42
MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH ENHANCEMENT BY USING POLYMERIC MAGNETO DIELECTRIC SUBSTRATES WAN ASILAH BINTI WAN MUHAMAD A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering) Faculty of Electrical Engineering Universiti Teknologi Malaysia MAY 2017

MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH ENHANCEMENT BY

USING POLYMERIC MAGNETO DIELECTRIC SUBSTRATES

WAN ASILAH BINTI WAN MUHAMAD

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MAY 2017

Page 2: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

iii

To

My beloved father, Wan Muhamad

His words of encouragement and inspiration in pursuit of excellence gives me strength

throughout my life

To

My lovely mother, Narimah

Her encouragement, support, and constant love have sustained me throughout my life

To

My husband, brothers, sisters, and friends

Page 3: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

iv

ACKNOWLEDGEMENT

All praises to Allah (subhanahu wa ta’ala) for giving me health, strength, knowledge,

and patience to complete this project.

First, I would like to express my deepest gratitude to my supervisor, Associate

Professor Dr. Razali Ngah and my co-supervisor, Dr. Soh Ping Jack for their outstanding

motivation, patience, guidance, help and support throughout of this work. Special thanks

to Associate Professor Dr. Mohd Tarmizi Ali for giving me opportunity to measure in

his anechoic chamber.

Besides that, I would like to thanks all my colleagues in Wireless

Communication Centre (WCC), UTM and Advanced Communication Engineering

Centre (ACE), UniMAP for sharing knowledge and ideas and help during working in

my project.

I would like to express my gratitude to my father Wan Muhamad Wan Md Amin,

my mother Narimah Wan Othman, my husband Mohd Faizal Jamlos, my brothers, my

sisters and all my family members for keeping support, patience, caring, love and

inspiration throughout my PhD journey. Finally, thanks to all my friends and to all those

whoever has helped me either indirectly or directly in accomplishment of this research

project.

Page 4: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

v

ABSTRACT

Microstrip antennas are fabricated using commercially available dielectric

substrates such as Rogers, Taconic and FR4. However, microstrip antennas built using

these materials have limited bandwidth besides would incur high losses. This thesis

presents the development of a class of polymeric magneto used as antenna substrates.

These new composite substrates are capable of boosting antenna bandwidth, miniaturizing

antenna size and improving gain. In the study, Polydimethylsiloxane-magnetite iron oxide

(PDMS-Fe3O4) dielectric composite consisting of Fe3O4 nanoparticles (sized at 10 nm) and

polymeric PDMS was introduced. PDMS-Fe3O4 and PDMS exhibit favorable

characteristics such as transparency, lightweight, low losses and ease of dielectric

permittivity tuning by loading using different material compositions. In this case, Fe3O4

nanoparticles are suited for specific microwave/radio frequency applications. Furthermore,

the study implemented a bandwidth enhanced microstrip grid and comb array antennas on

molded PDMS and PDMS-Fe3O4 for high frequency applications as the first of their kind.

The grid and comb array antennas were embedded inside the PDMS and PDMS-Fe3O4

dielectric substrates, which offer water resistance and improve mechanical robustness for

the antenna. Four antennas structures were designed to validate the merit of the PDMS-

Fe3O4, namely microstrip grid array antenna (MGA), microstrip polymeric grid array

antenna (PGA), microstrip polymeric comb array antenna (PCA) and microstrip polymeric

magneto comb array antenna (PMCA). Simulation and measurement results indicated

increments in relative bandwidths, starting from 1.43% for MGA antenna, followed by

PGA antenna with 6.43%, 18.21% for PCA antenna and nearly 56.25% for PMCA

antenna. Measurements showed good agreement with simulations in terms of reflection

coefficient and radiation patterns. Besides significant bandwidth improvements, the gain

for all antennas have also improved, with 12.26 dBi obtained for MGA antenna, 14.79 dBi

for PGA antenna, 11.38 dBi for PCA antenna and 11.34 dBi for PMCA antenna. Thus, it

can be concluded that the use of PDMS-Fe3O4 composites and polymeric dielectric as

substrates is suitable for use in high frequency applications to improve bandwidth and

antenna compactness.

Page 5: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

vi

ABSTRAK

Antena mikrojalur direka menggunakan substrat dielektrik yang boleh didapati

secara komersial seperti Rogers, Taconic dan FR4. Walau bagaimanapun, antenna

mikrojalur yang dibina menggunakan substrat-substrat ini mempunyai lebar jalur yang

terhad selain menyebabkan kehilangan yang tinggi. Tesis ini membentangkan

pembangunan kelas baru magneto polimer yang boleh digunakan sebagai substrat antena.

Substrat ini merupakan komposit baru yang mampu meningkatkan lebar jalur antena,

mengecilkan saiznya dan meningkatkan gandaan. Komposit dielektrik

polydimethylsiloxane-oksida besi magnetit (PDMS-Fe3O4) yang diperkenalkan ini terdiri

daripada nanopartikel Fe3O4 (bersaiz 10 nm) dan polimer PDMS. PDMS-Fe3O4 dan

PDMS mempamerkan ciri-ciri baik seperti kelutsinaran, ringan, kehilangan yang rendah

dan kemudahan penalaan ketelusan dielektrik dengan menggunakan komposisi bahan yang

berbeza. Di dalam kes ini nanopartikel Fe3O4 sesuai digunakan dalam aplikasi gelombang

mikro/frekuensi radio. Tesis ini juga mencadangkan peningkatan lebar jalur dengan

menggunakan antena mikrojalur tatasusunan grid dan tatasusunan sikat yang

direkabentuk pada PDMS dan PDMS-Fe3O4 untuk aplikasi frekuensi tinggi, yang pertama

seumpamanya diperkenalkan. Antena grid dan antena sikat dibenamkan di dalam substrat

dielektrik PDMS dan PDMS-Fe3O4, yang kalis air dan keteguhan mekanikal antena yang

lebih baik. Empat struktur antena direka untuk mengesahkan sumbangan yang dicadangkan

PDMS-Fe3O4: antena mikrojalur tatasusunan grid (MGA), antena mikrojalur polimer

tatasusunan grid (PGA), antena mikrojalur polimer tatasusunan sikat (PCA) dan antena

mikrojalur polimer magneto tatasusunan sikat (PMCA). Keputusan menunjukkan kenaikan

di dalam lebar jalur relatif, bermula dari 1.43% bagi antena MGA, diikuti oleh antena PGA

dengan 6.43%, 18.21% bagi antena PCA dan sehingga 56.25% bagi antena PMCA.

Pengukuran menunjukkan persamaan yang baik dengan simulasi dari segi pekali pantulan

dan corak radiasi. Selain daripada peningkatan lebar jalur yang besar, gandaan untuk

semua antena yang diperkenalkan juga memberikan bacaan yang baik, dengan 12.26 dBi

diperolehi bagi antena MGA, 14.79 dBi untuk antena PGA, 11.38 dBi untuk antena PCA

dan 11.34 dBi untuk antena PMCA. Oleh itu, dapat disimpulkan bahawa penggunaan

komposit PDMS-Fe3O4 dan polimer dielektrik sebagai substrat adalah sesuai untuk

digunakan dalam aplikasi frekuensi tinggi dengan lebar jalur yang lebih baik dan antena

yang kompak.

Page 6: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

vii

TABLE OF CONTENTS

CHAPTER TITTLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF SYMBOLS xix

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem statement 6

1.3 Objectives 6

1.4 Scope of works 7

1.5 Contributions 9

1.6 Thesis organization 9

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 5G Antenna Requirements 11

2.3 Bandwidth Enhancement Techniques 15

Page 7: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

viii

2.3.1 Artificial Magnetic Conductor (AMC) 15

2.3.2 Multilayered Configuration 16

2.3.3 Dielectric Substrate Material 17

2.4 Electrical Properties of Substrate Materials 18

2.4.1 Permittivity and Dielectric Loss Tangent 18

2.4.2 Permeability and Magnetic Loss Tangent 20

2.5 Polymeric Magneto Dielectric Substrate Materials 23

2.5.1 Polymer Substrate Materials 23

2.5.2 Magneto Dielectric Substrate Materials 25

2.5.3 Magneto Dielectric Substrate on

Impedance Matching

26

2.5.4 Magnetic Nanoparticles of Iron Oxide

(Fe3O4)

27

2.6 Magneto Dielectric Substrate on Bandwidth

Enhancement

28

2.7 Related Research 30

2.8 Summary 40

3 METHODOLOGY 41

3.1 Introduction 41

3.2 Design Procedure 41

3.3 Design Specification 43

3.4 Steps in Designing Antennas 44

3.5 Determining Permittivity and Loss Tangent of

Polydimethylsiloxane

47

3.6 Determining the Electrical Properties of PDMS-

Fe3O4 composite substrate

49

3.7 Antenna Design Concept 52

3.7.1 Creation of PDMS and PDMS-Fe3O4

substrate in CST’s library

52

3.7.2 Microstrip Polymeric Grid Array Antenna 53

3.8 Microstrip Polymeric Comb Array Antenna 58

3.9 Fabrication Procedure for the Proposed Antennas 66

3.10 Summary 71

Page 8: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

ix

4 RESULTS AND DISCUSSION 72

4.1 Introduction 72

4.2 Dielectric Substrate’s Measurement for PDMS and

PDMS-Fe3O4

73

4.3 Microstrip Grid Array antenna 79

4.4 Microstrip Comb Array Antenna 85

4.5 Microstrip Polymeric Magneto Comb Array

Antenna

92

4.6 Summary 101

5 CONCLUSION 102

5.1 Conclusion 102

5.2 Recommendations for Future Work 103

REFERENCES 104

Appendix A-B 117-123

Page 9: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

x

LIST OF TABLES

TABLE NO. TITTLE PAGE

1.1 Applications of 5G Communications

4

2.1 Performance of Different Antennas with Polymeric

Magneto-Dielectric Substrates

31

3.1 Design specifications for polymeric dielectric

(PDMS) and polymeric magneto dielectric substrates

(PDMS-Fe3O4)

43

3.2 Design specification for antenna design

43

3.3 Several characteristics of magnetic (Fe3O4)

nanoparticles solution by Sigma-Aldrich Corporation

49

3.4 Summary of permittivity, permeability and loss

properties of PDMS- Fe3O4 composite

50

3.5 Antenna design parameters of the microstrip

polymeric comb array (PCA) antenna versus

microstrip polymeric grid array (PGA) antenna

63

3.6 Dimensions for all proposed antennas 71

4.1 Summary of permittivity, loss tangent, and

permeability for PDMS and PDMS-Fe3O4 dielectric

substrates

79

4.2 Performance of the Microstrip polymeric grid array

(PGA) and microstrip grid array antenna (MGA)

84

4.3 Microstrip comb and grid array antennas with

polymer PDMS substrate

92

Page 10: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xi

4.4 Performance of the microstrip polymeric magneto

comb array and microstrip polymeric comb array

99

4.5 Bandwidth Enhancement for the MGA, PGA, PCA,

and PMCA antennas

100

Page 11: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xii

LIST OF FIGURES

FIGURE NO. TITTLE PAGE

1.1 Millimeter-wave 5G Small cell access network

communication

2

1.2 Millimeter-wave 5G E-band wireless backhaul access

network communication

2

1.3 Millimeter-wave 5G Cellular cell access network

communication

3

2.1 Milimeter-wave spectrum for 5G

12

2.2 Prototype of linear array DRA

13

2.3 A compact planar inverted-F antenna

13

2.4 A geometry of microstrip grid array antenna for 28

GHz application

14

2.5 A geometry of artificial magnetic conductor on dipole

antenna

16

2.6 Example of multilayer configuration for microstrip

antenna

16

2.7 A structure of LTCC via-wall stacked patch antenna

at 28 GHz

17

2.8 Schematic diagram of unpolarized and polarized

situation when applied electric field

19

2.9 Photographs of a flexible liquid metal alloy (EGain)

on microstrip patch antenna

24

Page 12: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xiii

2.10 (a) The antenna exposed to washing. A plastic cap

protected SMA connector and (b) measured of

reflection coefficient before and after washing

24

2.11 A flexible antenna with copper mesh inside the

PDMS substrate

25

2.12 Reflected and transmitted wave in magneto dielectric

substrate. (a) Dielectric to free space boundary

conditions and (b) Magneto-dielectric to free space

boundary conditions

26

2.13 The block diagram of incident waves transfer from air

to substrate materials

27

2.14 A design of Multilayers Polymeric Magneto-

Dielectric Array Antenna at 4.58 GHz. (a) Layers

structure of the proposed antenna and (b) Geometry

of antenna array (2x2)

31

2.15 Comparison results on reflection coefficient for

Rogers, FR4, and Polymeric Magneto Dielectric at

4.58 GHz

32

2.16 Schematics of the antenna with MED-WG-MTM

loading

32

2.17 Comparison on varieties of WG-MTM loading 33

2.18 A microstrip grid array antenna structure 34

2.19 A geometry of microstrip grid array antenna 34

2.20 A geometry of 60 GHz microstrip grid array antenna 35

2.21 Reflection coefficient result for microstrip grid array

antenna

35

2.22 A microstrip comb-line antenna array composed of

open-circuit stubs

36

2.23 Equivalent circuit of a T-junction in microstrip comb

array antenna

37

2.24 Antenna structure installed on the PEC cylinder 39

2.25 A structure of microstrip comb array antenna where

(a) is a radiator and (b) fabricated

39

Page 13: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xiv

2.26 Reflection coefficient results for simulated and

measured antenna

40

3.1 Fabrication process of polymeric (PDMS) dielectric

substrate

48

3.2 Development process of polymeric magneto (PDMS-

Fe3O4) composite dielectric substrate

51

3.3 Definition of new materials in CST software for (a)

PDMS substrate and (b) PDMS-Fe3O4 composite

substrate

53

3.4 The details structure of microstrip grid array antenna

(a) unit cell (b) diamond shaped radiating elements

(c) full ground plane

55

3.5 The Polymeric Grid Array Antenna (PGA) (a) unit

cell (b) diamond shaped radiating elements (c) full

ground plane

56

3.6 Microstrip grid array antenna is embedded inside the

PDMS layers

57

3.7 Fabricated microstrip grid array antenna. (a) Front

view, (b) back view, and (c) perspective view

57

3.8 Fabricated microstrip polymeric grid array antenna.

(a) Front view, (b) back view, (c) perspective view,

and (d) side view

58

3.9 Graphic illustration of the transformation from a

microstrip grid array antenna to a microstrip comb

array antenna

59

3.10 Optimized microstrip polymeric comb array antenna

(PCA)

60

3.11 Microstrip polymeric comb array antenna. (a) Front

view and (b) back view

61

3.12 Microstrip comb array antenna is embedded inside

the PDMS layers

62

Page 14: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xv

3.13 Fabricated microstrip polymeric comb array antenna.

(a) Front view, (b) back view, and (c) perspective

view

62

3.14 Microstrip Polymeric Magneto Comb Array Antenna

with PDMS-Fe3O4 substrate. (a) Front view and (b)

back view

64

3.15 Perspective view for PMCA antenna with PDMS-

Fe3O4 substrate

65

3.16 Fabricated PMCA antenna. (a) Front view, (b) back

view, and (c) perspective view

65

3.17 3D schematic of the Microstrip Comb Array Antenna

structure of proposed polymeric magneto composite

dielectric substrate (PDMS- Fe3O4)

66

3.18 Measuring PDMS- Fe3O4 layer. (a) Sylgard 184

product, curing agent, and ferrite III oxide, (b) Scale

the thickness of each layer and (c) PDMS- Fe3O4 is

mixed together inside the mold

67

3.19 Steps of PDMS- Fe3O4 fabrication. (a) Hardened the

initial layer of PDMS- Fe3O4, (b) the radiating patch

is placed atop of initial layer of PDMS- Fe3O4 and (c)

final layer of PDMS- Fe3O4 is put on the radiating

patch and wrapped the proposed antenna

68

3.20 The 3D flow diagram of fabrication process of the

proposed polymeric magneto dielectric (PDMS-

Fe3O4), for Microstrip comb array antenna

69

3.21 Fabricated prototype for all proposed antennas. (a)

Microstrip polymeric comb array antenna, (b)

Microstrip polymeric comb array antenna, (c)

Microstrip polymeric grid array antenna and (d)

Microstrip grid array antenna

70

3.22 Perspective view of fabricated prototype for all

proposed antennas. (a) Microstrip polymeric comb

array antenna, (b) Microstrip polymeric comb array

antenna, (c) Microstrip polymeric grid array antenna

and (d) Microstrip grid array antenna

70

4.1 PDMS substrate during permittivity measurement 73

Page 15: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xvi

4.2 Measured permittivity on the (a) first day, (b) second

day, and (c) third day for the PDMS dielectric

substrate

74

4.3 Measured loss tangent on the (a) first day, (b) second

day, and (c) third day for the PDMS dielectric

substrate

75

4.4 Measured permittivity on the (a) first day, (b) second

day, and (c) third day for PDMS-Fe3O4 dielectric

substrate

76

4.5 Measured loss tangent on the (a) first day, (b) second

day, and (c) third day for PDMS-Fe3O4 dielectric

substrate

77

4.6 Free space measurement for fabricated material under

test, polymeric magneto (PDMS-Fe3O4) composite

dielectric substrate

77

4.7 Measured permeability of PDMS-Fe3O4 composite

dielectric substrate

78

4.8 Different sizes of the MGA: (a) 40 x 35 mm (width x

length), (b) 38 x 35 mm (width x length), and (c) 34

x 35 mm (width x length)

79

4.9 Reflection coefficients of the different sized MGA 80

4.10 PGA antenna (a) without and (b) with parasitic

elements

80

4.11 Parameter sweep on the parasitic element for PGA 81

4.12 Simulated reflection coefficient of the microstrip

polymeric grid array and microstrip grid array

antenna

82

4.13 Measured reflection coefficients of the (a) microstrip

grid array and the microstrip polymeric grid array

antenna

82

4.14 Radiation pattern of the antennas. (a) 3D PGA , (b)

3D MGA, (c) polar view of PGA and (d) polar view

of MGA antenna

84

Page 16: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xvii

4.15 Different sizes of the PCA antenna. (a) 33 x 33mm2

(width x length), (b) 30 x 33mm2 (width x length),

and (c) 27 x 33mm2 (width x length)

85

4.16 Reflection coefficients of the PCA antenna with

different sizes

85

4.17 Different matching element sizes for the PCA

antenna where Wa = 3.95 mm, Wb = 5.95 mm, and

Wc = 7.6 mm

86

4.18 Reflection coefficients of different matching element

sizes for the PCA antenna

87

4.19 Simulated reflection coefficient of the microstrip

comb (solid line) and grid array (dotted line) antennas

with PDMS substrate

88

4.20 Measured reflection coefficients of the (a) microstrip

comb and (b) grid array antennas with PDMS

substrate

88

4.21 The 3D radiation pattern for the (a) microstrip

polymeric comb array (PCA) antenna and microstrip

polymeric grid array (PGA) antenna

89

4.22 The simulated and measured radiation patterns of the

microstrip polymeric comb array (PCA) antenna in

(a) azimuth co plane, (b) azimuth cross plane, (c)

elevation co plane, and (d) elevation cross plane

90

4.23 The simulated and measured radiation patterns of the

microstrip polymeric grid array antenna (PGA) in the

(a) azimuth co plane, (b) azimuth cross plane, (c)

elevation co plane, and (d) elevation cross plane

91

4.24 Parameter study on the dimensions of the PMCA

antenna. (a) 27 x 33 mm2 (width x length), (b) 23 x

33 mm2 (width x length), and (c) 19 x 33 mm2 (width

x length)

93

4.25 Reflection coefficient for different sizes of the PMCA

antenna

93

4.26 Parameter study on the dimensions of the matching

element for PMCA antenna where (a) la = 7.89, lb =

8.89 mm, and lc = 9.89 mm

94

Page 17: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xviii

4.27 Reflection coefficient analysis on the dimension of

the matching element for the PMCA antenna

94

4.28 The measurement process for the fabricated

microstrip polymeric magneto comb array antenna in

an anechoic chamber (a) reflection coefficient and (b)

radiation pattern

95

4.29 Measured (dotted line) and simulated (solid line)

reflection coefficients of the microstrip polymeric

magneto comb array

95

4.30 3D radiation pattern of microstrip polymeric magneto

comb array antenna

96

4.31 Polar radiation pattern of the microstrip polymeric

magneto comb array antenna for azimuth planes (a)

co-plane and (b) cross plane, and elevation planes for

(c) co plane and (d) cross plane

97

4.32 Simulated reflection coefficient of the microstrip

comb with PDMS-Fe3O4 (solid line) and PDMS

substrate (dotted line) antennas

98

4.33 Comparison on reflection coefficients for all

proposed antennas; the microstrip grid array antenna

(purple line), the microstrip polymeric grid array

antenna (black line), the microstrip polymeric comb

array antenna (blue line) and the microstrip polymeric

magneto comb array antenna (red line)

100

Page 18: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xix

LIST OF SYMBOLS

D - Electric flux density

E - Electric field strength

ɛ - Dielectric permittivity

PD - Dielectric loss

µ𝑟 - Permeability of substrate materials

𝑡𝑎𝑛𝛿ɛ - Dielectric loss tangent

W - Width of the microstrip patch antenna

d - Thickness of substrate

B - Magnetic flux density

H - Magnetic field

µ’ - Real part permeability

µ” - Imaginary part permeability

Z0 - Free space impedance

Vm - Wave velocity

λm - Wavelength in material

λ0 - Wavelength in free space

a - Width of the patch

t - Thickness of the substrate

PACCEPTED - Accepted power

Q - Radiation quality factor

Wt - Radiated power

PMD - Magneto dielectric losses

𝑌𝑟𝑖 - Radiation admittance and transformer

𝑍𝑖 - Properties impedance

Page 19: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xx

𝐿𝑖 - Effective length of the stub

𝛤 - Reflection coefficient

t - Propagation factor

c - Speed of light, 3x1011 m/s-1

f - Operating frequency

𝜔𝑥 - Angluar frequency

Y0 - Characteristic admittance

Page 20: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

xxi

LIST OF APPENDICES

APPENDIX TITTLE PAGE

A Product information 117

B List of Publication 121

Page 21: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

CHAPTER 1

INTRODUCTION

1.1 Introduction

Wireless communication technologies has become more trendy in last few years

due to the revolution and evolution from first generation (1G), second generation (2G),

third generation (3G) as example mobile networks (UMTS - Universal Mobile

Telecommunication System, cdma2000), fourth generation (4G) for instance Long Term

Evolution - Advanced (LTE-A), and latest one is fifth generation (5G). These revolution

and evolution is due to the demand on high-speed data rate communication. As one of the

critical enablers in this revolution, the antenna acts as a front-end in developing a

communication network.

Small cell access, wireless backhaul, and cellular access are the network system

components for 5G communications. Small cell access is deployed in the underlying

macro cells as WPANs or WLANs as shown in Figure 1.1 and as a solution for capacity

improvement in 5G cellular networks. Such small cells have been targeted by 2020 to

achieve one thousand fold increase in network capacity besides providing wideband

multimedia applications and multi-gigabit rates with huge bandwidth (Baldemair, 2015)

(Ghosh, 2014) (Rappaport, 2013). The cellular cell access operates in the millimeter-wave

bands of 28, 38, 71-76 and 81-86 GHz for 5G enhanced local area access (Ghosh, 2014).

Page 22: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

2

Figure 1.1: Millimeter-wave 5G Small cell access network communication (Niu 2015)

Figure 1.2 shows the wireless backhaul communication networks. This type of

network is defined to connect 5G base stations to other 5G base station and to the network

by fiber based backhaul with small cells densely deployed in this network (Sridharan,

2015). Furthermore, the E-band backhaul provides high speed transmission between base

station and gateway or between small cell base stations. The operating frequency band for

the wireless backhaul is in the range of 60 GHz band and E-band (71-76 GHz and 81-86

GHz) which offers several Gbps of data rates and can be a promising backhaul solution

for small cells (Niu, 2015)

Figure 1.2: Millimeter-wave 5G E-band wireless backhaul access communication

network (Niu 2015)

Page 23: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

3

For cellular access, the huge bandwidth capability promotes the usage of

millimeter-wave communications in 5G cellular access (Rappaport, 2013) (Rangan,

2014). It also has a potential for high capacity and coverage as long as the infrastructure

is densely deployed as reported in (Bai, 2015) (Bai, 2014). The increment of capacity is

based on the arbitrary pointing angles of directional antennas, expected to be 20 times

greater than the 4G networks, and can be further improved by pointing directional

antennas in the strongest transmit and receive directions (Sulyman, 2014). Figure 1.3 is

shows the 5G cellular access network communication. The device-to-device (D2D)

communication in cellular access network refers to a radio technology that enables devices

to communicate directly with each other without routing the data paths through a network

infrastructure. Since the D2D communications enhances spectral efficiency and devices

are in close proximity to save power, it is capable of supporting context aware

applications, which involves communication with and discovery of nearby devices within

the cellular access network.

Figure 1.3: Millimeter-wave 5G Cellular cell access network communication (Mumtaz,

2014)

Table 1.1 summarizes previous researches according to scenario, frequency band,

and the main applications. Based on (Niu, 2015), many works are concentrated on the

indoor WLAN/WPAN applications in 60 GHz band at the moment, while other bands

need further investigation. To the best author’s knowledge, this is the first time that

antennas operating between 28 and 43 GHz for 5G cellular access network

Page 24: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

4

communications using polymeric magneto dielectric and polymeric dielectric has been

reported.

Table 1.1: Applications of 5G Communications

Publication Frequency band

(GHz) Scenario Application

Niu (2015) 60 Small cells in

HetNets

Access, backhaul

D2D

Wu (2015) 60, 70 indoor Multimedia

Sridharan (2015) 28 Outdoor cellular In-band backhaul

Ghosh (2014) 28, 38, 71-76, 81-86 Urban street Access and backhaul

Chen (2013) 60 WLAN Uplink channel access

Son (2012) 60 WPAN Transmission between

devices

Singh (2009) 60 Indoor office Internet Access

The capability in obtaining a large bandwidth in millimeter-wave for cellular

access network communication is contributed by the use of polymeric magneto dielectric

substrate (PDMS-Fe3O4) and also polymeric dielectric substrate (PDMS) for microstrip

antennas (Trajkovikj, 2013) (Balanis, 2005). Besides, microstrip antenna is one of the best

options to suit 5G requirements due to its low profile, simple structure and ease of

fabrication (Escuderos, 2013) (Niu, 2015). Typically, microstrip antennas have been

fabricated using commercially available antenna substrates as known as Taconic, Rogers,

PCB and many more (Chin, 2011) (Bunea, 2011) (Carver, 1981). However, the polymeric

magneto dielectric composite substrate and polymeric substrate are used in this project.

Page 25: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

5

Polymeric magneto dielectric and polymeric dielectric have been attracting

attention of microwave antennas and RF field. Numerous classes of natural materials in

the market are iron oxides, garnets, and metals which exhibit magnetic properties.

However, most common magnetic materials are ferromagnetic materials such as nickel,

cobalt, and transition metals- iron (Hage-Ali, 2009) (Babar, 2012) (George, Raman,

Mohanan & Sebastian, 2010). Ferrites is a class of materials which contains of

permittivity, permeability and electromagnetic conductivity that are suitable for

electromagnetic interference suppression from centimetre to sub-millimeter wavelengths

of the electromagnetic spectrum.

The aim this research is to introduce and develop polymeric magneto dielectric

composite and polymeric substrates based antennas for high frequency application with

bandwidth enhancement. The proposed magneto dielectric composite substrate contains

polydimentylsiloxane (PDMS) and (10 nm) nanoparticles of magnetic (Fe3O4) iron oxide.

Both materials have been composited in difference ratio to form the polymeric magneto

dielectric (PDMS- Fe3O4) composite substrate. Here, four types of antenna’s designed are

proposed and tested starting from the microstrip grid array antenna (MGA), microstrip

polymeric grid array antenna (PGA), microstrip polymeric comb array antenna (PCA),

and microstrip polymeric magneto comb array antenna (PMCA). All proposed antennas

are designed using Computer Simulation Technology software (CST) and measured using

the Agilent Technologies E8051C ENA Network Analyzer and an anechoic chamber.

Simulation and measurement results are analysed and compared to prove the antenna

performance improvements of polymeric magneto dielectric composite materials and

polymeric material in 5G application.

Page 26: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

6

1.2 Problem statement

Nowadays, modern wireless communication system such as medical diagnosis, 5G

technologies and navigation system demand lightweight, robust, conformal, and small

antennas. On the other hand, improving their bandwidth potentially improves its data-rate

transmission. Many researchers argue that 5G technology should adopt higher-frequency

millimeter wave bands where much more bandwidth is available. However, the typically

used normal microstrip patch antennas and arrays are narrowband in nature. Besides this,

the size of the antenna will be reduced inherently when designed for use in higher

frequency due to its shorter wavelengths. For instance, the expected antenna size that

operates at millimeter waves e.g. 28 GHz for a single patch is about 2.199 mm x 3.94 mm

in length (L) and width (W) respectively. Such small size results in the degradation of the

antenna performance, especially in terms of gain.

One of parameters to control the bandwidth of antenna is the material of the

substrate. Commonly, planar antennas have been fabricated using commercially available

rigid substrate such as Taconic, FR-4 and Rogers. Unfortunately, the main limitations of

these materials are narrow bandwidth, rigid, and possible high losses for some of these

materials. The implication of narrow bandwidth is difficult for high speed data rate

communication meanwhile a higher frequency application requires for a wider bandwidth

for a faster communication.

1.3 Objectives

The objectives of this dissertation are as follows:

1. To develop a polymeric dielectric substrate (PDMS) and polymer based on

magneto dielectric (PDMS-Fe3O4) substrates.

2. To design lightweight PDMS and (PDMS-Fe3O4) based antennas for higher

frequency.

Page 27: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

7

3. To analyse the effect of polymeric magneto dielectric substrate (PDMS-Fe3O4)

and polymeric dielectric substrate (PDMS) on microstrip comb array antenna

and microstrip grid array antenna in terms of bandwidth enhancement.

1.4 Scope of works

The scope of works is been described in Stage 1 until Stage 5 which consist of

literature review, analytical calculation, antenna design, simulation and optimization

using software, fabrication prototyping, and finally testing and measurement.

Stage 1: Literature Review

This stage includes the revision and analysis of earlier works related to substrate

materials and their effect on antennas characteristics and performance. Two antennas, the

microstrip comb array antenna and microstrip grid array antenna are discussed. Moreover,

the characteristics of polymeric magneto dielectric substrate are explained as well. The

existing polymer based substrates in pure PDMS form and in the PDMS-Fe3O4composite

form are studied and discussed.

Stage 2: Materials specifications and synthesis

In this section, electrical parameters of the dielectric substrate such as

permittivity, permeability, loss tangent of PDMS and PDMS-Fe3O4 composite materials

have been determined. Agilent 85070E Dielectric Probe Kit and E8051C ENA Network

Analyzer were used to measure permittivity; whereas the permeability of magneto

dielectric is extracted using the transmission line test fixture, free space measurement and

Nicolson Ross Weir methods.

Page 28: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

8

Stage 3: Analytical Calculation

Basic parameters such as frequency, loss tangent, permeability effect and

dielectric permittivity of substrates are decided first before proceeding to specific

analytical calculations to determine the patch dimension and transmission line. They are

calculated using specific equations provided in (Balanis, 2011) (Pirhadi, 2010)

Stage 4: Antenna Design, Simulation and Optimization

The project is initiated by identifying the new material in terms of electrical and

mechanical parameters, including permittivity, permeability, loss tangent, thermal

conductivity and Young’s modulus. Then, simulation has been performed using Computer

Simulation Technology (CST) software. Using CST, the proposed antenna with initial

dimensions is simulated to determine the best reflection coefficient, gain, bandwidth and

radiation pattern.

Stage 5: Prototype Fabrication and Measurement

The proposed antennas are fabricated after simulation process. Four different

structures antennas on PDMS and PDMS-Fe3O4 are fabricated, starting from synthesizing

and composting jelly sylgard 184 silicone elastomer (PDMS) with ferrite iron oxide

(Fe3O4). The prototype will then be measured in Advanced Communication Engineering

Centre (ACE) anechoic chamber, Universiti Malaysia Perlis (UniMAP) and Antenna

Research Group (ARG) lab, Faculty of Electrical Engineering (FKE), UiTM Shah Alam.

Simulation and measurement data of all prototypes are recorded, compared and analyzed.

Page 29: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

9

1.5 Contributions

The main contribution from this dissertation work is the development and

implementation of polymeric magneto dielectric composite (PDMS-Fe3O4) substrate for

size reduction, conformal, transparent, lightweight, robustness, with a permeability of

more than unity and low loss. Bandwidth enhancement of the microstrip antenna is another

contribution while maintaining acceptable performance as well as functional radiation

characteristics. The deployment of the newly developed polymeric magneto dielectric

offered a good alternative for the design of 5G antennas. The design’s process includes

free space measurement, transmission line theory, Nicolson-Ross-Weir (NRW) concept,

microstrip comb and grid array antenna and measurement methods. Multilayered patch

antenna designs have been developed to demonstrate the usefulness of magneto dielectric,

polymeric dielectric, ease of their processing, and simple in fabrication. The effect of the

polymeric magneto dielectric and polymeric dielectric have been systematically studied

and successfully identified for bandwidth enhancement and reduced the antenna size.

1.6 Thesis organization

This thesis consists of five chapters. Chapter 1 presents the background of the

research, problem statements, and objectives, scope of works, contributions, and thesis

organization. Chapter 2 provides an overview of the 5G technology and introduction of

the polymeric magneto dielectric substrates, their effects on antenna development and

implementation, the existing polymeric magneto dielectric substrates and existing

polymer based magneto dielectric antennas. Thereafter, a brief overview of microstrip

comb array antennas and microstrip grid array antennas is also presented.

Page 30: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

10

Chapter 3 introduces the methodology and procedures of characterization and

composition of the Polydimethylsiloxane (PDMS) and ferrite III oxide (Fe3O4)

nanoparticles. This includes the methods of extracting and measuring magnetic and

dielectric properties of PDMS-Fe3O4 and PDMS materials in terms of permeability,

permittivity and loss tangent. Experimental results of the material’s electrical properties

such as permittivity, permeability, dielectric, and magnetic loss tangents are shown to

substantially influence the performance of the polymeric magneto dielectric antennas. The

designs of four antennas structure and fabrication process are then presented. Chapter 4

presents the simulations and measurements results of proposed antennas. A detailed

analysis and discussion on the obtained results is also provided. Chapter 5 concludes the

overall finding of this research and future work for further investigation are proposed.

Page 31: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

104

REFERENCES

Adams J. J., E. B. Duoss, Thomas F. M., Michael J. M., Bok Y. Ah., Ralph G. N., Jennifer

T. B., Jennifer A. L. (2011). Conformal Printing of Electrically Small Antennas

on Three-Dimensional Surfaces. Advanced Materials, 23, 1335–1340.

Akhter, Z., M. J. Akhtar (2016). Free-Space Time Domain Position Insensitive Technique

for Simultaneous Measurement of Complex Permittivity and Thickness of Lossy

Dielectric Samples. IEEE Transactions on Instrumentation and Measurement.

65(10), 2394-2405.

Avionic Department (1999), Electronic Warfare and Radar Systems Engineering

Handbook, Washington: Avionic Department.

Alqadami, A. S. M., M. F. Jamlos, H. Lago, O. J. Babarinde (2014). Bandwidth

Enhancement of a Microstrip Antenna Array Using Magneto Dielectric Polymer

Substrate (PDMS-Fe3O4). IEEE Symposium on Wireless Technology and

Applications (ISWTA).

Attia, H., L. Yousefi, M. M. Bait-Suwailam, M. S. Boybay, O. M. Ramahi (2009).

Enhanced gain microstrip antenna using engineered magnetic superstrates. IEEE

Antennas and Wireless Propagation Letters, 8, 1198-1201.

Alves, T., R. Augustine, M. Grzeskowiak, B. Poussot, D., Delcroix, S. Protat, J. M.

Laheurte, P. Queffelec (2009). BAN antenna design using ferrite polymer

composite. 3rd European Conference on Antennas and Propagation (EuCAP),

Berlin.

Andrews, J. G., (2014). What will 5G be?. IEEE J. Sel. Areas Communication, 32(6),

1065–1082.

Ansari, J. A., Singh, P., & Yadav, N. P., (2009). Analysis of wideband multilayer patch

antenna with two parasitic elements. Microwave and Optical Technology Letters,

51, 1397-1401

Bai, T., R. Heath (2015). Coverage and Rate Analysis for Millimeter-Wave Cellular

networks. IEEE Transactions on Wireless Communications, 14 (2), 1100-1114.

Bai, T., A. Alkhateeb, R. Heath (2014). Coverage and Capacity of Milimeter-wave

cellular networks. IEEE Communication Engineering, 52 (9), 70-74.

Page 32: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

105

Babar, A., Virtanen, J. Bhagavati, V. A., Ukkonen, L., Elsherbeni, A. Z., Kallio, P.,

Sydanheimo, L. (2012). Inkjet-printable UHF RFID tag antenna on a flexible

ceramic-polymer composite substrate. IEEE International Microwave Symposium

(MTT-S).

Bahartia, P., K. V. S. Rao, R. S, Tomar (1991). Milimeter wave Microstrip and Printed

Circuit Antennas. Artech House, Norwood, MA.

Bayraktar, Z., J. P. Turpin, D. H. Werner (2011). Nature-Inspired Optimization of High-

Impedance Metasurfaces With Ultrasmall Interwoven Unit Cells. IEEE Antennas

and Wireless Propagation Letters, 10, 1563-1566.

Becciolini, B. (2005). Impedance Matching Networks Applied to RF Power Transistors.

RF Application Information Freescale Semiconductor. 1-16.

Balanis, C. (2011). Modern Antenna Handbook. John Wiley & Sons. New York.

Balanis, C.A. (2005). Antenna Theory: analysis and design. New York: John Wiley &

Sons.

Balanis, C. A. (1989). Advanced Engineering Electromagnetics. John Wiley, Hoboken,

NJ.

Balanis, C.A. (1982). Antenna Theory: Analysis and Design. Harper and Row, New York:

John Wiley & Sons.

Buell, K., H. Mossallaei, K. Sarabandi (2004). Embedded-circuit magnetic metamaterial

substrate performance for patch antennas. IEEE Antenna Propagation Social

Symposium-2004, 2, 1415-1418

Bae, S., Y. Mano (2005). A small meander VHF & UHF antenna by magneto-dielectric

materials. Asia-Pacific Microwave Conference. 4(4-7), 3.

Benjebbour, A. (2016). 5G Radio Access Technology. NTT DOCOMO Technical Journal,

17(4), 16-28.

Bharath, P., C. Dharmaraj, B. Srinu (2013). Study on the Improvement of Bandwidth of a

Rectangular Microstrip Patch Antenna. IOSR Journal of Electronics and

Communication Engineering (IOSR-JECE), 5(5), 16-22.

Baldemair, R., T. Irnich, K. Balachandran, E. Dahlman, G. Mildh, Y. Seln, S. Parkvall,

M. Meyer, A. Osseiran (2015). Ultra-dense networks in milimeter-wave

frequencies. IEEE Communications Magazine, 53 (1), 202-208.

Page 33: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

106

Bunea, A. C., F. Craciunoiu, G. Sajin (2011). 28 GHz CRLH Antenna on Silicon Substrate.

Proceedings of the 41st European Microwave Conference, 579-582.

Borah, K., N. Bhattacharyya (2012). Magneto dielectric composite with ferrite inclusions

as substrates for microstrip antennas. IEEE Transactions on Dielectrics and

Electrical Insulation. 19(5), 1825-1832.

Choi, D., M. Choi, J. Kim (2014). Magnetic Properties of Fe@ FeSiAl Oxide

Nanoparticles and Magneto dielectric Properties of Their Composite Sheets. IEEE

Transactions on Magnetics. 50(11), 1-4.

Carver, K., J. Mink (1981). Microstrip antenna technology. IEEE Transactions on

Antennas and propagation. 29(1), 2-24.

Castro, J., C. Morales, T. Weller J. Wang, H. Srikanth (2014). Synthesis and

Characterization of Low-Loss Fe3O4-PDMS Magneto-Dielectric Polymer

Nanocomposites for RF Applications. IEEE.

Chin, K. S., H. T. Chang, J. A. Liu, H. C. Chiu, J. S. Fu, S. H. Chao (2011). 28-GHz Patch

Antenna Arrays with PCB and LTCC Substrates. Cross Strait Quad-Regional

Radio Science and Wireless Technology Conference, 355-358.

Chin, K. Sh., H. T. Chang, J. A. Liu (2010). Design of LTCC Wideband Patch Antenna

for LMDS Band Applications. IEEE Antennas and Wireless Propagation Letters,

9, 1111-1114.

Chen, Q., J. Tang, D. Wong, X. Peng, Y. Zhang (2013). Directional cooperative MAC

protocol design and performance analysis for IEEE 802.11 ad WLANs. IEEE

Transactions Veh. Technology, 62 (6), 2667-2677.

Chen, X., G. Wang, K. Huang (2010). A Novel Wideband and Compact Microstrip Grid

Array Antenna. IEEE Transactions Antennas and Propagation, 58 (2), 596- 599.

Cai, T., G. M. Wang, X. F. Zhang, Y. W. Wang, B. F. Zong, H. X. Xu (2015). Compact

Microstrip Antenna With Enhanced Bandwidth by Loading Magneto-Electro-

Dielectric Planar Waveguided Metamaterials. IEEE Transactions on Antennas

and Propagation, 63(5).

Contopanagos, H. F., C. A. Kyriazidou, A. P. Toda, F. D. Flaviis, N. G. Alexopoulos

(2015). On the Projection of Curved AMC Reflectors From Physically Planar

Surfaces. IEEE Transactions on Antennas and Propagation, 63(2), 646-658.

Conti, R., Toth, T. Dowling, Weiss (1981). The Wire-Grid Microstrip Antenna. IEEE

Transactions on Antennas and Propagation, 29, 157-166.

Page 34: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

107

Dapeng Wu (2016). 76-81 GHz Planar Antenna Development and Utilization for

Automotive Radar Applications. Master thesis. Chalmers Universiti of

Technology, Gothenburg, Sweden.

DeJean, G., (2005). Liquid crystal polymer (LCP): a new organic material for the

development of multilayer dual-frequency/ dual-polarization flexible antenna

arrays. IEEE Antennas and Wireless Propagation Letters, 4,22-26.

Escuderos, D. S, M. F. Bataller, J. I. Herranz, M. C. Fabres (2013). Periodic Leaky-Wave

Antenna on Planar Goubau Line at Millimeter-Wave Frequencies. IEEE Antennas

and Wireless Propagation Letters.

Farzami, F., K. Forooraghi, M. Norooziarab (2011). Miniaturization of a Microstrip

Antenna Using a Compact and Thin Magneto-Dielectric Substrate. IEEE

Antennas Wireless Propagation Letter, 10, 1540-1542.

Gerard, J. H., J. H. So, A. Qusba, M. D. Dickey, G. Lazzi (2012). Flexible Liquid Metal

Alloy (EGaIn) Microstrip Patch Antenna. IEEE Transactions on Antennas and

Propagation, 60(5).

Garg. R., P. Bhartia, I. Bahl, and A. Ittipiboon (2011). Microstrip Antenna Design

Handbook. Artech House, Norwood, MA.

Garg, R. (2001). Microstrip antenna design handbook. Artech House antennas and

propagation library.

George, S., Raman, S., Mohanan, P., Sebastian, M. T. (2010). Polymer ceramic

composites for microwave substrate and antenna applications. A Workshop on

Advanced Antenna Technology. India.

Ghosh, A., T. A. Thomas, M. C. Cudak, R. Ratasuk, P. Moorut, F. W. Vook, T. S.

Rappaport, G. R. MacCartney, S. Sun, S, Nie (2014). Milimeter-wave Enhanced

Local Area Systems: A High Data Rate Approach for Future Wireless Networks.

IEEE Journal on Selected Areas in Communication, 32 (6), 1152-1163.

Gupta, S.D., Srivastava, M.C., (2010). Design of frequency agile multi dielectric

microstrip antenna for airborne applications. International Journal of Microwave

and Optical Technology (IJMOT), 5(5), pp.257-266

Hage-Ali, S., Tiercelin, N., Coquet, P., Sauleau, R., Fujita, H., Preobrazhensky, V.,

Pernod, P. (2009). A milimeter-wave microstrip antenna array on ultra-flexible

micromachined polydimetylsiloxane (PDMS) polymer. IEEE Antennas and

Wireless Propagation Letters, 8, 1306-1309.

Han, K., M. Swaminathan, R. Pulugurtha, H. Sharma, R. Tummala, S. Yang, V. Nair

(2016). Magneto-Dielectric Nanocomposite for Antenna Miniaturization and SAR

Reduction. IEEE Antennas and Wireless Propagation Letters, 15.

Page 35: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

108

Hansen, R.C., M. Burke (2000). Antennas with magneto-dielectrics. Microwave Optional

Technology Letter, 26(2), 75-78.

Hayashi, Y., K. Sakakibara, M. Nanjo, S. Sugawa, N. Kikuma, H. Hirayama (2011).

Milimeter-Wave Microstrip Comb-Line Antenna Using Reflection-Canceling Slit

Structure. IEEE Transactions on Antennas and Propagation 59 (2).

Harrington, R. F. (2001). Time-harmonic electromagnetic field. Wiley-Interscience, NY.

Huitema, L., T. Reveyrand, J. L. Mattei, E. Arnaud, C. Decroze, T. Monediere (2013).

Frequency tunable antenna using a magneto dielectric material for DVB-H

application. IEEE Transactions on Antennas and Propagation, 61 (9), 4456-4466.

How, H., (1993). Development of Novel Ferrite. Electromagnetic Applications, Inc.

(EMA).

Hicho, N. M. M., E. A. Daviu, M. C. Fabres, M. F. Bataller (2014). Design of a compact

low Profile High-Gain UHF Antenna Using High-Impedance Surfaces. IEEE

Antennas and Propagation Society International Symposium (APSURSI).

Hildebrand, L.T., D. A. McNamara (1993). Experimental Verification of Integral

Equation Analysis of Etched Wire-Grid Antenna Arrays. Proc. IEEE Int. Symp.

Antennas and Propagation, pp. 1494-1497.

Harris, V. G., (2012). Modern microwave ferrites. IEEE Transactions on Magnetics,

48(3), 1075-1104.

Ikonen, P. M. T., S. I. Maslovski, S. A. Tretyakov (2006). On artificial magneto-dielectric

loading for improving the impedance bandwidth properties of microstrip

antennas. IEEE Transactions Antennas Propagation, 54(6), 45-521654-1662.

Jilani, S. F., A. Alomainy (2016). Planar millimeter-wave antenna on lowcost flexible

PET substrate for 5g applications.10th European Conference on Antennas and

Propagation (EuCAP), 1-3.

Jovanche, T., J.-Fr. Zurcher, A. K. Skrivervik (2013). PDMS, A Robust Casing for

Flexible W-BAN Antennas. Laboratory of Electromagnetics and Acoustics, LEMA

Ecole Polytechnique Federale de Lausanne (EPFL) CH-1015 Lausanne,

Switzerland.

Jovanche, T., J. F. Zurcher, A. K. Skrivervik (2012). Soft and Flexible Antennas on

Permittivity Adjustable PDMS Substrates. Loughborough Antennas &

Propagation Conference.

Juuti, J., M. Teirikangas (2010). Thermoplastic 0-3 ceramic polymer composites with

adjustable magnetic and dielectric characteristics for radio frequency

Page 36: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

109

applications. International Journal of Applied Ceramic Technology, 7(4), 452-

460.

Kim, J., Y. Lee, B. Lee, J. Lee, J. Choi, J. Kim (2014). Effects of magneto-dielectric

ceramics for small antenna application. Journal of Electrical Engineering &

Technology. 9(1), 742-748.

Kim, J., J. Ju, S. Eom, M. Song, N. Kim (2013). Four-channel MIMO antenna for WLAN

using hybrid structure. Electron Letter, 49 (14), 857-858.

Kim, D. K., Y. Zhang, W. Voit, K. V. Rao, M. Muhammad (2001). Synthesis and

characterization of surfactant-coated superparamagnetic monodispersed iron

oxide nanoparticles. Journal of Magnetism and Magnetic materials, 225(1-2), 30-

36.

Koulouridis, S., G. Kiziltas, Y. Zhou, G. J. Hansford, J. L. Volakis (2006). Polymer

ceramic composites for microwave applications: Fabrication and performance

assessment. IEEE Transactions on Microwave Theory and Techniques, 54(12),

4202-4208.

Kamaszuk, M. (2006). Gain Enhancement Methods for Microstrip Patch Antennas.

Antennas and Propagation, EuCAP.

Kasap, S.O. (2002). Principles of Electronic Material and Devices. 3rd Edition Mac

GrawHill, New York.

Khan, F., Z. Pi, S. Rajagopal (2012). Millimeter-wave mobile broadband with large scale

spatial processing for 5G mobile communication. Proceding 50th Annual Allerton

Conference Communication Control Computer (Allerton), 1517–1523.

Kawano, T., H. Nakano (1998). Grid Array Antenna with C-Figured E lements. Proc.

IEEE Int. Symp. Antennas and Propagation, pp. 1154-1157.

Kawano, T., H. Nakano (2000). Dual Polarized Cross Mesh Array Antennas. Proc. IEEE

Int. Symp. Antennas and Propagation. pp. 522-525.

Kawano, T., H. Nakano (1999). Cross-Mesh Array Antennas for Dual LP and CP Waves.

Proc. IEEE Int. Symp. Antennas and Propagation, pp. 2748-2751.

Kandu, A. K. G., D.C. Dhubkarya, (2013). Stacked Square Microstrip Antenna for 4G

System. International Journal of Advanced Research in Computer Science and

Electronics Engineering (IJARCSEE), 2 (8), 620-622

Kilian, A., L. P. Schmidt (2009). A novel fabrication process for printed antennas

integrated in polymer multi-layer car body panels. 39th European Microwave

Conference, (EuMC), Rome.

Page 37: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

110

Kumar, K.P., K.S. Rao,V.M. Rao, K.Uma, A.Somasekhar , C.M. Mohan, (2013). The

effect of dielectric permittivity on radiation characteristics of co-axially feed

rectangular patch antenna: Design & Analysis. International Journal of Advanced

Research in Computer and Communication Engineering, 2(2), 1254-1258.

Kumar, A., P. N. Gupta, P. P. C. Gautam (2016). Gain and Bandwidth Enhancement

Techniques in Microstrip Patch Antennas - A Review. International Journal of

Computer Applications, 148(7), 9-14.

Kishiyama, Y. (2016). NTT DOCOMO 5G Activities, Toward 2020 Launch of 5G

Services. NTT DOCOMO Technical Journal, 17(4), 4-15

Litsuka Y., J. Yamauchi, H. Nakano (2009). Grid Array Antenna Composed of V-Shaped

and Rhombic Elements for Beam Scanning. IEEE International Symposium on

Antennas and Propagation, 1-4.

Lo, Y.T., S.W. Lee, (1988). Antenna Handbook Theory, Applications and Design. Van

Nostrand Reinhold Company New York.

Lee, J., J. Heo, J. Lee, Y. Han (2012). Design of small antennas for mobile handsets using

magneto-dielectric material. IEEE Transaction Antennas Propagation, 60(4),

2080-2084.

Martin, L. J., S. Ooi, D. Staiculescu, M. D. Wong, C. P., M. M. Tentzeris (2009). Effect

permittivity and permeability of a flexible magnetic composite material on the

performance and miniaturization capability of planar antennas for RFID and

wearable wireless applications. IEEE Transactions on Components and

Packaging Technologies, 32 (4), 849-858.

Matyas, J., O. Robert, S. Petr, M. Lukas, K. Petr., S. Andreas (2015). Multiband Antenna

made of Flexible Polymer Substrate Printed with Silver Nanoparticles Using

Inkjet Print Technology – A Feasibility Study. NanoCon, Brno, Czech Republic,

Eu.

Moheb, H., L. Shafai, M. Barakat (1995). Design of 24 GHz micorstrip travelling wave

antenna for radar application. IEEE AP-S International Symposium, 350-353.

Morshed, K. M., K. P. Esselle, M. Heimlich (2016). Dielectric loaded planar inverted-f

antenna for millimeter-wave 5g hand held devices. 10th European Conference on

Antennas and Propagation (EuCAP), 1-3.

Mamta, A. Roy, N. Saxena (2016). Next Generation 5G Wireless Networks: A

Comprehensive Survey. IEEE Communications Surveys & Tutorials, 18(3), 1617-

1655

Morales, C. A., (2011). Magneto-Dielectric Polymer Nanocomposite Engineered

Substrate for RF and Microwave Antennas.

Page 38: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

111

Mosallaei, H., K. Sarabandi (2007). Design and Modeling of Patch Antenna Printed on

Magneto-Dielectric Embedded-Circuit Metasubstrate. IEEE Transactions on

Antennas and Propagation, 55.

Mosallaei, H., Sarabandi, K. (2004). Magneto-dielectrics in Electromagnetics: Concept

and applications. IEEE Transactions on Antennas and Propagation, 52(6), 1558-

1567.

Mumtaz, S., J. Rodriguez. Smart Device to Smart Device Communication. Smart Device

to Smart Device Communication. Switzerland: Springer International Publishing.

Nakano, H., I. Oshima, H. Mimaki, K. Hirose, and J. Yamauchi (2005). A fast MoM

calculation technique using sinusodial basis and testing function for a wire on a

dielectric substrate and its application to meander loop and grid array antennas.

IEEE Transactions Antennas and Propagation, 53 (10), 3300–3307.

Nakano, H., I. Oshima, H. Mimaki, K. Hirose, and 1. Yamauchi (1995). Center-Fed Grid

Array Antennas. IEEE International Symposium on Antennas and Propagation,

2010-2013.

Nakano, H., T. Kawano, Yamauehi (2001). A Cross-Mesh Array Antenna. 11th

International Conference on Antennas and Propagation, 327-330.

Nakano, H., T. Kawano, "Grid Array Antennas," in Proc. IEEE Int. Symp. Antennas and

Propagation, July 1997, pp. 236-239.

Niu, Y., Y.Li , D. Jin, L. Su, A.V. Vasilakos (2015). A survey of millimeter wave

communications (mmWave) for 5G: opportunities and challenges. Journal of

Wireless network, 21(8), 2657-2676.

Nicolson, A., G. Ross (1970). Measurement of the intrinsic properties of materials by time

domain techniques. IEEE Transactions on Instrumentation and Measurement.

19(4), 377-382.

Nirod K. Das. (1992). Multiport Scattering Analysis of General Multilayered Printed

Antennas Fed by Multiple Feed Ports: Part II, Applications. IEEE Transaction

Antennas Propagation, 40 (5), 482-491.

Niamien, C., S. Collardey (2011). Compact expressions for efficiency and bandwidth of

patch antennas over lossy magneto dielectric materials. Antennas and Wireless

Propagation Letters, 10, 63-66.

Nor, N. M., M. H. Jamaluddin, M. R. Kamarudin, M. Khalily, (2016). Rectangular

Dielectric Resonator Antenna Array for 28GHz Applications. Progress in

Electromagnetics Research C, 63, 53–61.

Page 39: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

112

Pirhadi, A., G. A. Jafarabadi (2010). Design of Modified Microstrip Combline Design of

Modified Microstrip Combline. Progress in Electromagnetics Research Letters,

14, 31-40.

Petrov, R., A. Tatarenko, G. Srinivasan, J. Mantese (2008). Antenna miniaturization with

ferrite-ferroelectric composites. Microwave and Optical Technology Letter.

50(12), 3154-3157.

Pulse Electronic (2012). Antenna Basic Concepts. Larsen Antennas.

Pozar, D. M. (2005). Microwave engineering. 3rd edition, John Wiley, Hoboken, NJ.

Rangan, S., T. S. Rappaport, E. Erkip. Millimeter-wave cellular wireless networks:

potential and challenges. Proceedings of the IEEE, 102 (3), 366-385.

Rialet, D., A. Sharaiha, A. C. Tarot, X. Castel, C. Delaveaud (2009). Characterization of

Antennas on Dielectric and Magnetic Substrates Effective Medium

Approximation. Radio Engineering, 18(4).

Rappaport, T. S. (2013). Special Session on mmWave communications. Proceedings ICC.

Rappaport, T. S., W. Roh, and K. Cheun (2014). Wireless engineers long considered high

frequencies worthless for cellular systems. They couldn’t be more wrong. IEEE

Spectrum, 51(9), 34–58.

Rappaport, T. S. (2013). Millimeter wave mobile communications for 5G cellular: It will

work!!!. IEEEAccess, 1, 335-349.

Roy, A.A., M. M. Joseph, Douglas T. K. (2013). Effect of Dielectric Constant on the

Design of Rectangular Microstrip Antenna. IEEE International Conference on

Emerging & Sustainable Technologies for Power & ICT in a Developing Society

(NIGERCON).

Remke, L., V. Dam, B. Borchers, J. M.H. Hendrickx (2006). Effect of magnetite on GPR

for detection of buried landmines.

Schaubert, D. H., D. M. Pozar, A. Adrian (1989). Effect of microstrip antenna substrate

thickness and permittivity: comparison of theories with experiment. IEEE

Transactions on Antennas and Propagation, 37 (6), 677-682.

Sami, H. A., N. Tiercelin, P. Coquet, R. Sauleau, H. Fujita,V. Preobrazhensky, P. Pernod

(2009). A Millimeter-Wave Microstrip Antenna Array on Ultra-Flexible

Micromachined Polydimethylsiloxane (PDMS) Polymer. IEEE Antennas and

Wireless Propagation Letters, 8.

Sik Min, K., T.V. Hong (2006). Miniaturization of Antenna Using Magneto-Dielectric

Materials. Asia-Pacific Conference on Communications.

Page 40: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

113

Shorbagy, M. E., R. M. Shubair, Mohamed I. AIHajri , N. K. Mallat (2016). On the design

of millimetre-wave antennas for 5G. Microwave Symposium (MMS).

Sarabandi, K., Mosallaei H (2003). Embedded-circuit meta-materials for novel design of

tunable electro-ferromagnetic permeability, band-gap, and bi-anisotropic media.

IEEE Antennas and Propagation Society, Ap-S International Symposium (Digest).

3: 355-358

Sakakibara, K., Y. Hayashi, N. Kikuma, H. Hirayama (2008). Two-dimensional array

design techniques of millimeter-wavemicrostrip comb-line antenna array. Journal

of Radio Science, 43 (4)

Sung, K., D. Novotny, J. A. Gordon, J. R. Guerrieri (2016). A Free-Space Measurement

Method for the Low-Loss Dielectric Characterization Without Prior Need for

Sample Thickness Data. IEEE Transactions on Antennas and Propagation. 64(9),

3869-3879.

Sun, M., Y. P. Zhang (2008). Design and Integration of 60-GHz Grid Array Antenna in

Chip Package. Asia-Pacific Microwave Conference, 1627-1630.

Sun, M, Y. P. Zhang, Y. X. Guo, K. M. Chua, L. L. Wai (2009). Integration of Grid Array

Antenna in Chip Package for Highly Integrated 60-GHz Radios. IEEE Antennas

and Wireless Propagation Letters, 1364-1366.

Scott M. R., C. Pfeiffer, A. Grbic (2011). Design and Free-Space Measurements of

Broadband, Low-Loss Negative-Permeability and Negative-Index Media. EEE

Transactions on Antennas and Propagation, 59(8), 2989-2997.

Sulyman, A. I., A. T. Nassar, M. K. Samimi, G. R. M. Jr., T. S. Rappaport, A. Alsanie.

Radio Propagation Path Loss Models for 5G Cellular Networks in the 28GHz and

38 GHz Millimeter-wave bands. 52 (9), 78-86.

Singh, S., F. Ziliotto, U. Madhow, E. M. Belding, M. Rodwell (2009). Blockage and

directivity in 60 GHz wireless personal area networks: From cross-layer model to

multi hop MAC design. IEEE J. Sel. Areas Communications, 27 (8), 1400-1413.

Shin, Y., S. Park (2008). A chip antenna with magneto-dielectric material. IEEE Antennas

and Propagation Society International Symposium. 5-11.

Son, I. K., S. Mao, M. X. Gong, Y. Li (2012). On Frame based scheduling for directional

mmWave WPANs. Proceedings IEEE Infocom, 2149-2157.

Sridharan, A., R. Taori (2015). Point to multipoint in band mmWave backhaul for 5G

networks. IEEE Communication Magazine, 53 (1), 195-201.

Page 41: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

114

Omar, A., S. Al-Saif, M. A. Ashraf,S. Alshebeili, (2016). Design and Analysis of

Millimeter Wave Series Fed Microstrip Patch Array for Next Generation Wireless

Communication Systems. Antenna Technology and Applied Electromagnetics

(ANTEM)

Trajkovikj, J., J.F. Zurcher, A. K. Skrivervik (2012). Soft and Flexible Antennas on

Permittivity Adjustable PDMS Substrates. Loughborough Antennas &

Propagation Conference (LAPC). Loughborough.

Tran, H. H., I. Park (2016). A Dual-Wideband Circularly Polarized Antenna Using an

Artificial Magnetic Conductor. IEEE Antennas and Wireless Propagation Letters,

15, 950-953.

Tong, C., G.M.Wang, X. F. Zhang, Y. W. Wang, B. F. Zong, H. X. Xu (2015). Compact

Microstrip Antenna with Enhanced Bandwidth by Loading Magneto-Electro-

Dielectric Planar Waveguided Metamaterials. IEEE Transactions on Antennas

and Propagation, 63(5).

Vittoria, C. (1998). Elements of microwave networks. World Scientific Publishing Co.

Wang. Z., L. Zhang, Y. Bayram, and J. L. Volakis (2012). Embroidered conductive fibers

on polymer composite for conformal antennas. IEEE Transactions Antennas and

Propagation, 60 (9), 4141-4147.

Wang, G., R. Bairavasubramanian. (2011). Radiofrequency mems-enabled polarization

reconfigurable antenna arrays on multilayer liquid crystal polymer. IET

Microwave Antennas and Propagation, 5(13), 1594-1599.

Wheeler, H.A., (1965). Transmission-Line Properties of Parallel Strips Separated by a

Dielectric Sheet. IEEE Transaction Microwave Theory Technology, 13(2), 172-

185.

Wu, D., J. Wang, Y. Chai, M. Guizani (2015). Millimeter-wave multimedia

communications: challenges, methodology and applications. IEEE

Communication Magazine, 53 (1), 232-238.

Weir, W. B., (1974). Automatic measurement of complex dielectric constant and

permeability at microwave frequencies. Proceedings of the IEEE. 62(1), 33-36.

Yan, S., P. J. Soh, G.A. E. Vandenbosch (2015). Compact All-Textile Dual-Band Antenna

Loaded With Metamaterial-Inspired Structure. IEEE Antennas and Wireless

Propagation Letters, 14, 1486-1489.

Yaqiang, L. (2014). A Novel, Free-Space Broadband Dielectric Measurment Techniques.

PhD Disseration, Department of Engineering Technology, Waterford Institute of

Technology.

Page 42: MICROSTRIP ARRAY ANTENNAS FOR BANDWIDTH …eprints.utm.my/id/eprint/81639/1/WanAsilahWanPFKE2017.pdf · dielectric substrates, which offer water resistance and improve mechanical

115

Yang, W., W. Che, W. Choi, K. W. Tam (2014). A Low-Profile Circularly Polarized

Dipole Antenna Using A Novel Polarization Rotation Artificial Magnetic

Conductor. Proceedings of the 44th European Microwave Conference. 374-377.

Yang, X. M., Q. H. Sun, Y. Jing, Q. Cheng, X. Y. Zhou, H. W. Kong, T. J. Cui (2011).

Increasing the bandwidth of microstrip patch antenna by loading compact

artificial magneto dielectrics. IEEE Transactions on Antennas and Propagation,

59 (2), 373-378.

Yang, G. (2010). Tunable Miniaturized RF Devices on Magneto-Dielectric Substrates

with Enhanced Performance. PhD Dissertation, Department of Electrical and

Computer Engineering, Northeastern University.

Yang, T. I., R. N. C. Brown, L. C. Kempel, P. Kofinas (2011). Controlled synthesis of

core-shell iron silica nanoparticles and their magneto dielectric properties in

polymer composites. Nanotechnology, 22(10), 105601.

Zihao Chen, Yue Ping Zhang (2013). FR4 PCB Grid Array Antenna for Millimeter-Wave

5G Mobile Communications. IEEE MTT-S International Microwave Workshop

Series on RF and Wireless Technologies for Biomedical and Healthcare

Applications.

Zhang, Y. P., M. Sun (2009). An Overview of Recent Antenna Array Designs for Highly-

Integrated 60-GHz Radios. European Conference on Antennas and Propagation,

3783-3786.

Zhang, L., W. Zhang, Y.P. Zhang (2011). Microstrip Grid and Comb Array Antennas.

IEEE Transactions on Antennas and Propagation, 59 (11).

Zhang, B., Y. P. Zhang (2011). Analysis and Synthesis of Millimeter-Wave Microstrip

Grid-Array Antennas. IEEE Antennas and Propagation Magazine, 53 (6), 42-55.

Zhou, Y., Y. Bayram, F. Du, L. Dai, J. Volakis (2010). Polymer carbon nanotube sheets

for conformal load bearing antennas. IEEE Transactions on Antennas and

Propagation, 58(7), 2169-2175.

Zheng, Y., Y. Cheng, F. Bao, Y. Wang (2006). Synthesis and magnetic properties of

Fe3O4 and Fe3O4/Ag magnetic nanoparticles usinf Fe2+ as precursor. Inorganic

Materials, 46(10), 1106-1111.

Zheng, Z., H. Zhang , J. Q. Xiao , F. Bai (2013). Low Loss Composite Ferrite with Almost

Equal Values of Permeability and Permittivity for Antenna Applications. IEEE

Transactions on Magnetics, 49(7), 4214-4217.