

iqF

E xiqF