28
Microarrays Lecture Slides Courtesy of Dr. Tim Hughes [email protected] Outline: • Microarray experiments • Different types of microarrays •Clustering and interpretation

Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

  • Upload
    chiara

  • View
    40

  • Download
    0

Embed Size (px)

DESCRIPTION

Microarrays Lecture Slides Courtesy of Dr. Tim Hughes [email protected] Outline: Microarray experiments Different types of microarrays Clustering and interpretation. Nucleic Acid Hybridization. www.accessexcellence.org/AB/GG/nucleic.html. Typical use of cDNA microarrays: - PowerPoint PPT Presentation

Citation preview

Page 1: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Microarrays

Lecture Slides Courtesy ofDr. Tim [email protected]

Outline:• Microarray experiments• Different types of microarrays•Clustering and interpretation

Page 2: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

www.accessexcellence.org/AB/GG/nucleic.html

Nucleic Acid Hybridization

Page 3: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

controltreatment

(drug, mutation)

updownunchangednot present

x y z

xx

x

xx

yy

yy

zz z

cDNA pools

Typical use of cDNA microarrays:“Internal” normalization using two colors

Page 4: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

“cDNA microarrays” are essentially dot-blots on glass slides

http://arrayit.com/Products/Printing/Stealth/stealth.html

• This slide was made with 16 pins• 4.5 mm pin spacing matches 384-well plates (16 x 24)• Done with robotics• Slides usually coated with poly-lysine• Spots are usually 100-150 microns• Spot spacing is usually 200-300 microns.• Slides are 25 x 75 mm• Easy to deposit 20K spots/slide

0.45 mm

Page 5: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Microarray expression profiling by 2-color assay (“cDNA arrays”)

Array: PCR products6250 yeast ORFs

hybridized cDNAs:green = controlred = experiment

*Schena et al., 1995

Page 6: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Image processing and normalization: what is microarray data?Microarray data is summary information from image files that come out of the scanner.Image processing: line up grids, flag bad spots, quantitate.

Page 7: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:
Page 8: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Looking at data from a single experiment

3-AT vs.No drug

wild-type vs.wild-type

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Log10(Intensity)

Log1

0(Expression Ratio)

Slides: 11120c01 -11121c01

P-value < 0.01

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P-value < 0.01

Log10(Intensity)

Log1

0(Expression Ratio)

Slides: 11857c01 -11858c01

log10(average intensity)

-2 -1 0 1 2

log 1

0(r

atio

)lo

g 10(r

atio

)

2

1

0

-1

-2

-2 -1 0 1 2

2

1

0

-1

-2

Page 9: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Other types of arrays

Page 10: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Photolithographic arrays (Affymetrix)

Building up oligonucleotides on a surface:

http://www.affymetrix.com/technology/manufacturing/index.affx

Page 11: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Photolithographic arrays (Affymetrix)

aka “GeneChip”

Arrays are typically 25-mers, with “mismatch” control for specificity

Page 12: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Photolithographic arrays (Affymetrix)Advantages:

Density is limited essentially by the 5 micron resolution of scanners (solution: larger arrays).

Well-developed protocols.

“Industry standard” (largely self-driven).

Disadvantages:

Not all probes work well. Affymetrix has evolved a complicated system to compensate for this, but even “believers” use at least four probes per gene, and usually more.

Single color.

Sample preparation typically requires amplification.

Single supplier; historically intellectual property issues. (i.e. comparisons)

Page 13: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

• 25,000 oligos / 1 x 3 inches

• Sequence completely flexible

• 60-mers

G

AGTC

A

CGGG

C

TGAA

Ink-jet arrays (Agilent)

Hughes TR et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. 2001 Apr;19(4):342-7.

Page 14: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Ink-jet arrays generally agree with spotted cDNA arrays

Yeast IJS array: ~8 oligos per gene Spo vs. SC

cDNA array

mu

ltip

le o

ligos

cDNA array

sin

gle

olig

o

r = 0.96

HXT3 HXT1

HXT4

r = 0.97

Page 15: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Ink-jet arrays (Agilent)Advantages:

User-specified sequences; “no questions asked”

Sensitivity and specificity are defined and exceed requirement for most expression profiling applications; no amplification required

Virtually every 60-mer is functional

Data correlates well with spotted cDNA arrays

Disadvantages:

Density currently limited to ~45,000 spots per array.

Single supplier (although a protocol is in press for making your own synthesizer!)

Page 16: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

2-D clusteringStep 1: cut experiments and transcripts

falling below P-value and ratio thresholds

-10 -5 -2 1 2 5 10

fold repression fold induction

transcript response index

exp

erim

ent

ind

ex

44 experimentsx

407 genes

Page 17: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

2-D clustering

-10 -5 -2 1 2 5 10

fold repression fold induction

Step 2: cluster experiments and transcriptstranscript response index

exp

erim

ent

ind

ex

RHO O/XPKC O/X

ste mutants

treatment withalpha-factor

Data from Roberts et al., Science (2000)

Page 18: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

K = 10 #1 #2 #3

There are many types of clustering. One example: K-means (must choose K)

See: Sherlock G. Analysis of large-scale gene expression data.Curr Opin Immunol. 2000 Apr;12(2):201-5.

Page 19: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Basics of clustering freeware: Eisen’s “Cluster” and “Treeview”

Mike Eisen's web site: rana.lbl.gov/EisenSoftware.htm

“Cluster” loads an Excel file (save as tab-delimited text) in the following format:

Cluster

Treeview

(also: “TreeArrange” - http://monod.uwaterloo.ca/downloads/treearrange/)There are also many commercial programs available.

Page 20: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

mRNA

protein

nucleus

cell

Page 21: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Microarray expression data

Co-regulated groups of genes

Functional categories

Predict functions of new genes

cis, trans regulators

Page 22: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

GO-Biological Process categories

Broad

Mid-level

Narrow eye pigment metabolism

eye morphogenesis

pigment metabolism

striated muscle contraction

ATP biosynthesis

vision

CNS development

insulin secretion

Very Broadmetabolism

163

137

21

36

25

33

34

1548

# annotated genes(mouse)

development 2341

Page 23: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

GO-Biological Process hierarchy

eye pigment metabolism

eye morphogenesis

pigment metabolism

CNS development

metabolism

development

Page 24: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Other types of categorical annotations:

KEGG, EC numbers (describe biochemical “pathways”)

MIPS, YPD (yeast databases – older than GO)

Results of individual studies (localization, 2-hybrid screens, protein complexes, etc.

Sequence motifs, structural domains (pfam, SMART)

Page 25: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Cluster labelamino acid metabolismarginine biosynthesisarginine catabolismaromatic AA metabolismasparagine biosynthesisbranched chain AA synthlysine biosynthesismethionine biosynthesissulfur AA tnsprt, metabadenine biosynthesisaldehyde metabolismbiotin biosynthesiscitrate metabolismergosterol biosynthesisfatty acid biosynthesisgluconeogenesisNAD biosynthesisone-carbon metabolismpyridoxine metabolismthiamin biosynthesis 1thiamin biosynthesis 2hexose transportsodium ion transportpolyamine transportnucleocytoplasmic transportribosome/RNA biogenesisribosomal proteinstranslational elongationprotein foldingsecretionprotein glycosylationvesicle-mediated transportproteasomevacuole fusionmitoribosome/respirationMitochond. electron trans.iron transport/TCA cycleChromatin/transcriptionhistonesMCM2/3/6/CDC47DNA replicationmitotic cell cycleCLB1/CLB6/BBP1cytokinesisdevelopmentpheromone responseconjugationsporulation/meiosisresponse to oxidative stressstress/heat shock

Sample genesTRP4, HIS3ARG1, ARG3CAR1, CAR2ARO9, ARO10ASN1, ASN2ILV1,2,3,6LYS2, LYS9MET3,16,28MUP1, MHT1ADE1,4,8AAD4,14,16BIO3,4CIT1,2ERG1,5,11FAS1,FAS2PGK1, TDH1,2,3BNA4,6GCV1,2,3SNO1, SNZ1THI5,12THI2,20HXT4,GSY1ENA1,2,5TPO2,3KAP123,NUP100MAK16,CBF5RPS1A,RPL28TEF1,2SSA1,HSP60VTH1,KRE11ALG6,CAX4VPS5,IMH1RPN6,RPT5VTC1,3,4,PHO84MRPL1,MRPS5ATP1,COX4FRE1,FET3SNF2,CHD1,DOT6HTA1,HHF1MCM2,3,6RFA1,POL12SPC110,CIN8CLB1,6CTS1,EGT2PAM1,GIC2FUS3,FAR1CIK1,KAR3SPO11,SPO19GDH3,HYR1 HSP104,SSA4

Candidate regulatorGCN4ARG80/81ARG80/81/UME6/RPD3ARO80GCN4/HAP1/HAP2LEU3, GCN4LYS14CBF1, MET28, MET32MET31,MET32BAS1, BAS2, GCN4

RTG3ECM22/UPC2INO4GCR1

THI2/THI3THI2/THI3GCR1NRG1,MIG1HAA1RRPE-binding factorPAC/RRPE-binding factors

HAC1,ROX1RLM1XBP1

RPN4PHO4

HAP2/3/4/5MAC1/RCS1/AFT1/PDR1/3

HIR1,HIR2ECBMCBHCM1FKH1ACE2,SWI4

MATALPHA2,STE12KAR4NDT80ROX1,MSN2,MSN4MSN2,MSN4

249

gen

es1,

226

gen

esNon-overlapping yeast gene expression

clusters424 experiments

Chua et al., 2004

Page 26: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

Analyzing clusters:

amino acid biosynthesis (p<10-

14)**amino acid metabolism (p<10-

14)**

methionine metabolism (p=1.07×10-7)

**When testing clusters against many different types of categorical annotations, should consider correcting for multiple-testing, and also consider

that categories are often not independent

Page 27: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline:

**http://area51.med.utoronto.ca/FUNSPEC.html

Page 28: Microarrays Lecture Slides Courtesy of Dr. Tim Hughes t.hughes@utoronto Outline: