107
NASA CR-54738 A COMPUTER PROGRAM FOR ELECTRON OR ION GUN ANALYSIS: OPERATIONS MANUAL by V. Hamza M. L. Report NOo 1369 September 1965 Microwave Laboratory W. W. HANSEN LABORATORIES OF PHYSICS STANFORD UNIVERSITY. STANFORD, CALIFORNIA Interim Report Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Contract NAS 3-4100

Microwave Laboratory - NASA

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Microwave Laboratory - NASA

NASA CR-54738

A COMPUTER PROGRAM FOR ELECTRON OR ION GUN ANALYSIS:

OPERATIONS MANUAL

by

V. Hamza

M. L. Report NOo 1369

September 1965

Microwave LaboratoryW. W. HANSEN LABORATORIES OF PHYSICS

STANFORD UNIVERSITY. STANFORD, CALIFORNIA

Interim Report

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Contract NAS 3-4100

Page 2: Microwave Laboratory - NASA

NOTICE

This report was prepared as an account of Governmentsponsored

work. Neither the United States, nor the National Aeronautics

and SpaceAdministration (NASA), nor any person acting onbehalf of NASA:

A.) Makesany warranty or representation, expressed or

implied, with respect to the accuracy, completeness,or usefulness of the information contained in this

report, or that the use of any information, apparatus,

method, or process disclosed in this report maynot

infringe privately ownedrights; or

B.) Assumesany liabilities with respect to the use of,

or for damagesresulting from the use of any infor-

mation, apparatus, method or process disclosed in

this report.

As used above, _'personacting on behalf of NASA'_ includes

any employeeor contractor of NASA,or employee of such con-

tractor, to the extent that such employee or contractor of NASA,

or employeeof such contractor prepares, disseminates_ or

provides access to, any information pursuant to his employment

or contract with NASA,or his employmentwith such contractor.

Requests for copies of this report should be referred toNational Aeronautics and SpaceAdministrationOffice of Scientific and Technical InformationAttention: AFSS-AWashington, D. C. 20546

Page 3: Microwave Laboratory - NASA

NASA CR-54738

A COMPUTER PROGRAM FOR ELECTRON OR I0N GUN ANALYSIS:

OPERATIONS MANUAL

by

V. Hamza

M. L. Report No. 1369

September 1965

Interim Report

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Contract NAS 3-4100

MIcrowave Laboratory

W. W. Hansen Laboratories of Physics

Stanford University

Stanford, California

Page 4: Microwave Laboratory - NASA

TABLEOFCONTENTS

Pag___e

I. Introduction ............... • ......... 1

II. Computerprogram for beamanalysis ............. 3

A. Data input ....................... 5

B. Fortran coding form .................. 13t

C. Data output ....................... 13

III. Computer program for spectral radius calculation - XR -

calculation ......................... 46

A. Data input ...................... 46

B. Data output ....................... 47

Appendices

Ao Flow chart and Fortran II. Statements for beam

analysis ........................ 52

B. Flow chart and Fortran II. Statements for XR-ealcula-

tion .......................... 80

C. Detailed flow charts .................. 89

References ........................... 102

- iii -

Page 5: Microwave Laboratory - NASA

F

I. INTRODUCTION

This report describes a computer program, shown at the end of the

report 3 which is used to analyze the space-charge flow in an electron

or ion gun. It determines the nature of the beam profiles for practi-

cally any specified two-dimensional or axially symmetric gun electrode

system. The basic process that is followed is to initially assume that

the space-charge density is zero, solve LaPlace's equation by finite-

difference methods_ and find the potential variation in the region of

interest shown in Fig. i.o With a knowledge of this potential variation_

the motion of charged particles from the emitter source is determined_

and the current density emitted is found by the Child-Langmuir law in

the neighborhood of the emitter. The whole process is then repeated

through several iterative cycles (solving Poisson's equation instead

of LaPlace's equation), until the final solution converges to a self-

consistent solution. The use of the program will be illustrated by

an example of an ion propulsion gun design.

It is beyond the scope of this report to explain the mathematical

method used; the reader is referred to the references for this_

The computer program has been written in the IBM 7090 Fortran II

programming language_ which requires at least a 32_000 word core for

execution.

Subroutines of the computer program will be now listed with a

brief expl_nation of their function.

-i -

Page 6: Microwave Laboratory - NASA

o>z

_000oo0ooo00oooo0 _

4o-

QO-

it •

°0

z

,qQ----,qp_ _ • • • • •

d

wz z

_ ooi

z K

00

o

o

(3NI-I _( ) _AN

o _ - -__5 6 6

(S3HONI) 3 J._NIG_O03 -J(

- 2 -

a_

_,'_

0

_._

4-

0

q_0

4-'

0

I

,-4

I--I

Page 7: Microwave Laboratory - NASA

II. COMPUTER PROGRAM FOR BEAM ANALYSIS

It is to be emphasized that all Fortran statements referring to

plotting may haCe to be changed in accordance with the particular in-

stallations where the program is being used. The statements herein

refer specifically to the plotting routines at the Stanford Computation

Center, and may not be accurate elsewhere.

Subroutines Required:

io MAIN _NE*

Starts the program, brings in all the data input, calculates the

matrix coefficients_ plots the electrode boundary points and calls UCAL

for LaPlace's solution and then _hNTRI.

2, ARC

Calculates the emitter length, determines the width of the current

tubes (ARCL) and establishes the beginning trajectory coordinates (ETX,

ETY)o ARC is called by _KNTRI.

3,_ CALR

Calculates the right hand side (RHS) of the matrix equation (space-

charge density). CALR is callea by NLNTRI.

Checks on trajectories intercepted by the electrode system.

C_RRC_ is called by TRCU.

5o

_,alculate_ the equipotential line coordinates throughout the region

of interest, starting with the potential VAT, and continues by increment

of SIZE until the potential of VBT is reached for each cycle if KCY(J) _ 0

(where J represents cycle number), otherwise, no calculation (if SIZE = 0

no equipotential line coordinates calculation). EOLINE is called by UCALo

*_ Represents OU to distinguish from 0 as zero.

- 3 -

Page 8: Microwave Laboratory - NASA

6. MATRIX

Solves the matrix equation for each !ine_ e.g._ matrix equation

Aw = k

w = A-ik

MATRIX is called by UCAL.

7. MNTRI

Governs the whole solution once the initial (LaPlace's) potential

distribution is known. MNTRI is called by MAIN.

8. PEQ

Calculates the equipotential line coordinates through a given point

NP_T (NP_TX_ NP_TY) for current density calculation. PEQ is called by

MNTRI.

9. TRAJ

Calculates the trajectory coordinates through the region of interest

once the trajectories were initialized. TRAJ is called by TRCU.

i0. TRCU

Initializes trajectories and calculates current density distribution

along the emitter. TRCU is called by MNTRI.

!i.

Prints out the RHS distribution through the region of interest for

each cycle if IX¢ _ 0 and KCY(J) _ 0 Otherwise_ no print-out.

TROUT is called by MNTRI.

-4-

Page 9: Microwave Laboratory - NASA

P

12° TW_UT

Prints out the potential distribution through the region of interest

for each cycle_ if KCY(J) > 0 .if The final solution is printed auto-

matically. TW_UT is called by UCAL.

13. UCAL

Solves for potential distribution inside the region of interest.

UCAL is called by MAIN for LaPlace's solution_ then by MNTRI for the

space-charge-flow solution.

14o 7090 PLATING R_UTINES (Fortranll) for the CalComp Plotter (Stanford

University Computation Center Library Program No. 157).

A. DATA INPUT

It is recommendedl that a scaled graph of the configuration to

be analyzed be drawn as shown in Fig. i. Attention is given to two

different sets of coordinates, e.g.; x-y line coordinate and x;y

coordinate in inches (dimension in inches is not essential).

t

The f_rst data card is the number of heading cards (NH) which will

follow (e,g._ identification of run by serial number 3 date 3 description,

etc.)_ It is particularly useful to differentiate _repeated machine deck

executions of the program.

The second data card is as follows:

NXF

NYF

NEM

total number of X-lines

total number of y-lines

number of x_y coordinates specifying emitter surface

(a minimum of two are, required, n_mely_th9 end points).

- 5 -

Page 10: Microwave Laboratory - NASA

NTJ

NDIM

NRL

NUL

NURL

Nc m

IDEC

NFUL

KRHX

KRHY

_BPAN

number of trajectories

two-dimensional geometry < 2, axially symmetric geometry > 2

number of cycles (e.g., NRL = 2; LaPlace's solution is con-

sidered as zeroth cycle, then 2 cycles plus last cycle;

altogether 4 cycles); must be greater than 0

number of iterations for LaPlace's solution

number of iterations for Poisson's solution (after last

cycle NURL used as a switch to terminate the problem)

positive, emitter coordinates are beginning trajectory coor-

dinates; negative or zero, beginning trajectory coordinates

are calculated

negative, emitter is concave (for flat emitter use IDEC < 0

with )[EMIT _ _); zero and positive, emitter is convex

0 for the case of axial symmetry or for the case of two-

dimensional geometry when symmetry about the axis is used to

91imina_e the lower half plane from the computation; i for the

case of two-dimensional geometry when the full problem is

considered in the calculation.

number of lines in x-direction for which noncalculated points

(outside the region of interest, e.g., electrode) will be set

to a potential of the emitter (VA); in most cases this can be

taken to be the number of x-mesh lines up to the face of the

first electrode beyond _he emitter

x-line coordinate of the test point for RHS

y-line coordinate of the test point for RHS

The third data card is as follows:

positive s RHS prints out-condition to KCY > O; negative or

zero, RHS will not print out

number of x-lines to traverse to obtain equipotential line for

current density calculation; this is used for conserving time

- 6 -

Page 11: Microwave Laboratory - NASA

NP_TX

NP_TY

YAXS

KR_N

KRTX

KRTY

VAT

VBT

S IZE

VA

VB

VC

HGH

in the scan for the equipotential used in the calculation

used in the calculation of emitter current density

fx- and y-line coordinate of a point whose potential will be

used for determining the coordinates of the equipotential lineor current density calculation.

y-coordinate of the axis of symmetry

The fourth data card shows:

number of test points (test _point determines whether its

potential is lower than the emitter potential; if so, the

calculation procedes; if not, EXIT is called

x- and y-line coordinate of a test point.

The fifth data card gives this information:

upper potential in equipotential calculation (see definition

of subroutine EQLINE)

lower potential in equipotential calculation

step size in equipotential calculation

emitter potential

highest negative potential, otherwise zero

y-distance in inches for y-positioning of the output plot

[VC = i0.0 (maximum width of the graph paper is i0") moves the

pen to point (0.0, i0.O) and makes that the reference point]

The sixth data card is:

the largest y-coordinate (in inches) of the second elec-

trode chosen for checking on trajectories for possible

interception

-7-

Page 12: Microwave Laboratory - NASA

HSL

XLSL

the largest y-coordinate (in inches) of the first

electrode chosen for checking on trajectories for

possible interception (e.g._ in example given_ only

the second accelerator electrode was chosen to check

on trajectories)

not used

slope of a line to which normal derivative should be

zero, (see sketch below)

___\ _jinl of symmetry

/_ Axis of symmetry

VD

AXX

BXX

Note_ the first calculated point of each line should be

taken directly above or on the line of symmetry and must

be identified by ND(3) _ 0 in addition to NS = i

scaling factor for plotting purposes_ H times VD gives actual

inches on plot.

The seventh data card gives_

the x-coordinate in inches where subroutine C_RRCT

starts to check on XL_W for possible trajectory inter-

ception

the x-coordinate in inches where subroutine C_RRCT

stops to check on XL_W and starts to check on HGH for

possible trajectory interception

-8-

Page 13: Microwave Laboratory - NASA

CXX

DXX

XR

the x-coordinate in inches where subroutine C_RRCT stops

to check on HGH for possible trajectory interception

a constant -- not used

the spectral radius of the matrix (the largest eigenvalue)

obtained by a separate program using essentially the same

data input (see Spectral Radius Calculation).

The eighth data card consists of:

the distance in inches from the axis (for axially geometry

only) when the axis is not part of the region of interest.

See sketch below

Focusing Electrode --i Electrode_----T--,

# / t" ,

i .L'_.I-U.[I U.L -L£1bt_l'_ b " ., // ./

__]i[">_-":""" - • ,'.', ".,,'.'.'._.'", ..... Z .'v..'.Emitter

, ,/ //,

Focusing Electrode J

I

/Axis

Accelerator

-9-

Page 14: Microwave Laboratory - NASA

EPS

XEMIT

H

YEP

x_

ATOM

VTH

VTHX

VTHY

ATX

ATY

KCY

convergence test for matrix equation. (Data output

prints EPS IL_N)

x-coordinate in inches of the emitter radius (XEMIT is equal

to the emitter radius only if the emitter x-coordinate passes

through :_ero) and must be a very large number for a flat emitter.

mesh size in inches. (Data output prints MESH SIZE-H)

The ninth data card shows:

permittivity of free space (Data output prints EPSN_T)

specific charge-to-mass ratio for proton (or electron)

atomic weight number of ion flow (for electron flow,

ATOM = l.O)

transverse thermal velocity of emission

not used.

The tenth data card is as follows:

x- and y-corrdinates (in inches) of the emitter shape

(three (x,y) coordinates per card). Total number of x,y

coordinates must equal NEM, and they must follow in order

of increasing y-coordinate.

The eleventh data card gives:

positive, all print-outs occur (condition to IX_ > 0 and

SIZE > O) ; negative or zero, no print-outs.

Note: Last cycle (final solution) is automatically

printed out.

- i0 -

Page 15: Microwave Laboratory - NASA

The twelfth data card consists of electrode voltage register (7

voltages per card, 4 cards needed). Twenty-eight voltages available,

labeled from NV_LT(or NV_LTI) = I to NV_LT(or NV_LTI) = 28.

The thirteenth data card consists of the boundary points of an electrode

system. The calculation is broken up into a series of lines consisting of

simply connected interim points. There maybe more than one of these lines

for each x-line. The boundary points are specified by proceeding from the

top to the bottom and left to right, one boundary point per card.

NS = i the first and uppermost calculated point inside the region of

interest for each set of simply connected interim points

= 2 the last and lowermost calculated point inside the region of

interest for each simply connected set of interior points° In

case the axis of symmetry constitutes the boundary of the electrode

system as shownin Fig. i, the whole card specifying the last

calculated point for that x-line is not necessary for any point

= 0 inside the region of interest containing any information about

the boundary of the electrode system (excluding the two cases

above for which NS= i and 2).

ND(1)_ specify the zero normal derivative of the potential of thatI

ND(2)J point according to the direction as shown:

ND=2

ND=3 --_

ND = 4

ND=I

- Ii -

Page 16: Microwave Laboratory - NASA

> o

There is a possibility that 1_To normal derivatives may be

zero at one point but not more° It is also possible to set

one derivative equal to zero and specify a potential on

the same boundary card.

indicates that the boundary point faces two different

potentials_ as shown below:

I

INVpLT1

NV_LT _ HNS

NXC

NYC

HEW

HNS

NV_LT

or that the normal derivative is zero to some prescribed

line given by the slope of XLSL _ 0 _ otherwise zero

x-line coordinate of the boundary point

y-line coordinate of the boundary point

represents the distance left or right from the boundary

point to the solid boundary (electrode) in percent of

mesh size (maximum = 1.0 - one whole mesh). The distance

to the right (Eas_) is positi'_e, whereas the distance to

the left (West) is negative)

same as HEW for up and down boundary. The distance up

(North) is positive, whereas the distance down (South)

i_ _egat i _,e

is the index number of the oltage register specifying

the voltage of the boundary point to the left or right

- 12 -

Page 17: Microwave Laboratory - NASA

NV_LTI

NCHECK= i

sameas NV_LTfor the boundary point up or downwith

ND(3) _ 0 Note: In the case (NV_LT= NV_LTI) or

when the boundary point (up or down) is the only boundary

potential, it is not necessary to specify NV_LTIwith

ND(3) _ O In this case, it is sufficient to specify

NV_LTonly.

for the last boundary point. (This is important because

check is madeon the last data card if NCHECK= i in case

of no, the EXIT is called). For this card one must put

NXC= NXFand NYC= NYFeven if this requires a dummycard.

B. FORTRANCODINGFORM

The format of the Data Input Deck is shownon the next three pages.

C. DATAOUTPUT

The output consists of a plot shownin Fig. 2. The trajectories and

electrode boundaries are given to scale.

The Data Output print-out starts on page 23. The first three pages

consist of Data Input for the record. Every "read in" data card is

automatically printed-out with identification. Page 26 shows the in-

formation on zeroth cycle -- No space-charge-LaPlace solution. Iteration

No. = 45, indicating that 45 iterations were completed for calculating

the potential distribution, with point 731 (or x-line = 43, y-line = 17)

- 13 -

Page 18: Microwave Laboratory - NASA
Page 19: Microwave Laboratory - NASA
Page 20: Microwave Laboratory - NASA

/f

Page 21: Microwave Laboratory - NASA

- 17 -

o

r-_0

o

o

l

o,1

r_

Page 22: Microwave Laboratory - NASA

displaying the largest error of _ = 25.78 [Note:

c a

2(A m x)

i

-I-

where

= (um+lAU max -max

l<i<N

and m + i is the last iteration number (N _ total No. of points). It

is not, therefore; the difference in the potential of the last two

iterations.] EPSIL_N = 0.01 is the given error in the Data Input to

compare with c The total length of the emitter circular arc in

inches is ARC : 0.13524 DELTA ARC LENGTH = 0.01424 is the arc in-

crement of each current tube (or the spacing between two adjacent

trajectories). The X,Y-EMITTER prints-out coordinates of the emitter

given in the Data Input_ and X,Y-BEGIN TRAJ. gives the calculated be-

ginning trajectory coordinates. (Note: No. i is always the first pair

of coordinates given in Data Input (X,Y-EMITTER discussed above), like-

wise the last one located along the axis.

The expression X,Y-EQUIP_TENTIAL represents the (x_y) coordinates

in inches of the equipotential line through the given point NP_T(NP_TX,

NP_TY) specified by the Data Input, for the current density calculation.

- 18 -

Page 23: Microwave Laboratory - NASA

The intercepts of two normals to the emitter on the equipotential line

for the current density calculation of the seventh current tube (number

shown in the last column) are XI, YI and X2, Y2. The normals are drawn

from the points of the seventh and the eighth beginning trajectory

coordinates. The arithmetic mean distance between the emitter surface

and the equipotential line used in the Child-Langmuir formula for calcu-

lating the current density of the seventh current tube is represented by DX.

The current density in amp/in 2 (or amp%unit area in the case of dif-

ferent dimensions used for unit length) is CD. The last-but-one column

displaying -- i indicates that the first x-line closest to the emitter

for the seventh or for both the seventh and the eighth trajectories is

less than one half of the mesh width away_ thus the trajectories have

not yet been initialized. (Here 0 indicates that the trajectories

have been initialized and from that point on the coordinates of the

trajectories are calculated from the potential distribution. This point

will be more apparent when the last cycle is discussed where the x-coordi-

nates are also shown°) The order of current tubes printed_ given by the

last column_ is given in order of machine calculation.

EMITTER CURRENT IN TUBES shows the total current in amps., (in two-

dimensional cases amp/in of emitter length out of paper) for each tube.

T_TKL EMrTTER CURRENT _ 0.0023 amps (for two-dimensional cases amp/in

of emitter length out of paper).

Page 27 gives similar information on CYCLE No. i. The only difference

from the previous page is RHTEST = 0.01825 and UTEST = 2034.5567. Here

RHTEST is the value of the RHS (right hand side of the matrix equation_

containing information on space-charge density) at the point KRH(KRHX, KRHY)

- 19 -

Page 24: Microwave Laboratory - NASA

specified in the Data Input_ and UTESTis the value of the potential at

the point KRH. The information on the emitter coordinates and the be_

ginning trajectory coordinates shownfor the previous cycle are not given

because they are identical. The rest of the page contains information

discussed in the previous cycle. Page28shows similar information for

CYCLENo. 2. Page29 starts the information for the final solution.

The print-out of the previous cycles is given primarily for checking

purposes. Namely, RTESTmust increase from cycle to cycle and must

approach an asymptotic value if the number of cycles has been allowed

to increase indefinitely (in other words, the difference between two

following cycles must be decreasing). Likewise, the indicated ERROR

must be decreasing from cycle to cycle.

Next, the information on pages 29-31 is the U-FIELD of LAST

CYCLE_ (discrete potential value for each point through the region of

interest given in Fig. i). The first column indicates the x-line number_

the next 8 columns represent the y-line number, thus defining every point

in the region of interest. Columnsi0 to 17 correspond to the respective

potential values for each point given by x-line, y-line (e.g._ the

potential of the point given by x-line = 8 and y-line = 6 is 1759.447 volts.)

The X,Y C_DINATES _F EQUIP_ENTIALLINES shownon pages 31-32 are

the (x,y) coordinates in inches for a given equipotential, starting with

the potential specified by the Data Input VAT = 2000.0 and continued by

an increment given by SIZE = 500.0 until final potential given by VBT

= 500.0 is reached. The order of print-out of the coordinates is in

order of machine calculation.

- 20 -

Page 25: Microwave Laboratory - NASA

The next information given on page 32 is the coordinates of the

equipotential line for the current density (X,Y-EQUIP_TENTIAL)calcula-

tion. Then the current density for the current tubes (7, 8, 9, and i0)

are printed; this could be calculated at the station shownby X = 0.01

(for the rest of the beginning trajectory, x-coordinates sre greater

than X = 0.01 and thus they could not yet be initialized). Then for

each x-line (e.g., X = 0.01) the y-coordinate of the initilized trajec-

tories No. 9 and No. i0 are given. (Notice 0 above the statement

X = 0.01 in the last-but- one column for the current density calculation

for the current tube 9 and i0 and -i for the tube 7 and 8%indicating

that trajectories 7 and 8 will be initialized again on the next x-line

because the distance from the emitter to the x-line was less than one

half of a meshsize.)

The columns VX and VY correspond to the x- and y-velocities of the

ions. Pages 33 to 42 show the rest of the (x,y) coordinates of the

trajectories and their respective x- and y-velocities. The right hand

side (RHS) of the matrix equation is shownon pages _2 to 45 for each

point. This print-out occurs because of the IX_ > 0 specification given

in _ata Input. From this RHSdistribution, the current density profile

in the beamcan be obtained for any desired x-line location. For axially

symmetric geometries we have

Pms = rh2VX

- 21 -

Page 26: Microwave Laboratory - NASA

Thus_ knowing RHS_r_ h_ and VX it is easy to calculate J

for two-dimensional geometries we have

Similarly,

RHS = h2 _JVX

The last information on page 45 contains the total current distribution

in each current tube at the emitter and finally the total emitter

current.

- 22 -

Page 27: Microwave Laboratory - NASA

DATA OUTPUT PRINT-OUT BY THE COMPUTER

DEFLECTING PLATES FOR ION ENGINE NF).I

NASA-LEWIS FOR F. KAVANA(,H/S. JF}NES

NXF NYF NEM NTJ NDI M NRL NUL NURLNCODR IDEC NI?_ _CD

55 17 8 10 _ 2 45 45 0 -I 0 14

IXONSPANNPOTXNPOTY Y_S

1 13 5 17 0.0

K_TN KRTX KRTY KRTX

1 2 17

VAT VBT

ZCCO.OCO0 50C.eOOO

HGH XLOW

-0. 0.0800

AXX BXX

0.2800 C._203

RO

O.

EPSNOT

KRTY KRTX KRTY

.88540E-II.95790E

SIZE VA VB VC

500._090 210C.000_ -0. 8.0300

4SL XLSL VD

-0. -C. 25.3003 _

CXX DXX XR

0.5400 0.5400 0.980_

_PSILON XEMIT MESH SIZE - H

C.010_5000 0.13999Q99 0.91300300

XQM ATOM VTH VTHX

08.13299E C3. . .

CATHODE ConRnINATES

0.0600 0.0449 0.9500 L.C520 0.94C3 9._520,

0.0250 0._809 O.Ol¢O C.120O V.236_ ].123C

0.0020 0.1400 -_. C.l_O_

-0PRINT-OUT OF CYCLE NO.

-0 -O -0 -0 -0 -C' -3 -0 -_

VOLT-1

2100.0000

1400.0C00lO0.OCO0

-0-

-2 -3 -4 -5 -6

C. 9. 50C.3303 2_30.99C, 3 I_3].D)OZ

1200.0003 1000.0000 80C.OOGO 690.3003 40].0300

50.0003 -?. -L. -3. -].-0. -O. -_. -j. -3.

I000

CO00

£000

CO00

0000

2000

tOO0

COCO

lbO0

leO0

ICO0

1230

C300

Z30G

2300i000

1200

1200

1200

1200

1200

1200

BDUNDARY POINTS OF

2 12-0.I00 0.200

2 13-(]. 400-0.

2 14-0. 650-_].

2 15-C. 800-?.

2 16-0. 950-C.

2 I?-I.OOC-Q.

3 IO-C.15L, 0.300

3 II-C.700 -r_.

4 9-6.500 0.700

5 8-C. 75C t.80 n

6 7-0.90C _. F_O0

7 I-S. -9.

7 2-0. -0.

7 3-0. -C.7 4-C. -I.50S

7 6-C. 70!7 0.5'3.,')8 I-C. -e.

9 I-0. -C.

10 I-C. -'i.

11 l-O. -C.

12 I-(Z,. -9.

13 l-C. -S.

ELECTRODE SHAPE

I -3 -0

i -_ -C

I -L -C

t -0 -0

I -C -6

I -_ -0

I -u -0

i -v -O

I -_ -O

I -0 -C

I -C -C

I -C -C

1 -_ -C

I .... C

1 -J -0I -0 -0

I -C -0

I -C -C

7 -& -C

9 -0 -0

ii -_ -C

13 -_ -0

08/02/85

KRHX KRHY

2 17

VTHY

-7

I007.33002CC. 00]

--b.

23 -

Page 28: Microwave Laboratory - NASA

1200

1200

1200

COO0

CO00

CO00

ODOU

CtOO

CO00

0000

CO00

CO00

I000

I000

lO00

lOOO

I000

I000

lOOO

1200

CO00

OCO0

CO00COO0

O000

0_00

CO00

CCOO

COOO

1200

12001200

1200

OCO0

0000

CO00

CO00

CO00

0000

0000

CO00

ICO0

15.30t:OG

leO0

ICO0

1200

6900

C'O00

CC,OO

CC,OC

COO0

0000

C(;O0CO00

1200

i200

1200

1200

14 I-3. -3.

15 i-0. -0.

16 i I.OO0-C.

16 2 1. 000-0.

16 3 l. O0]-O.

16 4 i. 000-0.

16 5 1.O00-D.

16 6 1.00]-3.

16 7 1.003-3.

16 8 1.000-3.

16 9 1.000-3.

16 I0 I.O00-C,

17 ii-0, 1,309

18 II-0, 1.000

19 ii-0. 1,000

20 II-C. 1.000

21 ii-6, 1,009

22 Ii-0, 1,000

23 II-C. 1.000

24 i-i.000-$.

24 2- I. 00:3-3,

24 3- i, OC!O-C,

24 4-I.000-0.24 5-I.003-9.

24 6- I. 00'7-S.24 7-I.000-C.

24 8-i, 00£_-0,

24 9-1,000-9,

24 IC-l, 000-0,

25 I-0, -0,

26 l-d. -9.27 I-[. -C'.

28 I 1,000-0,

28 2 I,OOC-O,

28 3 I. 000-9.

28 4 I. OOC-O.

28 5 I. 000-0.

28 6 I. 000-0.28 7 I.OOC-O.

28 8 I.OOC-?.

28 9 I. 006-0.

29 IO-C. l. OOO

33 lO-C. l. OOC

31 IO-C, 1,009

32 IO-G. I.C99

53 lO-C, I, C_03

B4 l-l. O00-O.

34 2-I,000-0,

34 3-I,000-0,

34 4-I, OOC-O,

34 5-I. O00-C.

34. 6-I. OOO-3.

34 7-1,000-0,

34 8-I.000-0.

34 9-I,000-0,

35 l-C. -_.

36 I-0. -n.

37 I-0. -9.

38 I-0, -C,

2 --L --_

2 -0 -0

2 -3 -C

2 -C -C

2 -C' -0

2 -0 -0

2 -£, -O

2 -_ -O

2 -L -C

2 -{; -0

2 -0 -0

2 -U -0

2 -5 -0

2 -C -0

2 -0 -0

2 -<, -0

2 -_ -G2 -r -0

2 -_. -0

2 -u -C

2 -0 -0

2 -C -C

2 -_ -0

2 -C -O

2 -C -0

2 -b "-0

2 -_ -,9

2 -L -C

2 -0 -0

2 -'L -C

2 -t -C3 -. -0

5 -C: -0

3 -L -0

3 -C -0

3 -O -0

3 -[ -0

3 -C -0

3 -,.', -G

3 -C -0

3 -C -0

3 -C -0

3 -C -C

3 -_.' -0

3 -0 -0

3 -C -03 -C -_

3 -C -0

3 -0 -C

3 -0 -0

3 -0 -03 -" -03 -O -O

3 -V -C'

3 -U -03 -C, -0

3 -C -0

3 -0 -0

3 -0 -C

- 24 -

Page 29: Microwave Laboratory - NASA

1200 39 I-0. -0.1200 40 I-0. -¢.1200 41 I-C. -0.

1200 42 1-6. -0.1200 43 I-0. -0.LZO0 44 i-0. -n.

L200 45 I-0. -3.

1230 46 i-0. -C.

1200 47 I-0. -0,

1200 48 I-0. -0.

1200 49 I-G° -0,

1200 50 I-0. -2.

1200 51 i-0. -O.

1200 52 I-0. -0.

1200 53 1-O. -3.

1200 54 I-C. -9.

1200 55 I l. 000-0.

C'003 55 2 1.009-0.

CCO0 55 3 I.OGO-C.

bOO0 55 4 1.00<-9.

GO00 55 5 I. 000-0.

CO00 55 6 i. O00-C.

CO00 55 7 1.000-0.

CO00 55 8 l. OOv-?.

COO0 55 9 1 • 00( -.".CGO0 55 i0 1.00C-9.

CC'O0 55 II I.OOG-_.

¢C00 55 12 I.O00-C.

0000 55 13 I. CCO-_.

6000 55 14 i. OO_-C.

IGO0 55 15 I.CO0-C.

GO00 55 I6 I.O00-O.

2600 55 I7 I.ODG-[.

TW

3 -0 -0

3 -U -0

3 -c -0

3 -O -0

3 -0 -0

3 -0 -0

3 -C -0

5 -G -0

3 -G -0

3 -6 -C3 -C -0

3 -6 -_

3 -0 -0

3 --3 -O

3 -_ -03 -C -C4 -0 -0

4 -b -0

4 -C -C

4 -C -C

4 -C, -04 -C -C

4 -C -0

4 -0 -C4 -0 -0

4 -t -0

4 -_" -_

4 -C -0

4 -C -0

4 -C -O

4 -_ -C

4 -C -0

4 -_ I

IS ENDS OAT_ CARDS

- 25 -

Page 30: Microwave Laboratory - NASA

'_3

00

r)

J

N

Z

I-- Z

.d ,.J _t"

W ILl ,--I

Z __ Z

_' _ .J

_ Q tu

7 w _ _

1,- r,_ j,m _ X

,4-,,,-i

A

r;

<)¢M,.-4

r_

,+'3

g

i'M

f)

N,0

O

4"

('%1

gom

g

_gO,,._

OO

O',OO

OO

O,

c_

w

C,

b

w_

,-=l

AJ

•,o ¢_

I I I I

- 26 -

h-

,:1"

I

h

I

cO

,,,4

O"

II

N_

J_N

Zll

_00_

,.//

Page 31: Microwave Laboratory - NASA

4

0'q)

0

g

Inaot_

(%1

_Ln _n

0

_. _'Ju') _0

uJ _.I...- LU

n,"n."ILl

z_"

Z

II 2"

I-- (3

uJ I--

ku

i-q

'_e_° ___ c')

c-) 1_

1-.- d-

7_g

_g

c_ t-)

gg

_g

O0• •

O0

Ln

h- a30 _¢_ _'_ P.- _0 L_ n'_ -_1- (',.J _'t_ t_i --.I

I I I I

I I I I I I I I I

r,_C =) _ p,. L_ C_ OD _ l...- -4k O_

C_CIO • • • • • • • • •

_ II II II II II II I| II

,0

g_g ,;'

N2g_• • • fe_

if.3 ¢-..i 0 ,-0

0o0 I

• • eft4

I I

,_ ,_ •

I I

I I ! I I

,0 _t 0,1 4- _

O000C_II II II II

I I !

-××--

! ! !

_NNN_

,, . ,,

I I I

g gg..,_0

I

...J 4"

_ ¢%1 _- ,-I !

OOC.,O0000000r_C_

I I I I I I_j uj m,I LIJ LL _ LU _ LL_ U._ U.l _A._UJ

Ite IIe I/ l; ,r

C) O0000000000C_I I I ! !

_ _ L/'_ _#- I._ UJ _U ,ll UJ LU U.a U_ UJ _J U.& UJ U_ _J

<_ . . e_'_...wO0¢."_'_.-41'--.,41".-,00_#'CO¢_"_u.; 0 0 0 4" ,,t ,,t _" ,,t ,,t" .,t .,t" _ _n _n _n _n ,0

II II II tl II II II II II II II

X _-mX _X X XXXXXXXXX_

('i

h,

CI

o

-0

r_C)

g

_'_ _0

ILUW

_J

f_o I

t_

c'_ o _'_

ua ua _'_

r..- 0', ,-,

I,.- 0, o

u'_ e,j1%1,-..4

LU • •"_00

I" 0 0 L._

_ e¢'_ cr, I.-

_Ollg

- 27 -

Page 32: Microwave Laboratory - NASA

w

I,-

,r30

Z0

1.1,,I

L] I,/1

I"

LP, _J._% ,-4

w

4) o ¸,

I I

ILL;4-

4"r

!

2.,ou_fxl

,.n

4-

I

,.t"

I

LUi_-

0 _

(10ur_

g

'4"

,,t ,ID

I IuJ LIJ_n r_

oO ..-_,41"0',

gg

,-_J

U.I I._ ,-I

I,-- Z

Z _

m ,,1" _

:7 I I

:::,4",,'1"1'--

Page 33: Microwave Laboratory - NASA

c,c_ _ {'_ L_er" t_l_- ¢" ,.o .'_ t-- t'-- I-.- ,4"/o ,or-- eqo, eoco _-- c,4 ¢xJ u'_ c,_u_

• • ! • • o o o o • • • • • • • • • • • o , • • • • , • • • • o • • • • • • • • • • • • • • • • • •

,-:o° ........... ............ _ .......... • ,_ ..... .I: "_ "• • • • • • • * , * * • • • • • • • • • * • • • • * • • • • • • • • • • • • • * • • • • • • • • • •

• • • • , • • • • • • • • • • • • • • • _ • • • • • • • • • • • • • • • • • • , . • • • • • • • • •

4"

- 29 -

Page 34: Microwave Laboratory - NASA

• • • , . • • • • • • , • * • o • • • • • • • • ° • • • • * • • • • • • • • • • * * • • * • • • • * • • * • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

30 -

Page 35: Microwave Laboratory - NASA

et_ _ ,..,_ u,_ _ _£_ c,, e,l (3_ coo, c'._ c,_ ,...4,..4 _.. _j,, coo ¢_ 4-4- re, _ ._ t_./r ct ._ '._

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

e_

g0

_2

Z

C')

:

0

.0

A

g

Ixl

o

eo

- 31 -

Page 36: Microwave Laboratory - NASA

,_ee,o,-4

gg,...i N

e.-4"

Ln :'4

orb

r,* 4"

c_ ¢-.

r)( _, h- _0 _ o

,0,,I"

or) I I

N e4 _ ¢M

c, ooo

I I ! I

_-- A WLU UJ 'JJ

OO r'- _D ,_ ,t

'O * * * *

. . - ,O1000_l" _ II II II

OO L) _.J L) U

n4NN",DO0

I I ILU UJ _S

I_ m- "0

O r'J O _ O O O

II II II

I

4" 4" 4" 4" _ •

OOOOO_

LU LU _U

,'-, C"s ,-$ _C% C_ 0 .'%

• , / I I I !_'*Og ..... , i , I ,lu I UJ / lUj/ /LU LU LU LU . _: LU UJ LIJ lU _"_ "_ C_ _ III Iu _ _ _ IU _ _ O

_ m _r uj Lu w uj x o o o o _ o a, m N N LU..U '-u X O () O O '-)-'_ _ N m _ _ X O O O _

000 C) 0

000 l" I ' , I , I , //

....... _,_ o _., ._........ =_-• * otM_n,t

.... )- )- )- C-_; ; g g dd g g c ",)- )" ..... oooo g O O O O C_...... ggl_d

I I

4r _ _lr _f

OOr}OO<._OOC_OL)_J _)C. OO(JOO -- O_ In , II II O

°°°°°°3°°ooo_oo°_°°°oo •••OC) OOO

_u u_ uJ

_DD"D'_DDD'-)DD'9-_DDDDDD _ II II .

.. ,,o),( )< _ 0

,,_ ,,.,+ ,,-+ (_

I.L_ J.I uJ

_; ,,

_0

.%

u_

m)

,X

II

X

- _2 -

Page 37: Microwave Laboratory - NASA

5 0.908814E-01

6 0.I05282E-00

7 0.I18741E-00

8 9.131176E-00

9 O. L42816E-O010 0.154537E-00

XI=.559E-OI X2=.520E-0I YI=.79BE-01

Xl=.520E-01 X2=.48bE-01 YI=.913E-01

X= 0.04000 NO. Y

1 _.2 O.

3 0.641055E-01

4 0,819782E-01

5 0,967159E-01

6 0.I09439E-03

7 0.121900E-03

8 0.133435E-03

g O.14_IIIE-O0

IO 0.155106E-03

XI=.597E-OI X2:.559E-OI YL=.656E-ul

Xl=.559E-OI X2=.52OE-OI YI=.793E-OI

X= 0.05000 NO. Y

I 0.

2 0.541993E-013 0.736950E-01

4 0.889451E-01

5 0. I019IbE-00

6 0.I13256E-03

7 0.12_808E-0_

8 0, I35519E-00

9 0.145325E-00

I0 0.L55642E-00

XI:.597E-OI

X= 0.06000

Xl=.633E-OI

X= 0.07000

X= 0.08000

X2=.559F-01 YI=.656E-EI

NO. Y

I 0.

2 0.659549E-61

3 0.816731E-Ol

4 0.948744E-CI

5 0. I06558E-_0

6 0. I16755E-00

7 O,127486E-GO

8 0.137442E-00

9 0. I_6458E-00

I0 3.156144E-00

X2=.Sg7E-OI YI=,488E-OI

NO. Y

I 0.585000E-012 O.751146E-GI

3 0.879915E-CI4 O.IO0019E-OD

5 0.II0714E-00

6 0.I19953E-00

7 0.129946E-00

8 0.139213E-00

9 0.147511E-00

i0 3.I56b09E-_3

N0. Y

I 0.697770E-01

2 0.817708E-0I

0.631387E 34 0.396732E 040.870459E 04 0.380850E 04

0.102586E 35 0.3_0038E 04

_.I13439E 35 0.258181E 04

0.123555E 35 3.151778E 04

0,124044E 05 0.724668E 03

Y2=.913E-31DX=.255E-O1CD=O.1151E-O1 -I

Y2=.lO3E-_O DX=.297E-OI CD=O,SI32E-02 0

VX VY

I.OO000DE-04 O.

1.000003E-34 9.

0.263289E 34 0.2_9603E 04

3.72_4_5E 34 0.55522bE 04

0.103477E 05 0.57537bE 04

3.123633E 35 0.494791E 04

0.136814E 05 0.4t6iB3E 04

3.1_5942E 35 0.317650E 04

D.I51921E 05 0.191169E 04

0.154858E 05 0.850775E 03

Y2=.793E-D1 DX=.199E-51 CD=0.2048E-01 -1

Y2=.913E-D1DX=.255E-Ol CD=O.1151E-O1 0

VX VY

1.000003E-34 O.

0.322731E 34 0.379355E 04

3.838487E 34 0.834363E 04

0.120775E 05 O.7BO924E 04

0.143159E 35 0.737212E 04

0.159155E 35 0.594438E 04

3.17309_E 35 0.476416E 04

0.177713E 05 0.356873E 04

O.IQ2733E 35 0.214941E C4

0.185225E 35 0.954749E 03

Y2:.Tg3E-_I DX=.I99E-DI CD:0.2048E-01

VX VY

1.000033E-34 0.

0.10142_E 35 O.II92BOE 05

3.143271E 35 0.130793E 05

D.165125E 35 0.914295E 04

D.181445E 35 J.TgQ633E 04

0.193960E 05 0.651262E 04

3.202_02_ 35 0.522155E 04

0.209070_ 35 0.396914E 04

0.213243E 35 J.233556E 04

0.215331E 35 3.134274E 04

Y2=.656E-DI DX=.II2E-0I C0=0.7223E-01

VX VY

0.122137E 35 3.177099E 05

0.171115E 35 0.I)3_38E 05

0.191970E 05 0.III025E 05

0.205232E 35 0.996212E 04

0.218189E 35 3.Sb1267t 04

3.227927E 35 3.b_7977E 04

0.234954E 35 0.554874E 040.243029E 05 D.438662E 04

0.243463E 35 0.247399E 04

3.245193E J5 _.i39987E 04

VX VY

0.187982_ 35 0.172622E 050.225195E 35 0,133383E 05

3

4

2

3

- 33 -

Page 38: Microwave Laboratory - NASA

X _

X=

X=

X=

X=

O. 090OC

O. IOOGC

O. i I OCO

O. 12001

O. 130GC

3

4

5

6

?

8

0

I0

NO.

I2

3&

5

6

?

8

9

I0

I

2

5

6

?

8

9

I0

N0,

i

23

6

?

9

I0N0.

I

2

c

5

67

8

9

ICNO.

I

2

3

R

6

_.933111E-010.I0_543E-00

O.l14447E-gO0.122809E-000.132201E-C0O.140842E-500.I#8487£-00

9.157040E-50

Y

0.77_085E-CI

0.871033E-CI

0.979078E-_I

_.108554E-00

_.117807E-009.125525E-30_.134205E-009.I4233TE-00_.149389E-000.157438_-]0

Y

0.830877E-01

0.g15359E-01

9.I01934E-00

0. I12133E-60

O.12083BE-CD

0.1279416-09

_.13b1496-00

0.143707E-00

0.150221E-00

0.157808E-03Y

0.8751286-01

0.952948E-0I

0. I05486E-0]

0.I15334E-G0

_.1235746-C0

0.130136E-60_.13786BE-C0

0.14_9606-C0

9.1509886-G0

0.15B151E-00Y

0.913367E-019.985101E-LIO.IO_625E-GO9.I182016-C]

_.126043E-G_3.132125E-c)0.139433E-00

0.146104E-00

9,151&946-00

9.1584706-C0

Y

9.94&3976-61

C.I01258E-00

0.1113925-09

_.1207o3E-09

0.12B2655-05

0.13392_E-C3

3_

0.2354176 05

3.2445976 95

0.2534495 35

0.26096#E 05

0,2654405 35

0.279459E 95

0.27_257f 35

G.274677E 05

VX

9.249515E _50.2715B26 95

9.275197E 05

0.2809395 35

0.2871876 05

_.2929476 35

0.2970926 35

0.3002I_E _5

9.30243IE 35

3.3935946 05

VX

0.2987616 35

0.3123856 35

0.31208?6 35

3.3151336 05

0.3193815 35

_.323595£ 35

0.3256916 35

9.329029E 35

O.3597&OE 359.33169BE 35

VX3.34389_E 35

0.3504146 05

0.34579&E 35

0.34741_E 35

3.3#992_,E 35

0.352982£ _5

9.35499BE J5

9.35665B6 95

D.3579226 35

0,5986916 95

0.3795516 95

3,385556£ 35

3.379017E 355.3776256 05

0.3785326 35

0.3805B16 05

0.381799E _5

0.3B278_E U5%,.3836576 J5

0.384262E 35Vx

3.415164E 353.#181746 35

0.409291_ _5

_._956776 35

C.4952_36 05

D.436213_ 35

9.I15329E 05

0.13_335t 05

D.898992E C4

0.72771_E 04

0.575972E 04

_.422853E 04

0.2568765 04

0.I1398Bt 04

VY

0.151254E 05

0.1315266 05

0.I18_81E C5

0.I3o529E 05

_.9176896 G4

3.7%3302E 04

0.5_6823E C40._B0259E 04

0.2524436 040.116577t 04

VY

0.150126E 05

9.I2732_ _5

O.IISJ69E 05

0.1367636 05

0.920860E 04

j.7%6512E C40.598797E 043.4316145 04C.25456BE 04

0.I180&95 04

VY

0.I_9324£ 05

0.12181_E C5

0.I15903E 05

0.135359E 05

3.9155875 040.738593E C4

0.5B29516 040.4275_3E 04

0,253_435 04

0.118636[ 04

VY

3.12_955E Q5

O.Li4_20E 05O.III94?E 05

J.1324935 C5

0.8B8357_ 04

0.720732t 043.55990_5 04U.4185976 64

0.250324E D#

0.11_54_E 04

0.I17642E 05

].I)63295 35

0.IDo174_ 05

0.�BI618E C4

9._53808E 049.0)3575E 04

Page 39: Microwave Laboratory - NASA

X=

X=

X=

X=

0.14000

0.15000

0.1600O

0o17000

0.18000

789

10NO.

123

56

789

1CNO.

123g

5S78

910

NO.123456789

10NO.

123656789

10NO.

I

2

3

4

5

6

7

8

9

0.160856E-03

_.I_7147E-00

O. 152344E-00

3. 158768E-03

Y

0.973126E-0I

9. I03584E-00O. I13807E-03

O. 123038E-00

_.130257E-00

O.135560E-GO

D.162160E-O0

0.148097E-00O.152961E-GO

O. 1 59049E-03

Y

D. 99096TE-01

O. I D5514E-O0

0.I15876E-00

O.125039E-O0

O.IB203OE-O0

O. 1 36985E-00

O° 143297E-00

O° I4896IE-00

0.153491E-00

0. I59315E-C0

Y

0. I00681E-00

0. I07049E-00

0. II7603E-00

0.I26778E-03

0. I33600E-03

0. I38270E-00

O. I44337E-GO

9. I_9748E-GO

0.153998E-00

0. I59569E-00

Y

0.I01781E-_0

O. I08205E-00

O. 1190i IE-03

_. I28269E-00

_.I3_983E-33

0.I39407E-00

0.165271E-C3

O.15D665E-CO

0.15_468E-$0

O. I59813E-GO

Y

0.1C2693E-00

3.I09043E-OD

O.12014IE-O0

0.I29534E-00

0.136202E-00

9.I43412E-03

O.146IlIE-OO

0.151125E-03

0.I54909E-00

3.159948E-00

0.606472E

D.607331E

0.637596E

D.698327E

VX

0.668398E

0.669075E3.637374E0.631156E

0.629267E3.629613E3.628872E0.628955E0.629279E

0.629563E

VX

0.679869E0.677426E0.662165E0.653394E0.450122E3.449610E

0.648427E

0.468129E

0.668272E0.648436E

VX0.507042E0.503669E0.482192E3.471647E0.467302E0.665292E

0.466707E

3.66qlq_E

0._66205E

0.664292EVX

D.518139E0.513353E

0.49639_3.485085E3.68332&E

0.679188E2.677515_

D.67687OE3.675911E

0.676976EVX

0.523983E3.523987E0.505977E3.695175E0.693266E

O.688965E

0.687216E

3.686522E

0.685552E0.686624E

35 3.550021E 0605 0.435520E 0405 0.254009E 0635 0.117976E 06

VYD5 0.136526E 05

05 0.957238E 0405 0.982768E 0405 0.922168E 06

_5 0.838069E 0605 0,657505E 0695 0.523731E 04

D5 0.388766E 0605 0.265953E 0405 0.117124E 06

35 0.889575E 0635 0.831038E 0635 0.877794E 06D5 0.867716E 0605 3.751757E 0405 0.613282E 0435 0.692131E 0605 0.359155E 06D5 0.236614E 0635 0.116207E 06

VY95 0.676019E 04

35 0.659739E 0435 0.752850E 0435 3.75_780E 0635 0.o87850E 0605 0.553110_ 06

95 0.457266E 0635 0.3_80_1E 0695 0.220254E O#35 J.II5433E 04

VY

35 0.453477c 0435 0.533387E 0435 3.625250E 04

35 0.656310E 04

35 0.623377E 0635 0.511676£ 06D5 0.422252E 04

35 0.327265E 06

35 0.216546E 04

35 0°II4964E 06

VY

35 0.288636E 0635 0.353_63E 0635 0.537802E 0405 J.57387#E 0605 0.550223E 0635 0.451474E 0405 0.388884E 0495 0.337969E 0435 3.2)8319E 0605 -0.114861E 04

35

Page 40: Microwave Laboratory - NASA

X _

X=

X=

X=

X=

X=

O. 19060

0.20000

O. 2 IOGZ

O. 2200C

0.230u0

0.24000

NO.

I

2

3

5

5

7

9

NO.

I

2

3

4

5

6

7

9

IC

NO.

I

2

4

5

6

7

9

tC

N3.

I

2

4

6

7

R

9

Ir

NO.

I

?

3

6

7

8

9

NO.

1

2

Y

0. I02916E-00

0.139626E-C0

0.12103oE-00

O.130598E-]J

n. IBT272E-GD

9.141298E-03

O.146872E-O0

0.151735E-00

O.155326E-GD

9.15971_E-79

Y

0.I03107E-03

9.11OOOIE-C9

0.121730E-03

0.131480E-00

0.138200L-C0

0.[42075E-00

0.I_75o2E-C3

9.152396E-6D

n.155725E-C_

9.159481E-[3

Y

O.IJ30996-GO

C.I13203E-03

_.I22252E-OJ

9.132190h-V9

m,158984_-OD

_.lJ5111E-¢f

Y

0.102916E-03

n.l13247E-<S

3.122625E-_ S0,13273_E-_3

n.1396256-C0

0.1:3294E-C0

_.14_740E-G)

O.153349E-L]

_.1564_7E-03

5.159315E-6_

Y

9.192576E-C3

0.II0163E-09

_.1228bBb-3J

O.1331_E-CD

9.1_JIITE-_ D

0.I_3790E-00

0.I_92)3E-00

_.153828E-_

3.156858E-:3

O.158782E-GD

Y

0.I02112E-09

n. IJg975E-{ 3

9.123001E-03

36

VX

3.527391_

_.525816E

0.512550E

0.502626E

_.497_53_

3._95_2_

0._940_4E

?.493351E

_._93435_

D.4934S5E

2.529386E

$.52S886E

3.517123E

_.5C8105E

9.5_1972£

3.503141E

].4_B_ggE

0.40773D_

3.697S1_E

D._9793_E

VX

D.530311E

j.53_619E

O.51999TE

0.5_5617E

3.53_555e

3.SDI25_E

5.50035_z

7.5C9445_

t.5J]555E

V_<

0.539981E

_.571_73E

".5216_E

3.51423]E

0.508737_

3.5959_9E

_.552193E

3.573_93_

0.59[19cE

,,.591_13!_

D.5277E5E

0.533321E

C.522795E

_.515927_D.511392E

0.5077I_E

O.5D2997E

0.5D16_=

D.5_i_536

D.5022_IEVX

0.525A96_

D.529462i

0.522751_

VY

35 3.156341E 04

35 _.2571_9E O_

35 0._33189E 04

05 O.4B7841E 04

35 U.496747E O_

35 J._IIT52E 04

05 0.3572525 04

35 3.290425k 04

05 D.23DTB2E O_

35 -0.I15134h O#

VY

35 3._9992E 03

35 D.311339E O_

05 0._3658t O_

35 0.429871E O_

D5 O.35IR26E C4

35 0.327884E 06

D5 D.275119_ 6#

35 _.19488b_ 04

D5 -0.I15_22E G4

VY

95 -0.527079E 03

35 J.624550L _3

95 0.23C243E C_

35 0.320271E 04

35 0.356629_ 04

35 3.3394_9_ 04

35 3.297259t 04

35 0.25C73oh C4

55 ).1_99065 C#

35 -3.116399t £4

VY

95 -0.1%2300t 04

35 -J.IBI681E 33

35 3.15_187£ 0435 0.2%2575E 04

05 0.2Bglg_E 04

35 j.245746f f4

35 J.257427C 04

35 D.2%5323_ 04

35 9.186552c 64

35 -J. I171_,2_ C4

V?

35 -).216599E 04

35 -_.75_301_ 03

35 j.95932_£ 63

35 3.173730E 04

35 S.21_231E 04

35 _.155935E 04

35 3.237918E O_35 _.2_3865E G4

25 0.185720E 04

35 -3.I17371h 04

VY

D5 -3.27283_ 04

_5 -0.123872E Ok

D5 3._315926 03

Page 41: Microwave Laboratory - NASA

X _

X=

X=

X=

X=

56

8

9

IO0,250C0 NO.

]

?

.r

4

5

E

7

8

9

0.260C0 NO,

I

2

6

7

8

9

O. 270C0 NO.

]

2

3

5

6

7

9

O. 2 ROOi] NO.

I

2

4

5

5

7

q

IO

0.290GD NO.I

2

3

4

5

6

7

O. 133421E-0_9. 1434oJE-09O. 1439_3E-0C)O. 149506E-030.[54283E-C.3_. 15722_E-_

O. I58548E-00

Y

3. I_I546E-C0

?. 13970e.E-_

9. [23040E-G3

m. I 33590E-C0

_. 140666E-C0

3. I4qO33E-CUO. 1 49831 E-COC".15471 'DE-C 3

"_j. 157585E-C=0

3. tS_3lOE-t3Y

3.130886E-: 3O.109359E-L):]_.122998E-C_O. 133065E-0,9

m. 149762£-:" 3O.l_40G3_-_J3.150C IOE-_ ]

0.155087E-C3

3.157923 E-_9.15BO58E-63

YO. 190131E-J]

?. l Z_945E-L i_C. i22879E-'_S'. 133559E-CO3. 140772t-03_. 143884E-b_9.15_ICBE-* ?

r.155395E-(3O. 15B2_2E-L3_. 157779E-v ;'

Yq. 992695[-V1

n. IS8455E--,3_. 122682E->_

q. 15_573_-', DO. t40698E-COn. 1436_0E-03

O. I50128E-33n. I55637E-C ]

O. 158515E-C3

_. 157468E-09

Y9. _82884E-I i

n. IOTBTOE-C 3

9. 122431_-_3_. 133397E-_0

].143520E-c]

0.143365E-00

O. 153067E-n3

D.51713' ,E3.512_53ED.5Ogb4IE3.53519cE3.5D_787=3.573955E

vX

].52490RE

3.52B946E

3.523027E

2.5]821_E

0.514693E

3.512257E

0.509109E3.505955E

3.5D5586_

3.595639EVX

0.52482eES.5PSS£DE3. 5232"_&=D.51994_EL_.SI6153Ej. SI4327E

._.512459E

D. 559447_

.,.5"_561E

_. 53_50_,E

V X

C.525433EZ,.5291 lg_-

D. 5272_#_3.51_z,E

C. 51 _3_

].512544E3.539:23_-

3.53R577_VX

0.525365'7

5.52_3v52D.52276Z_

3.517922_3.51_552E

0.5123_oE2.5:' 9_.59E:

3.5372225

2o 50,67EI_i

J.5C558_VX

7. 526603_]

0.52918eE

D.52175_Z9.516237_

3.51222B_0.5094_gE3.52522CE

35 ].llB2C2L C,_-

35 ).1379_J_ :'435 O.BI5035L 0335 3.157542_ 04

_5 _.22370_ 04

35 J.I_651E 0405 -0. I17921L 04

VY

35 -D.321973E 04

35 -3. 153750E 04,

35 -0.238384E 02

35 O._llTZ_lt ,33 ,35 9.735698_ 03

35 3.998833E _;235 0.111990E C4

35 0.237357E 6435 0.178_37E 0435 -3.122t63E 04

VY35 -0.37C433E C4

35 -D.23C254E 04

35 -3.425127E 0335 O.171932E 03

35 0.251782E C3

35 -_.439118E 03

35 0.733760_ 63

35 _.ITbISIE (_4

35 ).154699E C4

05 -].133567E 04VY

35 -D.422774E 04

D5 -J.2379_4E 04D5 -0.SIBI5IE 0335 -0.231533_ 0335 -_.15C814E 0335 -C.SD9903E 03

35 ].333123E 0335 0.137922F 04

35 1.1_9251E 04

35 -3.150398E 04VY

35 -0.4_3189_ 04

D5 -_.2_L525_ C,435 -,]. t237_ 8£ 0435 -].65181_E b3

35 -O.OIISI4E 03

D5 -3. 128672E 0435 -0.131208E C3

35 J.I)8238E 04D5 0.13_324k 0435 -:'.155831E 04

vY

35 -9.5(,9979E 0435 -D.329739E 04

35 -O.17D626E 04

35 -J.l1584_E 04

35 -0.I2_850E 0435 -0.193420E 04

35 -G.517127E 03

- 37 -

Page 42: Microwave Laboratory - NASA

X=

X=

X=

X=

X=

O. 30000

0.31000

0.3200'3

O. 33060

0.34000

O. 350C'_

8Q

i0

NO.

I

2

34

67

e9

tONO.

I

23

4

5

7

8

g

ICNO.

I

2

3

5

6

7

89

I

2

34

5

&?

R

9

IC

NO.

t2

4

F

6

?R

9

I?

NO.

_.I55837E-OD

0.158784E-09

0.157131E-03

Y

0.971780E-CI

0.I07203E-00

0.122023E-0_0.133118E-00

O.1402L7E-C3

0.1429IOE-00

0.I49923E-00

0.156021E-00

0.I59049E-000.156781E-00

Y

Q.gSQ300E-GI

O.IO6414E-G3

O.121540E-GO

0. I32722E-0SQ.139777_-C_

_.I_2309E-L_

O.t49697E-O0

O.156201E-J_

0.159314E-00

O.15542TE-uDY

_.945290E-01

O.I05593E-OD

9.120945E-G2

9.I32203E-0C

0.139206E-C9

C.141575E-00

0.1494C2E-C9

n,155379E-S3

0.I59579E-00

0.155070E-03

Y0.929637E-CI

O.IO_468E-J9

3.I23235E-00

0.1315506-00

0.138518E-C0

_.140729E- 3

O.I_9050E-LOO.t5555oE-O0O.159B45E-C90.155798E-09

Y0.912496E-01Q.IO3317E-303.119413_-S_

9.133799E-3]

_.137729E-00

0.139792E-C0

t.l#_658E-C_9.155731E-C!3

O,159888E-t9

0.155341E-00

Y

3.504315E 350.504083E 35

0.503064E 35VX

D.52511BE 350.528215E D5

0.520057E 353.513975E 353.53955#E 350.506563E 350.502312E 35

0.501439E 353.531683E 350.501145E 35

VX0.526455E 353.525153E 35D.517538E 350.511387E 350.5_6379E 353.533841E 35

0.509552E 050.499719E 35

_.499958_ 35

3.4994256 35

VX

D.521O&3E 353.5226D_E 35

3.514555E 353.507613E 35

3.5_292&E 350.5_973_E 353.499_52E 350.498075E 95

_.W98399£ 353._97779£ 05

VX

0.515419_ 35D.517[&2E D5

9.539633E 35

3.503483E 35

3.499305_ 35j.407397E 353.495952E 35

0.496259i 35

3.4954576 35

0.4_5963E 35VX

0.535293E 352.519817E 353.5D4472_ 35

3.49_99bE 350._g55745 05

_.493912E 359.49431_ 35

3.49375gE 350.493985E 95

0.493451E 35VX

0.961539E 03

O.IB3653E 04

-0.174355& 04

VY-9.619057E 04

-3.385300E 04

-0.222622E 04

-O.I?21IIE 04

-3.1B9588E 04-0.258340E 04

-0.916187E 030.9_5853E 033.1_2_56E 04

-0.176856E 04

VY-3.692083E 04

-9.4_6D56E 04

-0.278443E 04-0.233095E 04-0.257574£ 04

-0.33938B_ 04

-0.I_2191E 04

0.896017E C3

0.132446E 04-9.177739E 04

VY

-0.772702E 04-3.539124E 04-0,3356396 04

-0.295692E 04-J.318546E 04-0.39845SE 04

-0.153558_ 04

0.SB5903E 03

J.[323_16 04

-3.178744E 04VY

-9.6_6457E 04

-5.557437E 04-5.391134E 04

-0.355079E 04

-0.370946E 04-3.4%5903E 04

-3.lBb539E 04

0.871504E 03

0.1521951 04

-O.19U447E G4

VY

-0._997166 04

-D.615612E 04

-3.4_2378E C4

-9.437158£ 04

-0._13792h 04

-9.4B_223E 04

-9.23253DE 04

0.85_489E 03

-0.152177E 04

-O.IB2433E C_

VY

Page 43: Microwave Laboratory - NASA

X--

X=

X=

X=

X=

I2

3456

89

IO0.360C0 Nn.

I

2

3

4

5

6

7

8

9

IO

0.37000 NO.

I

2

3

4

5

6

7

8

9

0.38000 NO.I

2

4

5

6

7

8

9

I?

0.390C0 NO.

I

2

3

4

5

7

8

9

IC

0. 40000 _!0.

I

2

3

O.ag_172E-OI

O.tG2066E-O0

9.118486E-_3

3.129935E-03

0.136857E-00

0.158780E-03

0.148235E-00

9.I56904E-Ob

0.159620E-00

0.I54969E-00

Y

D.87490IE-CI

0.I00728E-C,0

0.117462E-00

0.128983E-C0

D.IB5917E-CO

0.137707E-00

0.147788E-00

9.157076E-00

O.1593DOE-C3

0. I54591E-00

Y

0.854857E-GI

_.993138E-010.I16352E-00O. 127959E-O!?

O. I3_925E-03

_.I35585E-OD

O. I47322E-00

9. I57249E-00

9.159077E-03

9.I5_209E-_3

Y

3._3_155E-GI

0.97_324E-CI

_.I15162c-__.126875E-__.I33892E-JOO.135426E-D_

0.145840E-_9

0.157422E-6_

0.158803E-C9

9.153822E-0]

Y

_.812855E-CI

0.962903E-_i

_.II3905E-u3

0.125745E-00

n.132829E-O]

?. I ?4236E-_ $

9. 145346E-[ 3

9. 1575966-00

O. t58527E-t_0.153432E-50

Y

_.791011E-01

0.945928E-i)i

9.112591E-609.1245_DE-_D

0.497598E

0.59454tE

3.49931_E

3._9_145E

0.491638E

0.490211E

0.491215E

3._93833E0.491053E

0._90491_

VX

3.&99277E0.497995E

0.%93425E

_.489534E

3._8772S_0.48649#E

0.487959£

3.687643E

3._87997E0.487318E

VX0.4£3527E3.491982E0.4_80596

0._85056E

3.493824E

3.4_2711E0.48_41E3.484427E9.484731E

3._R4DBgE

VX

0.4775_46

0.4_5421E

3.4£3113_

3.48091_3.493391Z2.&79053E_.4RI38SE

0.4812TIE

0.491551E

O.4qO921E

VX

0._722_IE

0.4_1365E

J.4?8575_0.47715bE

_.47957_

_.475675_

3.47B29_E

3.4782_5&0.4785a2_

j._778g_EVX

3.4_7315_0.47679_E3.4v#527ED.47378_

05 -0,937983E O#35 -3.654588E 0405 -9.457985E 0435 -0.450_5IE 0405 -0.4#76096 0635 -0.512719E 0435 -u.214165E C4

35 C.8%6385E _3

05 -0. 132245F 04

35 -O.IB3966E 04Vy

35 -0.955753E 0405 -O.686614E 0635 -0.527789_ 04

35 -3.435758E 0435 -}.4129_9£ 0435 -0.555281E 04

35 -3.2231596 04.35 0.8%0557E 0335 -3.IB2337E 0435 -0.185153E 04

VY35 -0.996186E 0495 -0.713304E 0495 -0.552534E 04

35 -3.5129456 04

35 -0.4910_9E 0435 -3.551766E 0435 -9.2302196 04.

05 0.837523E 03

35 -0. 132415E 0435 -3.1B0187= 04

VY

95 -0.13C342E 05D5 -?.736122E O#

35 -0.592492 / 04

35 -/,.533619E 04.05 -3.53b970E 04

35 -,,.553517£ 04.

35 -0.2353825 04.

35 J._36429_ 03

35 -{.132454E 06

35 -0.136985E 04.VY

35 -3.1319476 0535 -_,. 756336E 04

35 -3.et_75IE 0435 -0.5_887b_ 04.35 -J.51360_E 04

35 -'i. 572,_89e 0435 -J.23933IE 04.35 3.836_51r 03

35 -J.t32z_25[: 0 _,35 -3. IB74.9_£ 04

VY

35 -0.133292£ C505 -0.774337E 04.

35 -9.bB5435h C4

3_ -0.559445E 04

39

Page 44: Microwave Laboratory - NASA

X _

X=

X=

X=

X=

0.41000

0.42000

0.43000

0.44000

0.450C0

5

67

8

9

tO

NO.

t

2

3

4

5

6

7

8

9

I0

N q.

I

2

3

5

6

7

8

9

I0

NO.

I

2

4

5

6

7

B

9

i?

NO.I

2

3

5

6

7

8()

l0

NF).I

2

4

5

6

7

8

9,131740E-00

O, 135023E-00

O, 145842E-S0

9, I57772E-03I%_.,I58253E-00

O, I53038E-00

Y

O,768691E-GI

O. 9BO447E-OI

0,II12326-C_

9. 123388E-00

q. 133633E-00O. 1 31791E-00

O. 145330E-609. 1579_9E-00

O. 157971E-C0

n, 152642E-00

Y

_. 745963E-C_I

0,913507E-01

O. i09837E-0 _

O. 122177E-03

D,129511E-O0

n. 130544E-00

O. I_4812E-0_

n, 158128E-OJ

_, I57692E-CD

O, I52244E-00

Y

9. 722876E-01

9. 895157E-0I

O. I0841bE-O0

O. 120952E-0S

0.12B379E-CD

O. 129287E-DO

O. 144290E-00

7.158307E-093,157412E-00

S.151845E-33

Y

C. 699476E-01

')._78457E-01

9, I06977E-CD

9. I19719E-09

9.127241 E-Z!O

9. 128023E-00

?. 143765E-03

O, 158488E-0C

"),157132E-C 0O. 151445E-CD

Y

O. 675823E-0I

0.860465E-C I

O, I05526E-00

0,11848IE-C0O. 12bOQgE-OJ

O, 126755E-C 0

O, I43238E-C9

O, 158670E-GO

40 -

3,#73602E 35

2,472622E 35

D,475466E D5

0,475488E D5

0,475776E 35

3,475II2E 35

VX

0,46292&E 05

3,_72795E 35

J,47IOgTE J5

3,473863E 35

0,470902E 35

0._69937E 35

0,472968E _5

j,473C_#DE 35

_.473330E 35

0._72655E 35

VX

D,459295E 35

0._69175E 05

0,46_212E 05

_,46_418E 35

3.468623E D5

3.467665E 059.473845_ 953.#79955E 05

D,_7124bE 35

0.470562E D5

VX

J.4560_7E 35

3.465181E 35

0.465858E 35

0.465455E 35

0.466779E 053.465_25E 350.65913_E 35

O.469274E 35D.#69565E 35

3.468875E 35VX

3.4533_4E 353.4630R4E 35

J.45407_E 350.46495_E D5

0.4653626 350.464424E 35

0,467859E 35

0,468015E 35

0.468BORE J50.46751&E 35

VX0.4512796 350,461837E 353.462815E 359.4&39&5h 350.464415E 35

J.46348?E 35

3.46731BE 35

0.467189E 35

-O.520656= 04

-0.578#88E 04

-0.2%1694E C40.838472E 03

-O.I_23G8E 04

-j.187734E 04VY

-0.134343E 05-0.7905245 04

-O.b_9728E 64-0.55648#£ 04

-0,525509i 04

-0.583036E 04

-3.243596c C4

O.8%JT55E 63

-0.132104E 04-J.IS775IE 04

VY-3.135238E 05

-0.835089E 04

-0._$0166E 04

-0.5711096 0#-_.528593E 04-0.58599oE 04

-Q.244907E 04

0.8%3364E C3

-0.[31813E 04

-0.187592E 04

VY

-0.13o3655 C5

-0.817686E 04

-0.b571546 04

-0.573805_ 04

-3.530251E 04

-).5_7628_ 04-9.245782E C4C.8_6078E 03

-O.lBI438E G4

-0.187504E 04

VY

-0.136735_ 05

-0.SZS172E 04-9.b71513E 04

-3.574893_ 04

-_.530746E 04

-_.5_S129E 04

-3.2%6303E G4

9.8%8695E u3

-2.1309926 C4

-).IB6935E 04VY

-9.137236h 05

-0.687132E 64

-0.073732E 04

-0.574671E 04

-0.530_04_ 04

-0.5B77041 04

-0.2%6524E 04

0.8510905 03

Page 45: Microwave Laboratory - NASA

X Z

X=

X=

X=

X=

X=

0.46000

0.47000

0.48000

0.49000

0.50000

0.510CJ

9

NO.

I

2

34

5

6

7

B

9

I0ND.

I

2

3

¢

5

6

7

8

9

I0

NO.

1

2

3

4

5

6

7

8

9

IO

ND.

I

2

3

&

5

6"7

80

I?

NO.

1

2

A

5

5

7

R

c)

19

NO.

I

9.155853E-C0

O. 1510_bE-O0

Y

0.651975E-01

O. 842239E-01

9.1040695-00

9.1 17243E-03

O. 124958E-00

O. 125488E-009.1¢2710E-OD

0.I 58852E-00

9.155574E-GO

O. 153646E-00Y

O. &27979E-Of

O.82385¢E-OI

0.I02611E-6]

0.I160C8E-03

• 123819E-00

O. 124223E-OD0.142182E-C0

9.159035E-C0

O. 156297E-00O. 150248E-03

Y

q.603890E- 1

9. 805589E-01

O. I01158E-00

n.[l%779£_U3

_. 122685E-_ 2

O. 122962E-00O. l¢Ib55E-C3

O. i59219E-6 39. I55G2IE-O]

n. 14985 1E-COY

m. 579761_-C 1

3. 785912E-CI

O. 997121E-01

9. I13557E-C]9.121556E-53

9.121707E-L_9

O. 14113OE-t,O

?. 159432E-.9_.155747E-C3

O. i49455E-d5

Y

O. 555036E-? I?. 758483E-CI

Q. 9827&7E-L 1

n. I125_+5E-2C

_. 1234BbE-_]

n.123461E-C3¢. 1436L, 75-C3

O. 159585E-CO

2. I_5474E--_I_

t'.I_9061E-0[

Y

?.531559E-01

O.¢674elE

G.465785E

VX

0.44981¢E

0.¢635956

D.¢b208_E

3.¢63419E

0.463931E

3.¢b2999E

O.466608E3._66793E

9.¢G7083E

0.4_385E

3.4¢8861E

0.459908E

0.461893E

3.4633¢qE

0.46390_E0.462977E

0.466631E

0.46682_E0.¢67113E

0._65415_

VX

3.¢_859_E

0.¢59_32£

D.#62197E

3._537_5ED.464392E

0.463403E

0.467077E

D._67260_

3.4675516

0.¢66865E

3.¢GDBB4E0._629996

3.¢645o6E

3.¢651OLE

3.¢5425_2

9.46795563.468121E

5.¢5_415ED.¢6772_E

VX

3.4&962BE

5.461¢79E

D.¢6#265£3.465B71E

_.465457_

0.¢655_2E9.469182E

0.46935£E3.4596_IE

VX

0.451059g

J5 -3.13C485E C4

D5 -O.196522E C4

VY

35 -0.137657E 05

05 -J.8#41D36 04

35 -0.673908E 04

35 -O.573388E 04

]5 -0.5291816 C4

35 -0.SB6598E O_

05 -J.2¢O470E 04

35 0.853210_ 03

35 -0.129923h _4

35 -0.I_6078_ 04

V_

05 -0.137982E 05

35 -0.848220E G4

95 -9.6726¢2£ 0435 -0.511299E 0435 -9.527552E 04

35 -0.5_4991E 04

35 -0.2¢61896 04

35 3.855D21E 03

05 -0.129512E 04

35 -0.185613E 04

VY

35 -O.13BI87E 05

D5 -0.850056£ 04

35 -O.b_OS¢OE 04

35 -0.558620E 04

35 -0.525529£ 0435 -0.5929925 0435 -0.2&5747_ 04

35 0.856¢99£ 03

35 -J.12865_E 04

05 -0.185153E 04

VY

D5 -0.138324E 05

_5 -_.851290£ 04

95 -0.657285_ 04

35 -0.555581_ C4

35 -3.523232E C4

35 -i3.5_3712E C435 -J.245218E C435 0.857527E 0335 -G.127993E 04

35 -0.194731E 04

VY

35 -D.ID8411E 65

35 -2.8%8854£ 04

35 -0.653734E 04

35 -3.552438E 04

35 -6.52080_i 04

35 -3.578287E 04

D5 -0.2¢_678E 0435 5.858414E 8335 -_.127317E G4

95 -0.I_582E 04VY

05 -O.13U4_gE 05

- 41 -

Page 46: Microwave Laboratory - NASA

++.+...._,.°+..°°..+.+++

• . • • • • , • • , • • • • • • • • • • • • • •

• • • • • • • . • • • • • • • • ° ° • • • • • •

• • • • . • • • • . • • • • • • . • • • • • • •

co ,_ c_ co co co c_

• • • • • • • • . • . • • • • • . • • . • • • •

0_0000 _00 00_0 00000 0000

m_

...........................I I I ! I ! I I I I I I I I I I ! I I I ! I ! I I

.. lle • • .i Ii+i .+ .._ggo_og_ og .... 3g ......... g_og ....

00000

I I I I i | I I I I I | I I I I ! I I I I | ! I I

0

_0 ,Q aD

ggdgggg_g g_,g_g,_g,_dg gdgJ, gdgg_'d

Iii+++i.+.++i..-i+....+.

O_O00,_O000_O0_O0_OcJ_)_O

g,

Im m o m m o m m o _r_ m (-_ m m c_ m m c-_ m m r_ u_ m o

g0 0

u_

< _ N 0 _J N 0 0 N 0 0 _I c) _ i_ o 0 N _} 0 N 0 u N (-_ 0

Page 47: Microwave Laboratory - NASA

O4 ('%a N ,...4- o4 ,JO r_J• • e • • • • • • • • • • • • • • • • • • • • • • • • , • • • • ° o • , •

• • • • • • • • • • • • • • • • • • • • • • * lee • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • , • • •

Page 48: Microwave Laboratory - NASA

_ ........................................... ; ..............0000000000000000000000000000000000000000000 00_00000000000

eeee,,,, • 00000000_0000000000_3Z_3_o_oooooo_g_g_Z_Z_Z_Z_Z_ZoZ ..................

g_..._ ............................

============================================================

. _-_ -

Page 49: Microwave Laboratory - NASA

O_ ,-4_ .t_0 co_ cO r_

• • • • • • • * • • • • • • • • • • • • •

0 C) C, _ 0 ('_ .-_ 0 ',.._ _ e3 0 0 o ¢) 0 C, c_ ,:) c) -:)

o o o 0 0 0 ¢. o 0 0 _ ca 0 _ 0 0 c_ 0 0

OQO OOOo0_ 00000o00 _,_00

o_oO_oc)_oc*t)o_oooou%f_o0

I_u

o

I

o,/

0

¢--,

d"

,.-I

b-

I I

uJtu

r, N

r'_4-

O0

ooo4

Noo,-_oo_oo_oo,_,Jo_oo_oo._,..., ,.., .-, .-, .-, u.,ww_" _:LU

_Eo_ P,,, ','-_ ua

Page 50: Microwave Laboratory - NASA

III. COMPUTERPROGRAMFOR SPECTRALRADIUSCALCULATION

(_-CATCUmT_O_)

The subroutines used for these calculations are:

i. MAIN_

Same as before, but it calls MATIN only.

2. MATIN

Calculates the largest eigenvalue.

3. MATRIX

Same as before.

4. 7090 PLATING R_UTINES (Fortran II) for the CalComp Plotter (Stanford

University Computation Center Library Program No. 157).

A. DATA INPUT

The Data Input for this calculation is the same as for the beam

analysis program with an additional card at the end shown on page 50 of

Data Output by arrow. This card indicates how many iterations (MIT = i00)

to perform and whether the print-out for each interation is required

(_,'R > 0).

- 46 -

Page 51: Microwave Laboratory - NASA

h

B. DATA OUTPUT

The print-out of Data Output consists of the Data Input (pages 48 to 50)

and then the L_ and HIGH eigenvalues for the first two iterations. The

last two columns show the point numbers where the lowest and the highest

eigenvalue_ respectively, were found. At the end the square root mean

value of XR is given (page 51) o

- 47 -

Page 52: Microwave Laboratory - NASA

DATA OUTPUT PRINT-OUT BY THE COMPUTER

DEFLECTING PLATES FOR ION ENGINE NO,I

NASA-LEWIS FOR F,KAVANAGHIS.JONES

NXF NYF NEM NIJ NDIM55 17 8 tO 3

08102165

NRL NUL NURLNCOOR IOEC N'FUL NCO KRHX KRHY

2 45 45 0 -1 0 14 2 17

1XONSPANNPOTXNPOTY _TAXS1 13 5 17

0o0

KRTN KRTX KRTY KRIX KRTY KRTX KRTY

VTHY

17VBT SIZE VA VB VC

50C.O000 500.0000 2100,0000 -0. 8,0000

XLOW HSL XLSL VD

C.O8CO -0. -C. 20.0000BXX CXX CXX XRC.3200 0.5400 6.5400 0.9804

EPSILON XEMIT MESH SIZE - H0.0100_000 0.13999999 0.01000000

EPSNOT XQM ATOM VTH VTHX

.88540E-II.g5790E 08.13290E 03. • •

I 2

VAT2C00.0000

HGH

--C=

AXX

C.28C0

RO

O.

CATHODE COORDINATES

G.C600 0.0440 0.0500 0.0520 0.0400 0.06200.0250 0.C800 0.0140 0.I000 0.0060 0.1200

0.0020 C.1400 -0, 0.1600

PRINT-OUT OF CYCLE NO.

-0 -0 -6 -0 -0 -0 -C -0 -0 -0

VOLT-I -2 -3

2100.0C00 C. O.

1400,0000 1200.0000 I000.0000

I00.0C00 5_.0000 -0.-0. -C. -0.

-4 -5 -6 -7

500.0000 2000.0000 1800.0000 1600.000080_.0000 600.0000 400.0000 200.0000-0, -0. -0. -0,

-0. -0. -0, -0.

BOUNDARY POINTS OF ELECTRODE SHAPE

1000

CO00

COO0

C000

CO00

2000ICO0

OCO0

10001000

I000

1230

0300

030023001000

12001200

1200

1200

12001200

1200

2 12-0.I00 0.200 I -0 -0

2 13-C.400-0. I -0 -0

2 14-C.650-0. 1 -0 -0

2 15-0. 800-0. 1 -0 -O2 16-G.950-0. I -0 -02 17-1.000-0o 1 -0 -0

3 IC-C. 150 0.300 I -0 -0

3 11-0.700-0. I -0 -04 9-(_.50C 0.700 I -0 -05 8-C.75e 0.800 1 -0 -06 7-0.900 0.800 1 -0 -0

7 l-C. -0. I -O -0

7 2-C. -0. I -0 -0

7 3-C. -0. I -0 -0

7 4-0, -I.000 1 -0 -0

7 6-(.,. 700 0.500 1 -0 -08 l-G. -0. I -0 -09 l-C. -0. I -0 -0

I0 l-G. -0. 7 -0 -O

I I I-G. -0. 9 -0 -012 1-O. -0. II -C -0

13 I-0. -0. 13 -0 -O14 l-G. -0. 2 -0 -0

48

Page 53: Microwave Laboratory - NASA

12001200CCO0co00CO"JOeGO0C(.}O0GO000000OCO00000

I000I000I(_00I0001000I0001_001200CO00GO00CGO00000

GO00GO00CO00cO0000001200120012001200

CO00CO00CCO0

CO00CO00(.bOO(_CO0eGO0I000IOCOI000I000I0001200CO00CO00CO00(.,OOOGOOCGO00CO00COO0120012001200

L2001200

1200

15 I-0. -0.16 I l.COC-O.

16 2 I.COC-O.16 3, I.O00-O.16 4 I.OOC-O,16 5 I.OOC-O.16 6 I.OOO-C,16 7 I.000-0.

16 8 I.000-0.16 9 I.000-0.16 lO I.000-0.17 11-0. 1.0001B ll-C. l. O0019 ll-C. 1.00020 ll-C. 1.000

21 ll-G. 1.O0022 II-_. 1.00023 11-0. 1.00024 l-l.OCO-O.24 2-I. 000-0.24 3-I.00C-0.24 4-I,000-0.24 5-1.GOC-O.24 6-1.O00-C.24 7-I. OOC-O.24 8-I. 000-0.24 g-I.OOC-O.24 IO-l. OOC-O,25 I-0. -0.

26 I-0. -0.27 l-O. -C.28 I I.OOC-O.28 2 1. 000-0.28 3 I. 00C-0.28 4 I.COC-O.28 5 I. OOG-O.28 6 I. 000-0.28 7 I. OOC-O.28 8 1. 000-0.28 g I. 000-0.29 IC-C. 1.00030 IC-C. 1.000

31 IO-C. 1.00032 I0-0. 1.00033 lO-O. 1.0003t, I-I.OOG-O.34 2-1.OOC-O.34 3-I.000-0,34 4-I.000-0.34 5-I.00_-0.34 6-1.C00-0.34 7-I. OOO-O.34 8-I. OOC-O.34 9-1.O00-O.

35 l-C. -0.36 I-0. -0.37 l-C. -0.38 I-G. -0.39 I-0. -0.40 l-C. -G.

2 -C -0

2 -o -02 -0 -02 -o -02 -0 -0

2 -O -02 -o -02 -o -02 -0 -02 -0 -02 -0 -02 -G -02 -0 -02 -C -0

2 -0 -02 -C -02 -0 -02 -_ -02 -0 -02 -0 -02 -0 -02 -0 -02 -0 -0

2 -0 -02 -O -02 -0 -02 -0 -02 -0 -02 -0 -02 -o -03 -0 -03 -0 -C3 -0 -03 -o -03 -0 -03 -o -0

3 -O -03 -G -03 -0 -03 -0 -03 -o -03 -_ -03 -0 -03 -o -03 -0 -03 -C -03 -0 -03 -i_ -0

3 -0 -03 -_ -03 -0 -03 -6 -O3 -0 -C3 -c -O3 -0 -03 -0 -03 -0 -03 -c -0

3 -C -03 -0 -0

- 49 -

Page 54: Microwave Laboratory - NASA

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

1200

0000

C000

CO00

0000

00000000

('000

0000CO00

COOO

CO00

0000

0000

0000

0_00

2000

I00

41

42

43444546

47484950515253545555555555555555555555555555555555

1LOWLOWLOWLOW

LOWLOWLOWLOWLOWLOWLOWLOWLOWLOWLOWLOWtOWLOWLOWLOWLOWLOWLOWLOWLOWLOWLOWLOW

I-_. -0.

1-C. -0.

I-G. -0.

I-G. -0.

I-C. -0.

I-G. -0.

l-O. -0.

l-G. -O.

I-0. -C.

l-C. -O.I-0. -0.

I-0. -0.

I-0. -_.l-C. -0.

I l._OC-C.

2 i. OOC-C.

3 I. 000-_.4 1.000-0.

5 I. 000-0.6 I. 000-0.

7 I. 000-0.

8 1.000-0.

9 I. 000-0.

I0 I. 000-0.

II 1.000-6.

12 i. C00-0.

13 i. 000-0,

14 I. 000-0,

15 I. OOG-O.16 1.C00-0.

17 1. 006-0.

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

H IGH

H IGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

3 -C -0

3 -0 -0

3 -0 -0

3 -0 -0

3 -0 -0

3 -0 -0

3 -0 -0

3 -u -0

3 -0 -0

3 -0 -03 -0 -0

3 -0 -0

3 -0 -03 -0 -0

4 -0 -0

4 -0 -04 -0 -0

4 -0 -0

4 -0 -0

4 -0 -0

4 -0 -04 -C -0

4 -0 -0

4 -0 -04 -C -04 -0 -0

4 -O -0

4 -C -0

4 -6 -04 -C -0

4 -0 I

2 0.00241877 0.99999999

4 0.5302_603 0.99999996

6 0.73457834 0.99999996

8 0,75031348 0,99999996

I0 0.75074767 0.9999999612 0.75144236 0.9997'3973

14 0.75244007 0.99916768

16 0.75377956 0.99830127

18 0.75550042 0.9971953520 0.75764639 0.99595493

22 0.76026683 0.99466971

24 0.70341622 0.9934040826 0.76715223 0.9921991028 0.77153189 0.99107761

30 0.77660624 0.99006657

32 0,78241381 0,98917856

34 0.78897274 0,9883780036 0.79627310 0.98765965

5_ 0,80426996 0°98701709

40 0.81287961 0.98'64%357

42 0.82197957 0.98593245

44 0.83141293 0.98547738

46 0.84106071 0.98507245

48 0.85055589 0,98471230

50 0.85989034 0.98439204

52 0.86884899 0.98410731

54 0.87730087 0.9838542056 0.88515513 0.98362923

29

2929

392392392392392

392392392

392392392392392392392

392392

392392

392

392

392392

392

392

154

188

664

7(?I

7_4

731

7_I

73k

731

731

731

731

731

731

748

748

748

748

748

748

748

748

748

748

748

7%8

748

748

20 -

Page 55: Microwave Laboratory - NASA

=.

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

LOW HIGH

XR =0 • 98144202END OF

58

6062646668

7072

74767880828486

889092949698

100

PROBLEM

0.892359880,898898810,904784950,910053220,91475304

0,918941640,922678980,926023890,929031450,931751580,934228380,93649992

0,938598530,940551280,942380530,942967800,943261380,943532330,94372708

0,94388814

0,944017050,94414704

0,983429290.983282370,9831fi969

0,983048680.982948140.982857120.982774670°982699980,982632330°982571050,98252056

0,982488800,98245867

0.982430120,982403140,982377710,982361380,982348680,982335700,982323820,98231713

0.98230983

392392

392392392392392392392392

392392392392392323323

306306289289289

748782782782782782782782

782782816816816816816816

850850850884884918

Page 56: Microwave Laboratory - NASA

l

0 0

--T--

|

o ,,t N

n

I

_ 0

_T

! 0

i | 0

_M

0

.,-I

_3

i1)

%0

4._

,rl

.- 52 -

Page 57: Microwave Laboratory - NASA

MAIN ONE -DATA INPUT MAINI

CSPACE-CHARGE SOLUTIUN.VLAD HAMZA MICROWAVE LAaORATORY.

COMMON URH_U_JT,RHtU_XT,KT_LINCtXRtNTOPtNUL_NLINtARCL_EQXt_QYt

l NPIT,XEP_NXEP,CU_LI_CI_AXtAY,VXtVY,DXtDELYtYEP,XQM_htKISwtETX_

2 ETY,PTY,PTX,NAJ,NTJ,VAtVB,VCt_C[IORtKCH,HSL,XLSL,EPS,NPUI,

3 IDEC,JUTtNSPA_,RXtNRLvKRL_KRHtVATtVBT,SIZEtKRTtRHUP,RHDUwNt

4 XCU,_qUT,MOtKCYtNSWP,ATXtATYtLINC2tNXFtNYF,NURL_NJOT,XEMITt

5 IXU,H_H,XLUW_XMPRtNEM_A_X_JDYtAXX,BXX_CXX,DXX_NOIM,VDtVIHp

6 VTHX,VTHYt YAXS_ NFUL'

DIMENSION KRT(Z),JT(4OOO),RH(400O),

l U(4OOO),XT(4OOO),KT(5),LINC(I50)_L[NC/(L50)tLINCZIISO),

2 _(180)tX(60),CU(40),VX(40)tVY(40),KCHI40)_AX(40)_AY(40),

3 ATXI_O),ATY(_O),ETX(_O),ETY(_OI,XCU(_O),KCY(IO),PTX(60)_

PTY(60)

DIMENSIUN ND(3)iKRTX(IO),KRTY(IO),WOLT(28)

200 MO=[

READ INPUT raPE 5_IO0_NH

DO I] J=I_NH

READ INPUT TAPE 5tlO?

13 WRITE UUTPUT TAPE b,IOl

READ INPUT TAPE 5,100,NXF,NYF_NEM,NTJ_NCIM,NRL_NUL,NURL_

INCOOR, IDEC, NFUL, NCO, KRHX, KRHY

JOY = _YF

WRITE OUTPUT TAPc b,108

I08 FORMAT(SHO NXF,SH NYF,SH NEM,SH NTJ,SH NDIM,SH NRL,5H NUL,

15H NI;RL,SHNCOOR,5H 10EC,SH i_FUL,SH NCU,SH KRHX_SH KRHY)

WRITb OUTPUT TAPE 6,_IO,NXF,NYF,NEM,NTJ,NDIM,NRL,NUI.,NURL,

I NCOOR_IDEC,NFUL_ NCG, KRHX_ KRHY

READ INPUT [APE 5,3GO,IXU,NSPAN,NPOTX,NPUIY_ YAXS

WRITE OUTPUT TAPE o,I09

log FURMAT(SHO IXO,SHNSPAN_SHNPOTX_SHNPOTY, 8H YAXS)

WRITE Ot_TPUT TAPE 6,311_IXU_NSPAN,NPUTX,NPOTY, YAX$

READ INPUT rAPE 5,_CO,NRTN,(KRTX(K)_KRTY(K),K=I,NRTI_)

wRITE OUTPUT TAPE b,IIO

IIO FORMAT(SHOKRTN_SH KRTX,SH KRTY,SH KRTX,SH KRTY_SH KRTX,SH KRTY)

WRITE OUTPUT [_PE b,310_NRTN,(KRIX(K),KRTY(K)_K=I,NRTN)

READ INPUT TAPE 5_I02,VAI,VBT_SIZE,VA_VB_VC

WRITE OUTPUT TAPE 6,111

Ill FURMAT(_X_HVAT,TX3HVBT,bX#HSIZE_IX2HVA_SX2HVBeSX2HVC)

WRITE UUTPUT TAPE 6,30Z,VAT,VBT_SIZE_VA,VR,VC

READ INPUT TAPt 5_I02,HGH_XLOW,HSL,XLSL_VD

_RIIE OUTPUT TAPE b_II2

IL2 FORMAT(4X_HHGH,6X_HXLOW,bX3HHSL_TX_HXLSL,TX2HVD)

WRITE OUTPUT TAPE 6,302,HGH_XLOW,HSL,XLSL,VD

READ INPUT IAPE 5_IOZ,AXX_BXX_CXX_DXX_XR

_RITE OUTPUT TAPE 6,113

II_ EURMAT(4X3NAXX,TX3HBXX_?X3HCXX,TX3HDXX_TX2HXR)

WRITE OUTPUT TAPE b_O2,AXX_BXX_CXX_UXXtXR

READ INPUT TaPE 5_Q,RO,EPS.XEMIT_H

_RITE OUTPUT TAPE 6_114

I14 FURMAT(IX2HRO,IOXIHEPSILON_gXSHXEMIT,6XI3HMESH SIZE - H)

WRITE OUTPUT TAPE 6, 308, RO, EPS_ XEMII,H

READ INPUT TAPE 5,105_YEP,XQM,ATDM,VTH,VTHX_VTHY

WRITE OUTPUT TAPE 6,115

I15 FORMAT(I2XhHFPSNUT,6X3HXQM,bX_HATOM,bX3HVTH_TX4HVTHX_6X4HVTHY)

WRITE UUTPUT TAPE b, EO5,YEP_XQM,ATOM,VTH_VTHX_VTHY

- 53 -

Page 58: Microwave Laboratory - NASA

NAIN ONE -OATA INPUT

IOOZ

GO

ZOO5 DO

READ INPUT TAPE 511021(ATX{J)tATY(J)vJ=ltN EN)

WR[TE OUTPUT TAPE 6,119

II9 FORHAT(_[HO CATHODE COORDINATES}

wRITE OUTPUT TAPE 6_302t(ATXIJ)tATY{J)tJ=It NEH)

READ INPUT TAPE 5tlO0_(KCY(J)tJ=ltlO)WRITE OUTPUT TAPE 6t120

120 FOKMAI|33HO PRINT-OUT OF CYCLE NO.)

WRITE UUTPUT TAPE 6tlOO,(KCY(JltJ=lBlO|READ INPUT TAPE 5tIO4t{WOLT(NN)wNN=[,28)

WRITE OUTPUT TAPE 6tll61[6 FORNAT(SHO VnLT-If7X2H-2t8X2H-3t8X2H-4tSX2H-St8XZH-6tSXZH-1)

WRITE OUTPUT TAPE 6t304t{WOLT(NN)wNN=It28)

HH=H*-2HT=.fieH

H2=2.*HXMPR=.St(FLOATFINXFeNYF))e*2/FLOATF(NXF**2÷NYF**2)

XQN=XQM/ATOMRX = H/YEP

J=l

IF (NDIN-2) 10011[001t2005

lOOI DO [002 I=I_NYFIF (l-l) lO06wlOO6wlOO7

100b XT(J+3| = 0.0XTIJ+5) = -0.5

GO TO 1008lOO/ IF (I-NYF) lO03tlOOSt1003

[005 XT(J+3) = -0.5

xT(J+5) = O.OGO TO 1008

1003 XTIJ+3) = -0.25XTIJ_5) = -0.25

1008 XT(J} = 0.25XTlJ+l) = 0.25

XT(J+2) = 0.25

XT(J+6) = l.OJ = J+6

TO 20[l

20|0 [=[_NYFRP= FLOATF(NYF-I|*H+RU

IF (i-I) IO09,lO09tIOIO

IOO9 XTIJ+3) = 0.0XTIJ+5} = -2.OeRP

GU TO [0[I

I010 IF (RP) 2009wZOO8t2009

2009 XTIJ+5) = -(RP-HT}XT|J+3| = -(RP+HT)

lOt[ XT[J) = l.O

XT(J*[| = RP

Xr(J+2) = RPXTiJ+4) = _.O*RP

GO TO 2010

2008 XTiJ) = .125XT(J+l|=.[25* H

XTIJ+2|=.I25*H

XT(J+3)=-.50 * HXTIJ*6)=.75 tH

MAIN1

E25

- 54 -

Page 59: Microwave Laboratory - NASA

MAIN ONE -DATA INPUT MAINI

XT(J+5)=O.

2010 J = J + 6

2011NDD = I

NSS=2

NTRIP=O

NPONT=NYF

KRF=(KRHX-I)*NPUNT÷KRHY

NTOP=NPONT*NXF

KRT(I)=NRTN

I=2

DO 2 K=LpNRTN

KRI(1)=(KRIX(K)-I)mNPONI+KRTY(K)

2 l=l÷l

KTtlI=-NPONT

KTI2)=NPONI

KT(3)=-I

KT(4)=0

KT(S}=÷I

WRITE OUTPUT TAPE 6,117II7 FORMAT(4IHO BOUNDARY POINTS OF ELECTRODE SHAPE )

CALL PLOT (O.0pVC,-3)

00 2020 NX=I,NXF

DO 2020 NY=I,NYF

IF (NTRIP) 2030,204012030

2040 READ INPUT TAPE 5tZ035,NSttNDII),I=It3),NXC_NYC,HEWtHNS,NVOLI,

1 NVOLTI_NCHECK2035 FORMAT (IH 4II,21412F6.3,215114)

WRIIE OUTPUt TAPE 6,2035,NS,(ND(I)tI=I,3),NXCtNYC_HEWtHNStNVOLT_

[ NVOLTI,NCHECK

IF (HNS) 203It 2032t 203I

2031 XXX=FLOATF(NXC-L)*HeVD

yyy=-IFLOATF(NYC-I)-HNS)eHeVD

CALL SYMBOL (XXXtYYY,O.O7t I2tO.0,I)

2032 IF (HEW) 2033, 2034w 2033

2033 XXX=(FLOATFINXC-1)÷HEW)eHeVD

YYY=-FLOATF(NYC-I)*H*VD

CALL SYMBOL (XXX_YYYtO.Olt 12_0.0,1)

GO TO 20362034 IF (HNS) 2036, 2037t 2036

2037 XXX=FLOATF{NXC-I)*H*VO

YYY=-FL_ATF(NYC-[)*H*VD

CALL SYMBOL (XXXtYYY,O.OZ_ [2_0.0v1|

2036 NTRIP = [

KC = NPONTe(NXC-I)+NYC

2030 K= NPONT*(NX-L|+NY

IF (K-KC) 2060_2050,2060

2060 IF (NSS-1) 2070_2010_2080

2070 IF (NY-NYF) 2071,207212071

207_ NSS = 2

JIIK) = I + 6*(NY-I)

VOLT[= FLOATF((NXF-NX)/NXFI*VA

GO TO 2310

2071 JT(K) = I + 6*(NY-I)

GO TO 2020

2080 JT(K) = 9999

IF (NX-NCO) 2081,2020_2020

llA

577

578

579

$80S8I

Page 60: Microwave Laboratory - NASA

MAIN ONE -U_TA INPUT

Z08[ [F (U(KI) 2020t2084,2020

2084 U(K) = VAGO TU 2020

2_50 NTRIP = 0

NSS=NS

VOLT = WULTINVOLT)

VOLT[ = WOLT(NVULI[)HEW = HEWeH

HNS=HNS*H

IF (ND(3)) 2052,2052.205_2052 VOLT[ =VOLT

2053 HN = H

HS = H

HE = H

HW = H

KE = K÷NPONT

KW = K-NPONT

KN=K-[

KS=K+[

JT(KI=J

[F (HEN) 2090_2200_2IOU

2090 H_ = -tlEW

U(KW) = VOLT

GO TU 22002[00 HE = HEW

U(KE) = VOLT

2200 [F (HNS) 22[0t2230t22202210 HS = - HNS

UIKS) = VOLTI

GU TU 22_0

Z220 HN = HNS

U(KN) = VOLT[

2230 IF (NU[M-2) [00_[004_2239

[00_ XTIJI = ((HN+HS)*(HE+HW))/([6.tHH)

XT(J÷ll = (HN÷HS)/(_oehW)

Xf(J÷2) = (HN÷HS)/(8.eHE)

XT(J÷3) = -(HE+HW)/(8°JHN)

XT(J÷5) = - (HE÷HW|/(8.eHS)

XT(J+4) = XT(J+[)+XT(J+2)-XTIJ÷3)-XTIJ+5)

GO TO 2233

223q RP= (FLOATF(NPONT-NY))-H÷RO

[F(RPI223II2232t22J[

223[ XT(J)= (HE+HW)*(HN+HS)/(4o*HH)

XTIJ÷II=((HN+HS)/(Z**HW)|*(KPe((HN-HS)/_.))XT(J+2)=HW*XT(J+[)/HE

XT(J÷3)=-((HW÷HE)/(2.eHN))=(RP+(HN/2.)|

XT(J+5)=-((HW+HE)/(2.*HS))e(RP-(HS/2.))

XT(J+_I=XT(J+[)÷XT(J÷2I-XT(J÷3I-XT(J+5)

GO T[) 2233

223/ XT(J|= (HE+HWI_(HN/|[6.eHH) )

XT(J+[}=(HN/(8°aHW) )*_

XT(J÷2) = H* HN/(8°*HE|

XT(J÷_| = - H*(HE+HH)/(4°*HN)

XT(J÷4)=(HN/8.* ((HW+HE)/(HWeHE))÷(HE÷HW)/(_.iHN) )eHXT(J+5)=-O.

2233 UU 2300 1=1_2

MAINt

L34

135A

I_IA

141

- 56

Page 61: Microwave Laboratory - NASA

MAIN ONE -UATA INPUT

2240

2250

2260

2270

2300

23LI

2310

2330

2340

2350

2320

2020

40004DOt

502

II8

24

6

II

12

IO

14

15

NDA= NDII)+[

GO TO {2300,2240,2250,2260t2270),NDA

XT(J+I) = XT(J+I)+ XT(J+2)XT(J+2) = O.O

GO TO 2300

XTIJ+5) = XT(J+5) +XT(J+3)

XTIJ+3) = 0.0GO TO 2300

XTIJ+2) =XTIJ+2) +XTIJ+I)

XTIJ+I) =0.0

GO TU 2300

XTIJ+3) =XT(J+3) +xrtJ+S)XTIJ+SI =0.0

CONTINUE

IF (ND(3)) 2310_2310,231L

XT(J) = O.2bXT(J+I) = O.

XT(J+2) = XLSL

XTIJ+3) = O.

XT(J+4) = I.

XT(J+5) = XLSL - 1.

IF (NSS-I) 2320p2330,2340LINCt(NDD)=K

VUP = VOLTI

XTIJ+3I =-XTIJ+3)

GO TO 2320

LINC2INDD)=K

LINC (NDD)= 2*XMODF(NX,2) -I

VOOWN = VOLT[

KB=LINCIINDD)

DO 2350 KK=KBtKUIKK)= VUP +(VDOWN-VUP)oFLOATFIKK-KB)IFLOATFIK-KB)

XTIJ+5)= -XTIJ+5)

NDD=NDD+I

J=J+6

CONTINUE

NLIN=NDD-I

IF {NCHECK - I) 4000,502,4000

WRITE OUTPUT TAPE 6,400!

FORMAT (24HOERROR IN BOUNDARY POINT)

CALL EXIT

WRITE OUTPUT TAPE 6,118

FORMATI2OX2OHTHIS ENDS DATA CARDS)

DO 6 J=I,NTOP

RHIJ)=O.

NPOT=(NPOTX-I}*NPONT+NPOTY

IFINCOOR) IO, lO,ll

DO 12 J=I,NEM

ETX(J)=ATX(J)

ETYIJI=ATY(J)

GO TO 15

DO 14 J=l,40

ETXIJ)=O.

ETY(J)=O.

CONTINUE

KRL=NRL

MAINI

- 57 -

Page 62: Microwave Laboratory - NASA

MAIN ONE -I)ATA INPUT

C UCAL SGLVES IHF MATRIX EQUATION

25 CALL UCAL

C MN[RI CALCULATES THE RHS AND TRAJECTORIES

26 CALL MNTR[

G(_ Ttl 200

FORMAT (4F[_.8}

100 FURM_T(E4[5)

[01 FORMAT(6[5)

102 F[JRMATIOFIO._)[03 FURMAT([3[5|

I04 FORMATITFIO.4)

]05 FORMAT(IOXbE[0.5)

tO0 FURMAT(3FLO. S)

[07 PDRMATI72H

L

300 FORMATI4[5, F|0.6)

302 FORMAT(|H oF|0.4)

304 FURMATI[H rFlO.4l

30_ F(}RMAT(LH 4FLS.B}

$LO FURMAT(LH L_[S)

3LL FURMAT(LH 415t PLO.6)

END(l_OtOlOvOtO_t_O_OtU_OtO_OtOtOI

- 58 -

Page 63: Microwave Laboratory - NASA

ARC CALCULATES THE BEGINNING TRAJECTORY COORDINATES

SUBROUTINE ARC

CSPACE-CHARGE

I

15

20

3O

I0

3

2

8

100

102

103

SOLUTION.VLAD HAMZA MICROWAVE LABORATORY.

COMMON URH,UB,JT_RHtUtXT,KT,LINC,XRtNTOP,NUL,NLIN,ARCLeEQXtEQYt

NPITtXEP,NXEPtCUtLINCItAXtAY,VXtVYwDXiDELYtYEP,XQMtHtKISW,ETXt

ETY,PTY,PTXtNAJ,NTJ,VAtVB,VCtNCOORtKCH,HSLtXLSLtEPStNPOTt

IDECtJOTtNSPAN,RXtNRLtKRL,KRH_VAT,VBT,SIZEtKRTFRHUP,RHDOWN,

XCUiNOT,MOtKCY,NSWP,ATXtATYtLINCZtNXFtNYFt_URLtNJOT,XEMITt

IXO,HGHeXLOWtXMPR,NEMtA,X,JDYwAXXtBXXtCXXtDXX,NDIMtVDtVTHt

VTHX,VTHY, YAXSt NFUL

DIMENSION KRT[2),JT(4OOO|,RH(400O),

U(4OOOItXT(4OOO),KT(S;tLINC(15OItLINCI(150),LINC2(15OI,

A(IBO}_X(60)tCU{40)_VX(40)_VY(40)_KCH[40)tAX(40),AY[6O)_

ATX(40),ATY(40),ETX(4OI,ETY(_O)tXCU(60)tKCY(IO)tPTX|60),

PTY|6O)

SUM=O.

DO I J=2,NEM

SUM=SUM+SQRTF[(ATX[J)-ATX[J-I))**2÷[ATY[J)-ATY|J-I))**2)

IF [NFUL) 15,15,20

ARCL = FLOATF|NTJ) - 0.5

GO TO 30

ARCL = FLOATF(NTJ] - I.O

ARCL=SUM/ARCL

ETX[I)=ATX(1)

ETY(I)=ATY(1)

HYP=ARCL

K=I

J=l

IF(K-NIJ)3,6,6

K=K+I

XDIF=ATX(J)-ATX(J+I)

YDIF=ATY{J÷I)-ATY(J)

SA=SQRTF|XDIFJ*2÷YDIF**2)

IF(HYP-SA) 4,4,5

CSA=YDIF/SA

SNA=XDIF/SA

ETX(K)=ATX(J)-HYP*SNA

ETY|K)=ATY(J)+HYP*CSA

HYP=ARCL÷HYP

GO TO I0

HYP: HYP-SA

J=J+l

GO TO 2

K=K÷I

NN=NTJ + I

ETX|K)=ATX(NEM)

ETY(K)=ATY[NEM)

WRITE OUTPUT TAPE 6,103,SUM,ARCL

WRITE OUTPUT TAPE 6,100,(J,ATXiJ),ATY(J)_J=I,NEM)

WRITE OUTPUT TAPE 6,102,(J,ETX(J),ETY[J),J=I,NN|

CONTINUE

FORMAT (I2HOXtY-EMITTER /(7(IH ,12,2H [FS.3, IH,FS.),2H) )))

FORMAT (16HOX,Y-BEGIN TRAJ. I(?[IH ,12,2H (FS.3,1HtFS.3t2H) l))

FORMAT(22HOARC,DELTA ARC LENGTH 2FI0.5I

RETURN

END|I,O,O_O,O,O,I,O,O,O,O,O,OtO,O)

- _9 -

Page 64: Microwave Laboratory - NASA

CALR CALCULArEs RH$

SUBROUTINE CALR(KE,KED)

CSPACE-CHARGE SnLUTION. VLAD iIAMZA MICROWAVE LABORAT3RY.

COMMON URH_UR,JT,RHtUyXTtKTtLINC,XR,NTOPtNULtNLIN_ARCLtEQXtEQY_

I NPITtXEPtNXEP,CU,LINCI,AXtAYtVXtVYtDX,DELY,YEP_XQMtHtKISWtETX,

2 ETY,PTY,PTX,NAJ,NTJ,VAtVB,VC,NCOOR,KCHtHSL,XLSL,EPS,NPOT,

3 IDEC,JDTtNSPAN,RXfNRL_KRLfKRHrVAT_VBT_SIZEfKRT_RHUPtRHDOWN_

4 XCU,NnT,MO,KCY,NSWP,ATX,ATY,LINC2,NXF_NYF,NURLtNJOT_XEMITw

5 IXO,HGH,XLOWtXMPR,NEM_A_X_JDY,AXXtBXXtCXXtDXXtNDIMtVD_VTHt

6 VTHX,VTHY, YAXS_ NFUL

DIMENSION KRT(2),JT(4OOO),RII(4000),

I U(4000),XT(_OOO),KT(5)_LINC(ISOIvLINCI(L50)_LINC2(150)t

2 A(L_O)vX(_O)_CU(40)_VX(40),VY{4OItKCH(40)tAX{_O)_AY(40}t

3 ATX(_O)_ATY(40)tETX(40)_ETY(40),XCU(40)tKCY(IO)pPTX(60)_

4 PTY(60)

JEX=KE

JD=KEDIF (NFUL) 500, 500, 60

500 XEP = FLOATF(NYF-I) • HGO T_ TO

60 XEP = YA_S

70 DO 33 JJ=L,NAJ

J=JJ

CIF CU(J)=O.,NO CnNTR|BUTION

IF(CU(J)) 33,33,1

1 IF(AY(J)+I.) 2,2,5

2 IF(AX(1)-BXX) 3_#,_

3 AY(J)=XLDW

GO I_ 5

AY(J)=HGH

CIF CU(NAJ),LAST TUBE

5 IF(J-NAJIq,6,_

IF(AY(JJ)) 7,8,8

7 AY(JJ) = - AY(JJ)

8 HT=(XEP-AY(JJ) )

RTI=HT

XH=AY(JJ)

RT2=O.

YL=XH÷HT

JX=AY(JJ}/DELY

NA=JX÷JEX

NB=JD

TB1 = VY(JJ)/VX(JJ)

DE = ATANF (TBL)

DE = CUSF(DE)

WA = VX(JJ)

WB=WA

GO TO 2_

9 HT=AY(J÷I)-AY(J)

IF(HT}I2,12_I3

12 HT=-HT

XH=AY(J*I)

RTI=XEP-XH

CJX NORMALIZES Y-DISTANCES IN THE CELL

JX=XH/DELY

NB=AY(J)IDELY +I.

- GO -

Page 65: Microwave Laboratory - NASA

CALR CALCULATES RHS

HA = VXIJ÷l)

W8 = VX(J)

TBI=VYIJ+I)/VXIJ+I)

TB2=VY(J)/VX(J)

TBA = .5*(TBI+TB2)

DE = ATANFITBA)

DE = CQSF(DE)

GO TO 14

13 XH=AYIJ)

RTI=XEP-XH

CJX NORMALIZES Y-DISTANCES

JX=XH/DELY

WA = VXIJ)

WB= VX(J+I)

TBI=VY(J+I)IVX(J+I)

TBZ=VY(J)/VX(J)

TBA = .5_(TBI+TB2)

DE = ATANFITBA)

DE = COSF(DE)

NB=AY(J+I)/DELY +1,

14 NA=JX_JEX

NB=NB+JEX

YL=XH+HT

RT2=XEP-YL

23 DO 32 K=NA,NB

XA=K-JEX

25 XUD=(XA-.5)*DELY

26 XX=XUD+DELY

YU=MAXIF(XUO,XH)

YD=MINIF(XX,YL)

IF(YD-YU)32,32,27

27 XA=.5*(YD+YU)

W=WA+(XA-XH)*{W"-WA)/HT

CCALCULAIION OF RHS

IF(NOIM-2) 31,31,50

50 RH(K)=RH(K)+(YD-YU)*2.*(XEP-XA)*CU(JJ)/((HTeWeDE)e(RTI+RT2))

60 Tn 32

]I RH(K)=RH(K)+iYD-YU)*CU(JJ)/(HT*W *DE)

_2 CONTINUE

33 CONTINUE

_8 RETURN

END(I,I,O,O,O,0,1,O,O,0,0,O,O,O,0)

- 61 -

Page 66: Microwave Laboratory - NASA

CORRCT CONDITIONALLY ENDS TRAJECTORIES

SUBROUTINE CORRCT

CSPACE-CHARGE SOLUTION. VLADCOMMON

I2

3

4

5

6

HAMZA MICROWAVE LABORATORY.

URH,UB,JT,RHtU,XT,KT,LINC,XR,NTOPtNULtNLIN,ARCL,EQXtEQY,

NPIT,XEP,NXEP,CUtLINCI,AXeAY,VX,VY,DX,DELY,YEP,XQMtH,KISW, ETX,

ETY,PTY,PTX,NAJ,NTJ,VA,VB,VC,NCOOR,KCH,HSL,XLSL,EPSeNPOT,

IDEC,JOT,NSPAN,RX,NRLwKRL,KRH_VAT,VBT,SIZE,KRT,RHUP,RHDOWN,

XCU,NOT,MO,KCY,NSWP,ATX,ATY,LINC2,NXF,NYF,NURL,NJOT,XEMIT,

IXO,HGH,XLOW,XMPR,NEM,AtX,JDY,AXXtBXXtCXX,DXX,NOIM,VD, VTHt

VTHX,VTHY

DIMENSION KRT(2),JT(4OOO],RH(6000),

U(4COO),XT(4000),KT(5),LINC(150),LINCI[ISO),LINC2|150|,

A(180),X(60),CU(40),VX(40),VY(40),KCH(40),AX{60|,AY(60),

ATX(40),ATY(40),ETX(40),ETY(40),XCU(40),KCY(IO),PTX(60),

1

2

3

4 PTY(60)XLOWI = XLOW

XLOW2 = HGH

IF (AX(1) - AXX} II,12,1

I IF (AX(I! - BXX) 12,2,2

2 IF (AX[I) - CXX) 13,13,1113 XLOWI = XLOW2

12 DO IC J=ItNTJ

IF (AY(J) +I.) 10,10,5

5 IF [AY{J) - XLOWI) 6,10,I0C CHECK ON THE NEXT TRAJECTORY

6 IF (AY(J÷I) +1.) 9,9,44 IF (AY(J_I) - XLOWI) 9,9,33 AYD = AY(J+I) - AY(J)

AYDS = AY(J+I) - XLOWI

AYDL = AYD - AYDS

CU(J) = CU(J) • AYDS/AYD

VX(J) = (VX(J)*AYDL ÷ VX(J÷I)*AYDS)IAYD

VY(J) = (VY(J)•AYDL ÷ VY(J÷II*AYDS)IAYD

C CHECK ON PREVIOUS TRAJECTORY (CASE 4)

IF (J-l) 14,14,7

7 IF [AY[J-I) - XLOWI) 14,8,88 AYDS : AY(J-I) - XLOWI

AYD = XABSF (AY(J-I) - AY(J))

AYDL = AYD - AYDS

CU(J-I) = CU{J-I)•AYDS/AYD

14 AY(J) = XLOWI

GO TO I0

9 CUfJ) = O.AY{J) = -1.

I0 CONTINUE

11 RETURN

END(I,I,O,O,O,O,I,O,O,O,O,O,O,O,O)

- 62 -

Page 67: Microwave Laboratory - NASA

EQLINE SOLVES FOR THE EQU[POTENTIALS

SUBROUTINE EQLINECSPACE-CHARGE

89

28IO

II12

L3

14

15

16

L7

18

lg

COMMON

I

2

3

5

6

SOLUTION. VLAD HAMZA MICROWAVE LABORATORY.

URH,UB,JT,RH,U,XT,KT,LINC,XR,NTOP,NUL,NL IN,ARCL,EQX, EQY,

NPI T, XE P,NXEP,CU, LI NCI, AX, AY,VXtVY, DX, DELYt YEP tXQM, H,K I SW,ETX,

E TY,PTY,PTX, NAJ, NTJ,VA, VB,VC, NCOOR,KCH, HSLtXLSL, EPStNPOT,

IDEC, JOT,NSPAN, RX tNRL,KRL,KRH,VAT, VBT, S IZE,KRT tRHUP,RHDOWN,

XCUtNOT,MO, KCY, NSWP,ATX, ATY, LINC2, NXF, NYF, NURL, N JOT, XEM IT,I XO,HGH, XLOW, XMPR, NEM, At X_ JOY, AXXt BXX, CXX, DXX, NDIM,VD, VTH,

VTHX,VTHY

DIMENSION KRT(2)yJT(4OOO),RH(_O00),

U(4GOO),XT(4OOO),KT(5),LINC(ZSO),LINCL[ISO),LINC2[ 150),

A (180) , X(60) ,CU (40) ,VX(40) ,VY (40), KCH(4a), AX (40),AY[ 60),

ATX(40),ATY(40) ,ETX(40),ETY(40),XCU(40),KCY(IO),PTX(60),

PTY[60)

IFfSIZE) 1,27,1

POTEN=VAT

WRITE OUTPUT TAPE 6,101

JE= NYF + L

JD = NYF - I

JC= NXF-I

DX=I

DX=DX*HBX=C.

JED=JE+JDL=IAX=O.

DO 22 JJ=ltJC

KS=I

AAY:O.

DO 19 K=JE,JED

IF(KS) 8,8,7

M=IJ=K-NYFGO TO q

J=K-I

IF ( JT(K)-g999+JT[J)-gg99) 28,18,18

IF((U(KI-POTEN)*(U(J)-POTEN)) 10,10,18

DIF=ABSF (U(J)-U{K) )

IF(DIF) 13,13,11

IF(M) 12,14,12

VX(L) =ABSF (U (J)-POTEN)/DIF*DX+AXVYIL)=AAY

GO TO 15

VX[L) =AX÷DX

VY(L):AAYGO TO 15

VX(t) =AX+DX

VY(L)= ABSF(U(J)-POTEN)/DIF*DX+AAY

IF(L-b) 17,16,16

WRITE OUTPUT TAPE 6,100,POTEN,(VX(I),VY([),I=Ie6]L=O

L=L+I

AAY=AAY+DX

CONTINUE

IF(KS) 21,21,20

- 63 -

Page 68: Microwave Laboratory - NASA

EQLINE SOLVES FOR THE EQUIPOTENTIALS

20 KS=CM=OJE=JE+IGO TCI 5

21 JE=JE+JDJED=JE+JORX=BX+DX_X=AX+OX

22 CONTI NUEIFIL-2) 25,23,23

23 DO 24 J=L,6VXlJI=O.

24. VYIJ|--G.WRITE OUTPUT TAPE DtlOOwPOTENt[VXIIItVY[[|t[=I* D|

25 POTEN=POTEN-S| ZEIF [Pr]TEN-VBT ) 27,20,26

26 AX=AX-BXGO TO 2

27 RETURN

IO0 FORMAT (8H EQUIPOTF8.1,2H 6( IH|F8.5, IHtF8.5, [H] ) |

IOI FORMAT(4IHO X,Y-COORDINATE OF EQUIPOTENTIAL LINES.

END( I, I,O,C,O,O, I,O,O,O,O,O,O,O,O )

64-

Page 69: Microwave Laboratory - NASA

MATRIX IS USED FOR THE FORWARD AND BACK SUBSTITUTION

SUBROUTINE MATRIXiN,A,xj

CSPACE-CHARGE

IO

11

12

COMMON

£

23

5

6

SOLUTION.VLAD HAMZA MICROWAVE LABORATORY.

URH_UB,JT,RHeU_XT,KT,LINC,XR,NTOP,NUL,NLIN,ARCL,EQX,EQY,

NPIT,XEP,NXEP,CU,LINCI,AX,AYtVX,VYiDX,DELYtYEP,XQMtH,KISW,ETX,

ETY,PTY,PTX,NAJtNTJ,VA,VBiVC,NCOORtKCH,HSL,XLSLtEPS,NPOT,

IDEC,JOTtNSPAN,RXtNRL,KRL,KRH,VAT,VBT,SIZEtKRTtRHUP,RHDOWN,XLU,NOT,MO,KCY,NSWP,ATXiATY,LINC2,NXFtNYF,NURL,NJOT,XEMIT,

IXO,HGH,XLOW,XMPR,NEM,AtXtJDYtAXX,BXX,CXX,DXX,NDIM,VDtVTH,

VTHX,VTHY

DIMENSION KRT(2),JT(4OOOI,RH[4000),U(_OOOI,XT(4OOOI,KT(SI,LINC(I50),LINCI(I5OI,LINC2(£50),

A(180)tX[6OI_CU(60)_VX[_O)tVY(40)tKCH(60)tAX[_O)_AY(40)t

ATX(40),ATY(40),ETX(40),ETYK60),XCU[40),KCY(IO),PTX(60),PTY[60)

M=3*N-2

A(M+I)=O.

A(2)=A|2)/A

X:XIA

IFfN-I) I2,12,9K=2

DO IO J=4_M,3

A(J)=A(J)-A(J-I)oA(J-2)

A(J+I)=A(J÷I)/A(J)

X(K)=(X(K)-A(J-I)*X(K-1))/A(J)

K=K+IK=K-1

00 II J=I,M,3

NB=M-J-I

K=K-I

X[K)=X[K)-A(NB)_X(K+I)

RETURN

END(I,I,O,O,O,O,I,O,O,O,O,O,O,O,O)

- 6_

Page 70: Microwave Laboratory - NASA

MNTRI CALCULATES TRAJECTORIES AND RHS (FOR SOLID BEAM)

SUBROUIIN_ MNTRI

CSPACE-CHARGE S_LUTION.VLAD HAMZA MICROWAVE LABORATORY.

COMMnN URH,UB,JTtRH,U_XTtKTtLINC_XRtNTOPtNUL,NLINtARCL,EQX_EQYt

i NPITtXEPtNXEPtCU,LINCI,AX_AY,VX,VYtDXtDELYtYEP_XQMtH,KISW,ETX_

2 ETY,PTYtPTXtNAJtNTJ,VA,VB,VC,NCOOR_KCH_HSLtXLSLtEPStNPOTt

3 IDEC,JOTtNSPAN,RX,NRL,KRL,KRH,VATtVBT,SIZEtKRT,RHUPiRHDOWNt

4 XCU,NOT,Mn,KCYtNSWP,ATXwATY,LINC2,NXF,NYF,_URL,NJOTIXEMITv

5 IXD,HGH,XLOW,XMPR,NEM,A,X,JDY,AXXtBXX,CXX,DXX_NDIMtVD, VTH,

6 VTHX,VTHY, YAXS, NFUL

DIMENSION KRT(2),JT(4OOO),RH(4000),

I U(4000),XT(4000),KT(5),LINC(150),LINCI(150)tLINC2(150)t

2 A(ISOI,X(6OI,CU(4OI,VXI40),VY(4OI,KCH(4C),AX(40)tAY(_O),

3 ATX(_O),ATY(_O),ETX(40),ETY(40),XCU(40),KCYIIOI,PTX(bO),

4 PTY(60)

DIMENSION EXX(40),E1Y(40)

DELY=H

DX=DELY

301 IWRL=NRL-KRL÷XABSF(MO)

00 I J:l,_O

Vy(J)=O.

VX(J)=.O00I

AY(J)=O.

XCUIJI=O.

CU(J)=O,CKCH=REFLECTION PARAMETER (ADDS CNE EVERYTIME TRAJECTORY REFLECTS)

I KCH(J)=-I

DQ 35 J=l,60

PTX(J)=O.

35 PTY[J)=O.

IF (KCY(IWRL)) 903,903,902

902 CALL PLOT (ATX(1)*VD,-ATY(L)tVDt3)

DO gOI J=2,NEM

gol CALL PLOT (ATX(JIwVD,-ATY(JIeVD,2)

903 NAJ:NTJ

IF(NCODR)2,2,3

CARC CALCULATES THE EMITTER COORDINATES

2 CALL ARC

3 DO 909 J=IvNTJ

EIX(J) = ETXIJ)

909 ElY(J) = ETY(J)

NCOOR = 1

CPEQ CALCULATES THE EQUIPOTENTIAL

CALL PEQ

AX(l) = O.

JCX=NXF-2

JEX=NYF÷I

IF (NFUL) 50, 50, 60

50 XEP = FLOATF(NYF-1) • 0X

GO TO ?0

60 XEP = YAXS

70 DO 22 JN=I,JCX

600 JD=JEX÷NYF-I

AX(1) = AX(1) + OX

LINE FOR CU CALCULATION

CTRCU CALCULATES THE CURRENT IN THE" TUBES AND CALLS TRAJ

CALL TRCUIJEXtJD)

66-

Page 71: Microwave Laboratory - NASA

• t

MNTRI CALCULATES TRAJECTORIES AND RHS (FOR SOLID BEAMI

IT CONTINUE

IF (KCYIIWRL)) £gtLgtI8

18 WRITE OUTPUT TAPE 6,101,AX(II_(K,AY(KItVXIK),VY{KItK=ItNTJ)

XP = AXII)

DO 906 J=I_NTJ

IF IAY(J)) 906t9061905

905 YP = AY(J)

CALL PLOT (EIX(JI*VCt-EIY(J)*VDt3)

CALL PLOT (XP*VDt-YP*VDt2)

EIX(J)=AXll)

EIY(J) = AY(J)

906 CONTINUE

CCALR CALCULATES THE RHS

lg CALL CALR (JEXtJD)22 JEX=JEX+NYF

21

CUCAL

IF (KCYIIWRL)| 907,907t24

24 IF (IXn) 90Bt908_20

20 CALL TROUT

908 XMAX = FLOATF(NXF-I)*H*VD + 3,0

S = XMAX - 3.0

XMIN = ATXINEM)tVD

YMAX = - XEP*VO

SDX = I.O/VD

CALL PLOT (XMAX_ O.Ot -3)

DO 910 J=ltNTJ

EIX(J) = ETXIJ)910 EIYIJ) = ETY(J)

907 SUM = 0.0

DO 10 J=ItNAJ

10 SUM=SUM÷XCU(J)

305 WRITE OUTPUT TAPE 6tlO2t|J_XCU|J)tJ=ltNAJ)

WRITE OUTPUT TAPE 6wIO3tSUM

304 IFINURLI303_303,302

302 IF (NRL-KRL) 306_307_306

307 WW = SQRTF(2.*XQM*(VA-VB))

RHM = 2.*SUM/WW

306 DO 4 J=I_NTOP

RHIJ) = .SeRHIJ|

IF (RHM-RHIJ)) 5t6_4

5 RH(J) = RHM4 CONTINUE

IF (KRL) 8tTt87 MO=O

KRL=I

JJ=NRL

KCY(JJ}= 777

WRITE OUTPUT TAPE 6_100GO TO 9

8 WRITE OUTPUT TAPE 6_I04_IWRL

9 RT=RH(KRH)-RX

WRITE OUTPUT TAPE 6,IOStRTeU{KRH)

KRL=KRL-I

SOLVES THE MATRIX EQUATION

CALL UCALGO TO 301

303 RETURN

- 6T -

Page 72: Microwave Laboratory - NASA

MNTRI CALCULATES TRAJECTORIES AND RHS (FOR SOLIC BEAM}

100 FORMAT(25H1 L A S T C Y C L E )

10[ FORMATI3X3H X=FI0.St5H NO, t7XLHYtZ6X2HVXtZ6X2HVYI(16X[Se3E15,6))

102 FORMAT(27HOEMITTER CURRENT IN TUBES /(7(IXI2tE16.6)))

103 FORMATI25H TOTAL EMITTER CURRENT E16.6)

104 FORMAT(LBHI C Y C L E NO. 12)

105 FORMAT(LIHO RHTEST= Fg.St6X7HUTEST= FLL.6)

END(1,0tO,O_OtOtltOtO_OtO_OtO_OtO)

68 -

Page 73: Microwave Laboratory - NASA

PEQ CALCULATES THE EQUIPnTENTIAL LINE FOR THE CJR_ENT DENSITY

SUBRDUTINE PEQCSPACE-CHARGE S_LUTION.VLAD

COMMON JRMvUBtJTtRHtU

I NPIT,XEP_NXEP,CU,L

2 ETY,PTY,PTX,NAJ,NT

3 [DEC,JOT,NSPA_tR×t

4 XCU_NOTyMOtKCY,NSW

5 IXD,_$MtXLOW,XMPRt6 VTHXtVTHY

DIMENSInN KRT(2)tJ1 U(_bO_I,XT(_OOO)tK

2 A(I_D),X(_O),CU(403 ATX(40)tATY(40)_ET4 PTY(SC,)

C NPOT=POINT THRU WIIICH TH

POTEN=U (NPOT)

DX=H

L=O

24 AAX=_.

JE= NYF ÷ I

DO 28 JJ=ItNSPAN

AAY=O,

JED=JE÷NYF-L

DO 27 K=JEtJEDJ = K - NYF

HAMZA MICROWAVE LABORATORY.

tXT,KT,LINC,XR,NTOP,NUL,_LIN_ARCLtEQXtEOY,

INCI,AX,AY,VX,VY,DX,DELYtYEP_XQMtH_KISWtETX,

J,VA,VH_VC_NCOOR,KCHtHSL_XLSLtEPS_NPOT_NRL,KRLyKRH,VAT,VBT_SIZEtKRT_RHUP_RHDOWN_

PtATX,ATY,LINC2,_XFtNYFtWURL_NJOTtXEMITt

NEM,A,X,JDYtAXXtBXX,CXK,DXXtNDIM_VD_VTH_

T{_OOI,RH(40]]),

T(5),LINC(15D)tLINCI(150)tLINC2IISO)t

),VX(40),VY(_D),KCH(40)t_X(40)tAY(40)t

X(_O)IETY(40),XCU(_),KCY(ID),PTX(60)_

E EQUIPOTENTIAL LINE IS )ETERMINED

IF((U(K)-POTEN)*(U(J)-POTEN)) 21,21,27

21 DIF:ABSFIU(J)-U(K))

L=L÷I

PTY(L)=AAY

IF(DIF) 22_2b,22

22 PTXIL)=ABSF(U(J)-PQTEN)/DIF*DX+AAX

GO TO 2726 PTX(L)=AAX+DX

27 AAY=AAY÷DX

AAX=AAX÷DX28 JE = JE + NYF

D_ kl J=I,LLL=L-J*I

TT=O,

JJ=LL

DO _D I=I,LL

IF(TT-PTY(1)) 39,39,_39 TT=PTY(I)

NN=I_0 CONTINUE

PP=PTY(JJ)

PTY(JJ)=TTPTY(NN)=PPPP=PTX(JJ)

PTX(JJ)=PTXINN)PTXINN)=PP

41 CONTINUE

DO #k J=2,LIFKPTY(J)-PTYIJ-I)) _,_2,_

_2 NN=L-I

- 69 -

Page 74: Microwave Laboratory - NASA

PEQ CALCULATES THE EQUIPOTENTIAL LINE FOR THE CJR_ENT DENSITY

DO 43 JJ=JvNN

PTX(JJ)=PTX(JJ+I)

43 PTY(JJ)=PTYIJJ+I)

44 CONTINUE

EOX=PTX(L-I}

EQY=PTY(L-I)

DO 210 KJ=I,LIF (PTYIKJ)-PTY(KJ+I)) 210t211_210

2II PM = MINIF(PTX(KJ)tPTX(KJ÷I))

PTX(KJ) = PM

PTX(KJ÷I) = PM

210 CONTINUE70 WRITE DLITPUT TAPE 6tZOO,(J,PTX(J),PTY(J)tJ=ltL}

60 RETURN100 FORMAT(IBHDX,Y-EQUIPOTENTIAL /t(7(1H tI2_2H (FS,3tZH_FS,3t2H)

END(ltltO_O_O_OtZ_OtOtO_O_OtO_OtO)

)})

- 70 -

Page 75: Microwave Laboratory - NASA

TRAJ CALCULATES THE TRAJECTORY COORDINATES AND VELOCITIES

SUBROUTINE TRAJ(M,KE=KED)

CSPACE-CHARGE SOLUTION.VLAD HAMZA MICROWAVE LABORATORY.

COMMON URH,UBtJTtRHtU_XTtKT,LINC_XRINTOP,NULtNLINtARCLtEQXtEQY_

1 NPITtXEPtNXEPtCUtLINCllAXtAY_VX_VYtDX_DELY,YEPtXQMtH_KISW_ETXB

2 ETYtPTYtPTXtNAJ,NTJ_VAtVBtVCtNCOOR_KCHtHSLIXLSL_EPStNPOTt

3 IDECtJOT_NSPANtRXtNRLIKRLtKRH_VAT,VBTtSIZEtKRTtRHUP_RHDOWNt

4 XCU_NOT_MOtKCYtNSWP,ATX_ATY_LINC2_NXFtNYFINURLtNJOTIXEMIT,

5 IXO,HGH,XLOW,XMPR_NEM,AtX,JDYtAXX,BXX,CXXtDXX,NDIMIVD_VTHt

6 VTHXtVTHY

DIMENSION KRT(2)tJTI4OOO)eRH(4000),

1 U(40001_XT{4000)IKT(5)tL1NCI150),LINC1(150)_LINC2(150)_

2 A(180)_X(60)_CU(40)tVX(40)tVY(40)tKCH(40)tAX(40),AY(40)t

3 ATX(40)tATY(40)IETX(40)tETY(40)_XCU(40)_KCY[IO)tPTX[60)_

4 PTY(60)JE=KE

JED=KED

K=M

XEP = FLOATF(NYF-II*H

AD=AY(K)/DXJX=AD

XA=JX

XA=AD-XA

JP=JX+JEJS = 10

JQ = JP-NYF

UL=(1.-XA)*U(JQ)÷XA-U(JQ÷I)

UK={I.-XA)iU(JP)÷XA*U(JP+I)

C CALCULATION OF LEFTHAND DERIVATIVE

IF(XA-.5} Ltl,5

1 IF(JX) 2,2,3

2 YLA=2.*XA*(U(JQ÷I)-U(JQ))GO TO 4

YLA=(XA+.5)*U(JQ+II-2.*XA*U(JQ)+(XA-.5)*U(JQ-I)3

4 DY=VY(K)/VX(K)JOX=JX

GO TO 7

5 JX=JX÷l

JQ=JQ+IXA=XA-lo

IF (JX-NYF ÷I) 3_6,6

6 YLA=2.*XAe(U(JQ-1)-U(JQ))GO TO 4

C CALCULATION OF RIGHTHAND DERIVATIVE

7 XB=XA+DY

IF(DY) 9_9_108 JX=JX-1

XB=I.+XB

9 IF(XB+.5) 8,12_12

11 XB=XB-1.JX=JX÷l

10 IF(XB-.5) 12,_2_11

12 IF(JX) 14,17,16

13 JX=JX+2e(1-NYF)

14 JX=-JX

XB=-XB

300019

300020

300021

300022

300023

300024

300025

300026

300029

300030

300031

300032

300034

300035

300037

300038

300039

300040300041

300042

300044

300045

300046

300047

300048

300049

300050

300051

300052

300053

300054

300055

300057

300058

- T1 -

Page 76: Microwave Laboratory - NASA

TRAJ CALCULATES THE TRAJECTORY COORDINATES AND VELOCITIES

15 JP=JE+JXYRA=(XB+.5)*U(JP+I)-2**XB*U(JP) + (XB-.5)*U(JP-I)

IF(XB) 19,20,20

16 IF (JX-NYF +1) 30,18,13

30 IF(K-l) 32,32,1532 IF(AX(1)-ETX(1)-2.eH) 36,34,15

34 XB=ABSF(XB)

17 JP=JE + JX

YRA=2.*XB*(U(JP+I)-UIJP))

XB:ABSF(XB)

GO TO 20

18 JP=JE+JX

YRA=2.*XB*(U(JP-1)-U(JP))

19 JP=JP-I

XB=I.-ABSF(XB)

20 JQ = JP-NYF

USN=(1.-XB)mU(JQ)+XB'U(JQ+I)

UQN=(1.-XB)*U(JP)+XB*U(JP+I)

DUX=°5*(UK-UL-USN+UQN)

DUXX = VX(K)**2-2.*XQM*DUX

IF (DUXX) 35,36,36

35 VXB=- SQRTF(-DUXX)

GO TO 37

36 VXB = SQRTF(DUXX)

37 DT = ABSF(2,*DXI|VXB+VX{K)))

JS=JS-1

C yA=y ACCELERATIONXD = .5*XQMIDX

YA=XDw(YLA+YRA)

C DY=DELTA Y INCREMENT

DY=DT*(VY(K)-.5*YA*DT)/DX

JX=JOX

IF(JS) 21,219 7

21 VX(K)=VXBIF (VX(_)) 38,38,39

3B CU(K) = O.

AY(K) = -1°

GO TO 26

39 VY(K)=VY(K)-YAIDTAY(K)=AY(K)+DY_DX

C REFLECTION OF TRAJECTORIES IF OUTSIDE BOUNDS

IF(AY(K))22,23_23

22 AY(K)=-AY(K)GO TO 25

23 IF(AY(K)-XEP) 26,26,24

26 AY(K)=XEP+XEP-AY(K)

IF(VY(K))27,27t25

25 VY(K)=-VY(K)

27 KCH(K)=KCH(K)+I

26 CONTINUERETURN

END[1,0,0,C,O,O,I,O,O,O,O,0,O,O,O)

300059

300061

300064

300065

300066300067

300068

300069300070

300072

300073

300074

300077300078

300079

300080

300081

300082

300083

300064

300085

300086

300067

300088

300089

300090

300091

300092

300093

300094300095

300096300097

- 72 -

Page 77: Microwave Laboratory - NASA

TRCU INIIIALIZES TRAJ. A_D CALCULATES CUR.DENSITIES

SUBROUTINE TRCU(KE_KED)

CSPACE-CHARGE SOLUTION.VLAD HAMZA MICROWAVE LABORATORY.

COMMON URH,UB,JT,RHtUtXTtKTtLINC,XR,NTOPtNULtNLINvARCL_EQXtEQYt

1 NPIT,XEPtNXEPtCU,LINCI,AX,AY,VX,VY,DXtDELYtYEPtXQMtH_KISWtETX,

2 ETYtPTY,PTXvNAJtNTJ,VA,VB,VCtNCOOR_KCH,HSL,XLSL,EPS,NPOT_

3 IDEC,JnT,NSPAN,RXtNRL_KRLtKRH,VAT_VBTtSIZE_KRT,RHUP,RHDOWN_

4 XCU,NOT,MOtKCY,NSWP,ATX,ATY,LINC2,NXF,NYF_NURL,NJOT,XEMIT,

S IXO,HGH_XLOW,XMPRtNEMtAtX,JDY,AXX,BXX,CXXtDXX_NDIM_VD_VTH_

6 VTHX_VTHY, YAXSt NFUL

DIMENSION KRT[Z)_JT[4OOOItRH(4000),

I UI6OOO)tXT(4OOO),KT(5)tLINC(LSO),LINCI[150)tLINC2(LSO)t

2 AILBO)tX(60),CU(6OI,VX(40)tVY(6OItKCH(40)tAX(4O)tAY[4O)t

3 ATX(40),ATY(60)_ETX(40)tETY(60),XCU(40),KCY(IO),PTX(60),

4 PTYI60)

DIMENSION US(2)tUR[2)

JEX=KE

JD=KED

DO L6 K=L_NTJ

IF (NFUL) 50, 50, bO

60 XEP = YAXS

50 LL=O

KK=K

CCHECK ON TERMINATED TRAJECTORIES

IFIAY(K)+I.) 16,16,18

CCHECK ON UNINITIALIZED TRAJECTORIES

18 IF(KCHIKI)20,15,15

CCHECK IF TRAJECTORY CAN BE iNITIALIZED

20 IF (AX(1)-ETX(KK)-.Ofi*H) I6,16,2

2 KK=KK+I

IF (IDEC ) 800,80L,801

801 TB=(XEP-ETY(KK-I))/(XEMIT+ETX[KK-I))

DE = ATANF(TB)

TB = - TB

XX= ETY(KK-I)-TB*ETXIKK-1)

JJ=lGO TO 62

800 TB=(XEP-ETY(KK-LI)I(XEMIT-ETXIKK-L))

DE = ATANF(TB)

XX= ETY(KK-1)-TB*ETX(KK-I)

JDYI= ETYIKK-L)/OX +1.

DO 777 JJB=I,JDY

IF (PTY(JJB)) 774,776,775

775 JJC = PTY(JJBIIDX +1,

IF [JJC-JDYI-1) 777,777t779

779 JJ=JJB

GO TO 776

776 JJ= JJB-1776 JJB = JOY

777 CONTINUE

4 IF (PTY(JJ+I)) 62,6,42

62 PTT = PTX(JJ)-PTX(JJ+I)

PTT=ABSFIPTT)

IFIPTT-.OO01) 43,43,6663 CPX = PTX(JJ)

CPY = ETY(KK-I) + TB*CPX

- 73 -

Page 78: Microwave Laboratory - NASA

TRCU INITIALIZES TRAJ. AND CALCULATES CUR.DENSITIES

GO TO _5

44 TA = -DX/(PTX(JJ)-PTX(JJ+I))YY=PTY(JJI-TA*PTX(JJ)

CPX=(YY-XX}/(Tfi-TA)

CPY=YY+TAeCPX

45 IFIIDECI 5,7,7

5 IF ((Cpy-pTYlJj)).(Cpy-pTy(JJ+l)l} 8,8,6

6 JJ = JJ-1

GO TO 4

7 IFIPTY(JJ+II-CPY) 3,3,8

3 JJ = JJ+[

GO TO 4

8 LL=LL÷I

IF {LL-2Ig,IO,IO

CTRAJECTORIES INITIALIZED9 AYIKK-II=ETY{KK-1I+TB*(AX(I)-ETX(KK-I))

XA=AY(KK-I)/DX

JX=XAJP=JEX÷JX

AD=JXXA=XA-AD

UP=(1.-XA|wU(JPI÷XA=U(JP+I)

PHI = 1.570795 - DE

IF (VA-UP) gOO,gOllg01

900 V = - SQRTF(2.*XC_*(UP-VA))VXIKK-1) = V*COSF(DE) + VTH*COSF(PH|)

IF (VXIKK-I)) 904,g04_903

g04 AY(KK-[) = -1.

CU(K) = Oo

KCH(K) = 0GO FO 16

901 V=SQRTF(2.*XQM'(VA-UP))

VXIKK-I) = V*COSF(DE| + VTH*COSF(PHI)

903 IF (IDEC) 850,851,851

851 VYIKK-I) = - V*SINF[DE) - VTHeS[NFIPH[)

GO Tfl q02

850 VY(KK-I}=V*SINF(DE) - VTH*SINF(PHI)

902 TB = VY{KK-I)/VXIKK-I)

AY(K) = ETY{KK-I) + TB*IAX(1)-ETX(KK-II)

10 US(LL)=CPX

UR(LL)=CPY

IF(K-NTJ)12,11,12

CSPECIAL FnR LAST CURRENT DENSITY

II LL=2

US(2)=EQX

UR(2]=X_P

PPX=.5m(ETXIKK-II+ETX(KK) )

PX=.5 .(USI1)+US[2))

ppy=.5*(ETY(KK-I)+ETY(KK))

RHO = XEP - FTY(KK-I)

PY=.5 *(URII)+UR[2))

GO TO 31

12 IF(LL-212,14,14

14 PPX = .5*(ETX(KK-2I+ETXIKK-I))

PX=.SeIUS(1)+US(2))

PPY = .5*(ETY(KK-2)+ETYIKK-I))

-,74-

Page 79: Microwave Laboratory - NASA

TRCU INITIALIZES TRAJ, A_D CALCULATES CUR.DENSITIES

RHO=XEP-PPY

PY=.5*(UR(1)÷UR(2))

31 DEX=SQRTF((PX-PPX)eO2+(PY-PPY)ee2|

IF ([DEC) 6031606t604

603 RA = DEX/(XEMIT-ETXINTJ+II)

IF (NDIM-2I 63It63[t602

602 CR= 1.÷I,6*RA ÷ 2=06-(RA*-2)

GO TO 600

631 CR= 1. +.8*RA +.66*(RAe*2)

GO TO 600

604 RA = DEX/(XEMIT+ETX(NTJ÷Z))

IF (NDIM-2) bO5y605t606

606 CR = 1.-L.6*RA ÷ 2.6"(RA*'2l

GO TO 600

605 CR = [.-.SBRA÷.66t(RA**2)600 POTEN=U(NPOT)

DELU=VA-POTENXK=4°/g. eYEPeSQRTF(2,_XQMmDELU)*DELU

YCU=XK/(CRoDEX**2)

CCALCULATION OF CURRENT DENSITY

53 IF (NDIM-2) 54_54_55

54 IF (K-NTJ) 56_57_57

56 CU(K)= YCUeARCLXCU(K) = CU|K)

GO TO 52

57 CU|K)= ,5*ARCL*YCU

XCUIK) = CU(K}

GO TO 52

55 IF (K-NTJ) ITt19t1919 CU(K) = YCU*RHO**2

XCU(K) = CU(K)*3.1416

GO TO 52

17 CU(K) = ARCLeRHO*YCU

XCU(K| = CU(KI * 6,2832

52 IF (AX(I)-ETX(K)-,5aH} 5Iy51_58

58 KCH(K| = O

5L WRITE OUTPUT TAPE 6tlOOtUS(I)_US(2I_UR(IIIUR(2)_DEX_YCUt

I KCH(K|_K

GO TO 16

CTRAJ CALCULATES THE TRAJECTORIES AFTER THEY HAVE BEEN INITIALIZED

15 CALL TRAJ(K_JEXtJD)

16 CONTINUE

CALL CORRCT

RETURN

100 FORMAT(4H XI=E8.3v_H X2=E8.3t4H YZ=E8.3_6H Y2=E8.3t4H DX=E8.3_

IkH CD=ELO.4,2IS)

- ?_ -

Page 80: Microwave Laboratory - NASA

TROUT PRINTS nUT THE RHS

SUBROUTINF TROUT

CSPACE-CHARGE SOLUTION. VLAD

10

13

14

7

2

6

I

8

3

IOO

I01I04

COMMON

I

2

3

4

5

6

HAMZA MICROWAVE LABORATORY.

URH TUB, JT, RH,UtXT, KT,L INC, XR,NTOP, NULt NL IN• ARCL_EQX, EOYt

NPI T, XE P, NXE P ,CU, L INCI tAX• AY,VX •VY IOX •DELY, YEP tXQM, H, K ISW, ETX,

ETY,PTY, PTX, _.AJ,NT J, VA,VB_VC tNCOORt KCH• HSLt XLSL• EPSt NPOT•

I DEC, JOT,NSPAN, RX tNRL, KRLt KRHt VAT _VBT •SIZE• KRT •RHUP,RHDOWN•

XCU,NOT,MO, KCY, NSWP tATX tATY, L INC2,NXFt NYFt NURL, NJOT,XEMITt

I XO,HGH _XLOW,XMPR,NEM_A,X, JDY_AXX, BXX_ CXX_ DXX•NDIMtVD• VTHt

VTHXt VTHY

DIMENSION KRT{2),JT[4OOO)tRH(_OO0),

U(4000) ,XT (4000) ,KT(5) ,LINC(L50) ,LINCI( LSOI,LINC2(Z50) •

A[IBO)tX(60),CU(40) tVX(40) _VY(40)tKCH(60)tAX(40)tAYI60)t

ATX(40) ,ATY(40),ETX(40)IETY(40),XCU(40),KCY(LO)tPTX{60)t

PTY(60)DIMENSION NTY(SI,NTX|ISO)

IF[MO) I0,3,10

K=IWRITE OUTPUT

NN=I

DO I N=I,NXFNTX(NN)=N

DO _ J=I,NYFNTY|K)=J

I=[N-I)*NYF+J

PTY{K)=RH(I)*RX

K=K+I

IF (J-NYF) 13,14,14

IF (K-Q) 4•2,2

DO 7 JJ=K,8PTY(JJ)=0.ONTY{JJ)=0WRITE OUTPUT TAPE

K=I

CONTINUE

NN=NN+ICONTINUE

RETURN

TAPE 6,101

6 ,IO0,NTX[NN) , (NTY(L) ,L= It8 )• (PTY|L) ,L"I• 8)

WRITE OUTPUT TAPE 6,106GO TO I0

FORMAT (IH I3,3X816,8FIO.3)FORMAT(AqHO RHS OF MATRIX EQUATION

FORMATI25HORH-FIELD OF LAST CYCLE

END[I_i,OtO_O•O,l,O,OtO,OtO,OtO_O)

- SPACE-CHARGE DENSITY)

- 76 -

Page 81: Microwave Laboratory - NASA

TWOUT PRINTS OUT THE POTENTIAL FIELD

SUBROIITINE TWOUT

CSPACE-CHARGE SOLUTION. VLAD

IO

13

l_

7

2

6

l

8

3

100lOI104

CnNMON

i

2

3

4

5

6

HAMZA MICROWAVE LABORATORY.

URH,U_,JT,RH,UtXT,KT,LINC,XR,NTOP,NUL,NLIN,ARCL,EQXtEQYt

NPIT,XEP,NXEP,CU,LINCI,AX,AYtVX,VY,DX,DELY,YEPtXQMtHtKISW,ETX,

ETY,PTY,PTX,NAJ,NTJ,VA,VB,VC,NCOOR,KCH,HSL,XLSLtEPStNPOT,IDEC,JOT,NSPAN,RX,NRL,KRL_KRH,VAT,VBT,SIZE,KRTtRHUP,RHDOWNt

XCU,NOT,MO,KCY,NSWP,ATX,ATY,LINC2,NXF,NYFtNURL_NJOT_XEMITt

IXO_HGH,XLOWtXMPRtNEMwAtXmJDYtAXX_BXXtCXXtDXXvNDIM_VD_VTHt

VTHX,VTHY

DIMENSION KRT(2),JT{4GOO),RH(6000),

U(4OCO),XT(4OOO),KT{5),LINC(150),LINCl(150),LINC2(XSO),

A(IBO)tX{60),CU(40),VX(40),VY(40)_KCH(40)_AX{40)pAY|60),

ATX(40)t_TY(40),ETX(40)tETY(40)tXCU(40),KCY|IO)_PTX{60)t

PTY(60)

DIMENSION NTYIB),NTXII50)

IF(MO) I0,3,10

K=I

WRITE OUTPUT TAPE

NN=I

DO [ N=I,NXF

NTX(NN)=N

DO 4 J=ItNYF

NTYIK)=JI=(N-I)*NYF÷J

PTYIK)=U(1)

K=K+I

IF (J-NYF) I3,I4vI4

IF (K-g) 4t2,2

DO 7 JJ=K_BPTY(JJ)=O.O

NTY(JJ)=O

WRITE OUTPUT TAPE

K=ICONTINUE

NN=NN+I

CONTINUE

RETURN

6,101

6,100,NTX(NN),INTYILItL=I,8I,IPTYILItL=ItS)

WRITE OUTPUT TAPE 6,10%

NURL=-7777

GO TO" I0

FORMAT (IH 13,3XBI4,8FIO.3)

FORMAT(25HO U-FIELD OF THIS CYCLE.

FORMAT(25HOU-FIELD OF LAST CYCLE.

ENDII,I,OtO,O,O,I,O,O_O,O,O,O,O,OI

I

)

- TT -

Page 82: Microwave Laboratory - NASA

UCAL SOLVES THE MATRIX EQUATION

SUBROUTINE UCAL

CSPACE-CHARGE SOLUTION,VLAD HAMZA MICROWAVE LABORATORY°

COMMON URHtUB_JT_RHIUwXT,KT,LINCtXR,NTOP,NULgNLINtARCL_EQX_EQYI

I NPITtXEP,NXEP,CUtLINCItAX,AY,VXtVYtDXtDELYtYEPtXQM,H,KISW,ETX,2 ETY,PTY,PTX,NAJ_NTJtVAtVB,VC,NCOOR_KCH,HSLtXLSLtEPS,NPOT_

3 IDEC,JOT_NSPAN,RX_NRLwKRLwKRHIVAT,VBT,SIZEtKRT_RHUPtRHDOWN_

4 XCU,NOTtMO,KCY,NSWP,ATXtATY,LINC2tNXFtNYFINURLtNJOTiXEMITt5 IXOvHGHIXLOWtXMPRtNEMtA,XtJDY,AXXtBXX,CXXtDXXtNDIM,VD, VTHt

6 VTHX,VTHYDIMENSION KRT(Z|tJT(4OOO|_RH(4000),

1 U(40001tXT(4000),KT(5)tLINC(L50),LINCIII50),LINC2(L50)p

2 A(I80),X(60)eCU(40),VX(40)_VY(40)tKCH(40),AXI40),AY(40)t

3 ATX(40),ATY(40),ETX(4C),ETY(40),XCU(40),KCY(IO),PTX(60),

4 PTY(6G)

IF (NRL-KRLI 46t6t4b

6 WRIT_ OUTPUT TAPE 6,101

46 XW:I.

DO 30 NLU=I,NUL

NEZ=NLUXEP=O.XM=.25*XR*w2

NOD=I

38 00 29 NL=I,NLIN

IF(LINC(NL))29v29,33

33 KB=LINCIINL)

KC=LINC2(NL)

JV=I

JU=IDO 28 K=KBIKCSUM=O

JZ=JTIK)27 DO 22 JY=3,5

JX=JZ+JYAIJU)=XT(JX)

22 JU=JU+I

DO 26 JY=I_5JX=JZ+JY

IF(KT(JY))3&_26,3434 IF(XT(JX)) 26,26,2525 JW=K÷KTIJY)

SUM=SUM÷XT(JX)*U(JW)26 CONTINUE

X(JV)=SUM÷XT(JZ)*RH(K)*RXJV=JV+L

28 CONTINUEN=KC-KB+L

C MATRIX IS USED F_R THE FORWARD AND BACK SUBSTITUTION

CALL MATRIX (N,A{2),X)JV=l

DO 24 K=KBtKC

23 DIF=XIJV)-U(K)JV=JV+L

C MATRIX EQUATIONUIK)=XW*DIF÷U(K)

DIF=ABSF(DIF)

- ?8 -

Page 83: Microwave Laboratory - NASA

UCAL SOLVES THE MATRIX EQUATION

IF(DIF-XEP) 24,24,2121 XEP=DIF

NXEP=K

24 CONTINUE

29 LINC(NL)=-LINC (NL)

IF(XW-I.) 40,31,40

40 XW=l. / ( I.-XM* XW )

Gfl TO 41

31 XW=I./(I.-2.*XM)

41 IF(NOD) 37,37,3636 NOD--O

GO TO 38

37 XCON=XEP*XMPR

IF(XCON-EPS) 42,42,3030 CONTI NUE42 KNUT=KRT(I )

J=2

DO _,3 K=I,KNUT

JN=KRT (J)

IF(U(JN)-VA) 43,49,4943 J=J+l

GO TO 474g WRITE OUTPUT

WRITE OUTPUT

CALL EXIT

47 IF (NRL-KRL } 2,1,2

1 NUL=NURL2 I WRL=NRL-KRL+XABSF (MO)

TAPE 6,102

TAPE 6,100,JN,U(JN|

WRITE OUTPUT TAPE 6,104,NEZ,NXEP,XCON,EPS

IF(KCY(IWRL)) 4,4,3C TWOUT PRINTS OUT THE POTENTIAL FIELD

3 CALL TWOUT

C EQLINE CALCULATES THE EQUIPOTENTIALS

CALL FQLINE

4 RETURN

IO0 FORMAT{ISHO PO|NT NO.= IS,SXIOHVOLTAGE = F15.5)

IOl FORMAT(BQHI NO SPACE-CHARGE - LAPLACE SOLUTION )

102 FORMAT(31HOI CANNOT GET OUT OF THE LOOP )

104 FORMAT(BAHOITERATION NO.IPOINT/ERROR/EPSILDN I3, I5,2F15,6)END(I,I,O,O,O,O,I,O,O,O,O,O,O,O,O)

- 79 -

Page 84: Microwave Laboratory - NASA

p

o H

O r--l q_ ,_

_ _oo

4._ b9 "_ (1)

_o_

_ _ .__ o0_

E.a 0 4_ _

@..o

o

f _

o

00 4._

0

0

0

or-t

o

o

!

c_

d

©,--4r_

80 -

Page 85: Microwave Laboratory - NASA

MAIN ONE -DATA INPUT MAINX

CSPAC

C

C

E-CHARGE SOLUTION.VLAD HAMZA MICROWAVE LABORATORY.

THIS SUBROUTINE IS GOOD FOR XR-CALCULATION ONLY

XR IS THE LARGEST EIGENVALUE OF THE MATRIX

COMMON URH,UB,JT,RHtU,XT,KT,LINC,XR,NTOP,NUL,NLIN,ARCL,EQX,EQY,

I NPITIXEP_NXEPtCUtLINCItAXtAYtVXIVYtDXtDELY_YEPtXQMtHtKISW_ETX_

2 ETY,PTY,PTX,NAJ,NTJ,VA,VB,VC,NCOOR,KCH,HSL,XLSL,EPS,NPOT,

3 IDEC,JOT,NSPAN,RX,NRLtKRL,KRH,VAT,VBTtSIZE,KRTtRHUP,RHDOWNt

4 XCU,NOT,MO,KCY,NSWP,ATX,ATY,LINC2,NXF,NYF,NURL,NJOT,XEMITt

5 IXO,HGH,XLOW_XMPRtNEMtAtX_JDY_AXX_BXX_CXXtDXX_NDIM_VDtVTHt

6 VTHX,VTHY, YAXS, NFUL

DIMENSION KRT(2)tJT(_OOO)_RH(4OOO)t

1 U(400O),XT(4000)tKT(5),L[NC(150)_LINCI(150),LINC2(£50),

2 A(IBO)_X(6C)tCU(40)tVXI40),VY(40)_KCH(40)tAX(40)tAY(40)t

3 ATX(4OI_ATY(40),ETXI40)pETY(40)tXCU(40)_KCY(IO)tPTX(60)t

4 PTY(6_)

DIMENSION ND(3)yKRTX(lO)_KRTY(IO)tWOLT(28)200 MO=I

READ INPUT TAPE 5,10O,NH

DO 13 J=ItNH

READ INPUT TAPE 5,I07

I3 WRITE OUTPUT TAPE 6,107

READ INPUT TAPE 5tIOOtNXFtNYF,NEM,NTJtNDIM_NRL_NULtNURL_

£NCOOR, IDEC, NFUL, NCO, KRHX, KRHY

JOY = NYF

WRITE OUTPUT TAPE 6,108

IC8 FORMAT(SHO NXF,SH NYF_SH NEM,SH NTJ,SH NDIM_SH NRLtSH NULt

15H NURL_SHNCOORtSH IDECtSH NFULtSH NCOtSH KRHX_SH KRHY)

WRITE OUTPUT TAPE 6t310,NXF_NYF_NEM,NTJ,NDIM,NRLtNULtNURL_

I NCODR,IDEC,NFUL_ NCO, KRHX, KRHY

READ INPUT TAPE 5,3GO,IXO,NSPAN,NPOTX,NPOTY, YAXS

WRITE OUTPUT TAPE 6,109

109 FORMAT(SHO IXO,5HNSPAN,5HNPOTXpSHNPOTY, 8H YAXS)

WRITE OUTPUT TAPE 6_311,1XO_NSPAN,NPOTX,NPOTY, YAXS

READ INPUT TAPE 5,100,NRTN,(KRTX(K),KRTY(K),K:ItNRTN)

WRITE" OUTPUT TAPE 6,110

II0 FORMAT(SHOKRTN,SH KRTX,SH KRTY,SH KRTX,SH KRTY,SH KRTX,SH KRTY)

WRITE OUTPUT TAPE 6,310,NRTN,{KRTX(K)_KRTY(K)tK=I_NRTN)

READ INPUT TAPE 5,102,VAT,VBT,SIZE,VA,VB,VC

WRITE OUTPUT TAPE 6t111

11I FORMAT(4X3HVAT,TX3HVBT,6X4HSIZE,TX2HVA,BX2HVB_BX2HVC)

WRITE OUTPUT TAPE 6_302_VAT,VBT_SIZE,VA,VB_VC

READ INPUT TAPE 5_I02,HGH,XLOW,HSL_XLSL,VD

WRITE OUTPUT TAPE 6,112

II2 FORMAT(_X3HHGH,6X_HXLOW,6X3HHSL,TX_HXLSL,TX2HVD)

WRITE OUTPUT TAPE 6_302,HGH_XLOW,HSL,XLSL_VD

READ INPUT TAPE 5_IG2,AXX,BXX,CXX,DXX,XR

WRITE OUTPUT TAPE 6,113

113 FORMAT(_X3HAXX,TX3HBXX,TX3HCXX,TX3HDXXtTX2HXR)

WRITE OUTPUT TAPE 6,302,AXX_BXX,CXX_DXX_XR

READ INPUT TAPE 5,8_RO,EPS,XEMIT_H

WRITE OUTPUT TAPE 6_I14

II_ FORMAT(7X2HRO,IOX?HEPSILON_gXSHXEMIT,6XI3HMESH SIZE - H)

WRITE OUTPUT TAPE 6, 308, ROy EPS_ XEMIT_H

READ INPUT TAPE 5_I05,YEP,XQM,ATOM,VTH,VTHX,VTHY

WRITE OUTPUT TAPE 6,115

- 81 -

Page 86: Microwave Laboratory - NASA

MAIN ONE -DATA INPUT MAINI

115 FORMAT{12X6HEPSNOT_6X3HXQMw6X4HATOM,6X3HVTH,TX4HVTHXt6X4HVTHY)

WRITE OUTPUT TAPE 6_I05_YEPtXQM_ATOM,VTHtVTHXIVTHY

READ INPUT TAPE 5_I02,|ATX[J)tATY|J),J=It NEM)

WRITE OUTPUT TAPE 6,119

119 FORMAT(3IHO CATHODE COORDINATES)

WRITE OUTPUT TAPE 6,302,(ATX(J),ATY(J),J=I, NEM)

READ INPUT TAPE 5,100,(KCY[J),J=I,IO]

WRITE OUTPUT TAPE 6,120

120 FORMAT(33HC PRINT-OUT OF CYCLE NO.)

WRITE OUTPUT TAPE 6,100,(KCYIJ),J=I,IO)

READ INPUT TAPE 5,104t(WOLT(NN]tNN=I_28)

WRITE OUTPUT TAPE 61116

116 FORMAT(BHO VOLT-I,TX2H-2,BX2H-3_8X2H-4,BX2H-5tBX2H-6_BX2H-?)

WRITE OUTPUT TAPE 6,304,(WOLT{NN)_NN=l,28)

HH=H**2

HT=.SmH

H2=2.*H

XMPR=.Si[FLOATF{NXFtNYF)),*2/FLOATFINXFtt2+NYF*e2)

XQM=XQM/ATOM

RX = H/YEP

J=l

IF (NDIM-2) I001_1001,2005

I001 DO 1002 I=I,NYF

IF {I-I] I006,I006ti007

I006 XT(J+3) = 0.0

XT(J+5) = -0.5

GO TO 1008

I007 IF (I-NYF] 1003,1005,1003

1005 XT[J+3) = -0.5

Xr(J+5) = 0.0

GO TO I008

1003 XT(J÷3) = -0.25

XT{J+5) = -0.25

1008 XT(J) = 0.25J

XT(J+I) = 0.25

XT{J+2) = 0.25

XT(J+4) = I.O

J = J+6

TO 2011

2010 I=I,NYF

RP= FLOATF(NYF-I)*H+RO

IC02

GO

2005 00

1009

I010

200g

I011

2008

IF (l-I) 1009,1009,1010

XT[J+3) = 0.0

XT(J+5) = -2.0*RP

GO TO I011IF (RP) 2009_2008t2009

XT{J+5) = -(RP-HT}

XT(J+3) = -(RP+HT)

XT[J) = 1.0

XTiJ+I) = RP

XT(J+2) = RP

XT(J÷4) = 4.01RP

GO TO 2010

XT(J): .125

XT[J+I)=.I25* H

XT(J+2)=.I25*H

E25

65A

- 82 -

Page 87: Microwave Laboratory - NASA

MAIN ONE -DATA INPUT MAINI

2010

2011

XT{ J+3)=-.50 • H

XT( J+63=.75 *H

XT{J+5)=O.

J = J + 6

NDD = I

NSS=2

NTRIP=O

NPONT=NYF

KRH={KRHX-1)*NPONT+KRHY

NTOP=NPONT•NXF

KRT ( [ }=NRTN

I=2

DO 2 K=I,NRTN

KRT ( I )= (KRTX{K)-I)•NPONT+KRTY{K)

I=I+I

KT( 1 )=-NPONT

KT( 2)=NPONT

KT(3)=-I

KT(4)=O

KT{5)=+I

WRITE OUTPUT TAPE 6,117117 FORMAT(41HO BOUNDARY POINTS OF ELECTRODE SHAPE )

CALL PLOT {O.O,VCt-3)

DO 2020 NX=I,NXF

DO 2020 NY=I,NYF

IF (NTRIP} 2030t2040,2030

2040 READ INPUT TAPE 5,2035,NSj(ND(1)_I=l,3)tNXCtNYC,HEW,HNStNVOLTt

I NVOLTI,NCHECK

2035 FORMAT (IH 611,216,2F6.3,215,14)

WRITE OUTPUT TAPE 6,2035,NS,(ND(I),I=I,3)tNXCwNYC,HEW_HNS,NVOLTm

I NVOLTI,NCHECK

IF (HNS) 2031, 2032, 2031

2031 XXX=FLOATF(NXC-I)*H•VD

YYY=-(FLOATF(NYC-I)-HNS)•HmVD

CALL SYMBOL {XXX,_YY,O.07t 12,0.0,1)

2032 IF {HEW) 2033, 2G34, 2033

2033 XXX=(FLOATFINXC-I)+HEW)•H•VD

YYY=-FLOATF(NYC-I)*H*VD

CALL SYMBOL (XXX_YYY,O.07, 12_0.0,13

GO TO 2036

2034 IF (HNS} 2036, 2037t 2036

2037 XXX=FLOATF(NXC-1)*H-VD

YYY=-FLOATF(NYC-1)•H-VDCALL SYMBOL {XXXjYYY,O.07_ 12tO.Otl)

2036 NTRIP = i

KC= NPONT*{NXC-I)÷NYC

2030 K= NPONT•(NX-I}+NY

IF (K-KC) 2060,2050,2060

2060 IF {NSS-I) 2070,2070,2080

2070 IF (NY-NYF) 2071,2072,2071

2072 NSS = 2

JT(K} = I + 6•(MY-I)

VOLTI= FLOATF({NXF-NX)INXF}•VA

GO TO 2310

2071 JT{K) = I ÷ 6•(NY-1)

GO TO 2020

71A

$77

$78

$79

S80

$81

- 83 -

Page 88: Microwave Laboratory - NASA

MAIN ONE -DATA INPUT

2239

2231

2232

2080 JT(K) = 9999

IF (NX-NCO) 2081)2020)2020

2081 IF {UIK}) 2020)2084,2020

2084 UIK) : VA

GO TO 2020

2050 NTRIP = G

NSS=NS

VOLT = WOLT(NVOLT)

VOLTI = WOLT{NVOLII}

HEW = HEW*H

HNS:HNS*H

IF (ND(3)) 2052,2052,2053

2052 VOLTI = VOLT

2053 HN = H

HS = H

HE = H

HW = H

KE = K÷NPONT

KW = K-NPONT

KN=K-1KS=K+I

JT(K}=J

IF (HEWI 2C90,2200,2100

2090 HW = - HEW

U(KW) = VOLT

GO TO 2200

2100 HE = HEW

U(KE) = VOLT

2200 IF (HNS} 2210,2230,2220

2210 HS = - HNS

U(KS) = VOLTI

GO TO 2230

2220 HN = HNS

U(KN) : VOLT1

2230 IF INDIM-2} 1004,1004,2239

1004 XT(J} = ({HN+HS)*IHE+HWI)/(16.mHH)

XT(J+I) = (HN+HS)/(B.*HW)

XT(J+2) = (HN+HS}/(8.*HE)XT(J÷3) = -(HE+HW)/(8.eHN)

XT(J÷5) = - (HE+HW)/(B.eHS)XTIJ÷4) = XTIJ+I)+XTIJ+2)-XTIJe3)-XT|J+5)

GO TD 2233RP= (FLOATF(NPONT-NY)}*H÷RO

IFIRP)2231,2232,2231

XT(J)= (HE÷HW}*IHN÷HS)II6.*HH)

XTIJ*I)=IIHN+HS)II2.*HW)I*IRP+IIHN-HS)I6.))

XT(J÷2)=HW*XTIJ÷I)/HE

XT(J÷3)=-((HW+HE)II2.*HN))m(RP÷(HNI2.))

XT(J+SI=-((HW+HE)/(2.*HS))*(RP-(HSI2.))

XTIJ÷4}=XTIJ÷I)+XTIJ+2)-XTiJ÷3)-XT(J+5)

GO TO 2233XTIJ)= IHE+HW)*IHN/I16.*HH) )

XT{J÷I)=IHN/I8.*HW) )*HXT(J÷2) = H* HN/(8.*HE)

XT(J÷3) = - H*(HE+HW)/(6.*HN)

XT(J÷4)=(HN/8.* ((HW+HE)I(HWiHE))e(HE÷HW}/(4,eHN) )*H

MAINI

134

135A

161A

- 84 -

Page 89: Microwave Laboratory - NASA

MAIN ONE -DATA INPUT

XT(J÷5)=-O.

2233 DO 2300 I=I_2

NDA= ND(1)+I

GO TO (2300,2240,225012260t2270)_NDA

2240 XT(J+I) = XT(J÷I}+ XTIJ÷2)XT(J÷2) = 0.0

GO TO 2300

2250 XT[J÷5) = XTIJ+5) ÷XT(Je3)

XT(J÷3) = 0.0

GO TO 2300

2260 XT{J*2) =XT(J÷2) ÷XTIJ÷I)

XT(J÷/) =0.0

GO TO 2300

2270 XT(J÷3) =XT(J÷3) ÷XTIJ÷5)

XT(J+5) =0.0

2300 CONTINUE

IF (ND(3)) 2310_2310t2311

2311 XT(J) = 0.25

XT(J÷I) = Oo

XT(J÷2) = XLSL

XTIJ÷3| = O.

XT(J+4) = 1.

XT{J+5) = XLSL - 1°

2310 IF (NSS-1) 2320t2330_2340

2330 LINCI(NDD)=K

VUP = VOLT1

XT(J÷3) =-XT(J÷3)

GO TO 2320

2340 LINC2INDD)=K

LINC {NDD)= 2*XMODFINXt2) -1

VDOWN = VOLT1

KB=LINCI(NDD)

DO 2350 KK=KBtK

2350 U{KK)= VUP ÷(VDOWN-VUP)*FLOATF(KK-KB)/FLOATFIK-KB)

XT(J÷5)= -XTIJ÷5)

NOD:NDD÷I

2320 J = J + 6

2020 CONTINUE

NLIN=NDD-IIF (NCHECK - 1) 40001502_4000

4000 WRITE OUTPUT TAPE 6t4001

4001 FORMAT (24HOERROR IN BOUNDARY POINT)

CALL EXIT

502 CALL MATIN

XMAX = FLOATF(NXF-1)oH*VD ÷ 3.0

CALL PLOT (XMAXj -VC, -3)

GO TO 200

8 FORMAT (4F15o8)

100 FORMAT(1415)

I01 FORMAT(615)

102 FORMATI6FIO.4)

103 FORMAT(1315)

104 FORMAT|TFIO.6)

105 FORMAT(IOX6EIO.5)

106 FORMAT(3FIO.5)

107 FORMAT(72H

MAINI

141

- 85 -

Page 90: Microwave Laboratory - NASA

MAIN ONE -DATA INPUT

I

300 FORMAT(41St FIO.6)

302 FORMAT(1H 6FIO.4)

304 FORMAT(IH 7FI0.4)

308 FORMAT(IH 4F15o8)

310 FORMATIIH 14IS)

3[I FORMATIIH 4IS, F[O.A)

ENDi1_O_O_O,OwO,ItOtO_OwOtO,OlO_O)

MAIN!

Page 91: Microwave Laboratory - NASA

MATIN CALCULATES THE EIGENVALUE

SUBRqUTINF MATIN

CSPACE-CHARGE

COMMnN

I

2

3

4

5

6

I

2

3

4

SnLUTION. VLAD HAMZA MICROWAVE LABORATORY.

URH,UB,JT,RH,U,XT,KT,LINC,XR,NTOP,NUL,NLIN,ARCL,EQX,EQY,

NPIT,XEP,NXEP,CU,LINCI,AX,AY,VX,VY,DX,DELY,YEP,XQM_H,KISW,ETX,

ETY,PTY,PTX,NAJ,NTJ,VA,VB,VC,NCOOR,KCH,HSL,XLSL,EPS,NPOT,

IDEC,JOT,NSPAN,RX,NRL,KRLtKRH,VAT,VBT,SIZE,KRTtRHUP,RHDOWN,

XCU,NOT,MO,KCY,NSWP,ATX,ATY,LINC2,NXF,NYFtNURL,NJOT,XEMIT,

IXO,HGH,XLOW,XMPR,NEM, A,X,JDY,AXX,BXX,CXX,DXXtNDIMpVD,VTH,VTHX,VTHY

DIMENSION KRT{2),JT(4GOO),RH{4OOOI,URH(4000),

U(4COC),XT(4OOOI,KT(5),LINC(15OI,LINCI(15OI,LINC2(15O),

AIIBO),X(60),CU(40),VX(40),VY|40),KCH|40),AX(4OI_AY(40),

ATX|40),ATY(40),ETX(4G),ETY(40},XCU(40),KCY(IO),PTX{60I,PTY(&'])

READ INPUT TAPE 5,102,MIT,KWR

WRITE OUTPUT TAPE 6,102,MIT,KWR

C MIT=NUMBER OF ITFRATIONS ON EIGENVALUE CALCULATION

C KWR=- OR _,NO INTERMEDIATE OUTPUT

C KWR=+,PRINT INTERMEDIATE ITERATIONS ON EIGENVALUE CALCULATIONC COLUMN VECTOR INITIALIZED

50 DO 45 J=I,NTOP

IF(JT(J)-Qgqg)44,43,4343 URH(J)=O.

U(J) = C.O

GO TO 46

44 URH{J}=I.

U(J) = 0.0

46 CONTI_IUE

JS=-I

C ITERATIVE LOOP

DO 41 M=I,MITC LOOP ON NUMBER OF LINES

DO 3I NL=I,NLIN

IFILINC(NL)) 23,31,2323 KB=LINCI(NL)

KC=LINC2INL)

JV=I

JU=I

D[I 13 K=KB,KC

SUM:C,JZ:JT(K)

14 DO L5 JY=3,5

JX=JZ+JY

A(JUI=XT(JX)

15 JU=JU+I

DO 16 JY=I,2JXmJl÷JY

JW=K÷KT(JY)

I6 SUM=SUM*XT(JX)*URH|JW)

X(Jv):SU_Jv=JV÷I

13 CONTINUE

N=KC-KB÷I

CALL MATRIX(N,A(2),X)

C MATRIX IS USFD FnR THE FORWARD AND BACK SUBSTITUTION

- 8T -

Page 92: Microwave Laboratory - NASA

MATIN CALCULATES THE EIGENVALUE

JV=l

DO 17 J=KB,KC

RH(J) =X(JV)

17 JV=JV+[

3I CONTI NUEC SWITCH ALLOWING MATRIX TO BE APPLIED TWICE

[F(JS) 32,34t34

32 D(I 33 J=I.NTOP

U(J) = URH(J)

33 URH(JI=RH(J)Gn TO "L

C DETERMIN^T[ON (3F SMALLEST AND LARGEST RATIOS FOR EIGENVALUE

34 XL=O.

XS=I.

DO _9 JD=I_NTOP

IFIURH(JD))39,39_35

35 X = RH(JD)/UIJD)

IF(XL-X)30t37t37

36 XL=X

NNL=JD37 IF(XS-X)39t39t3838 XS=X

NS=JD

39 CONTI NUEIF{KWR) 51,5It52

52 WRITE OUTPUT TAPE 6tIOItM_XS_XL,NStNNL51 YL=RH (NNL|

DO 40 JD=I_NTOP

40 URH(JD)=RH(JD)/YLIF (XL-XS-5, OE-03 )42 t_2_6L

41 JS=-JS

42 XR=SQRTF(.5*IXL+XS) )

WRITE OUTPUT TAPE 6,I03_XR

47 RETURN

IOI FORMAT(20H LOW HIGH 15,2F13.Bt 5H 216!

102 FORMAT(IAI 5)

103 FORMAT (AHOXR= FIO.8)

END( TtL_OtO,OtO_L tOtO_OtOtO_OtOtO)

-88-

Page 93: Microwave Laboratory - NASA

_o

H

H

o

÷

-o

[

5H_

i

i

_ _ o o

o

o

NOTE: For convenience, two forms of subscript notation are used in the

flow diagrams in this Appendix. The first is the usual algebraic

notation_ for example_ NDj _ and the second employs parenthesesfor example ND(J)

- 89 -

Page 94: Microwave Laboratory - NASA

SUM -

ARC

i i , [ ,,, i I , ,

NEM

E [(A__j - ATXj.1)2 + (ATYj - AT_L'j_I)_ 1/2J-e

SUM_RCL ,, _,_ j._.. 0.5

m'x,Y(_)= A_X,Y(1)

•= ARCL

K=I

_[,,1

"--J is K <IITJ I-],

XDIF [ A_Xj-- ATXj+ 1][DIF ATYj ATYj+ 1

sA.._XDIF2+ YDI_'

, _ NO

CSA - YDIF/SA

SNA ,,XDIF/SA

ETX(I_) = ATX(J)-HIq_SNA

YES

J=J+l

THYP = HYP - SA

m_(K) = A_(_)+m'P.CSA IK + 1

m_ K

NN NTJ + 1

_X,Y(K) = A_X,Y(mm)

- 9o-

Page 95: Microwave Laboratory - NASA

II

I

- 91 -

Page 96: Microwave Laboratory - NASA

CORRCT

..

CUj -- 0

T

AYD ,, AYj+ 1 - AYj

AYDS = AYj+ 1 - X_Wl = - AYj

AYDL s AYD - AYDS

+x_wl

•- LSS

% --% •AYDS/A_D

VX0. -- [FXj • AYDL + FXj+ 1 • AYDS] / AYD

v_ --[v_j•AY_ + W_+l . A_DS!/ A_

tco_i_jt

CUj_ 1 " CUj_ 1 • AYDS/AYD

AYDL _, AYD - AYDS

A_D- IAS__ -A_I

i_A_j.I < XL_Wl

7 _YES

-| I_oisJ>l?

v

2 -,

Page 97: Microwave Laboratory - NASA

m_D

_qL. |

1- 93 -

Page 98: Microwave Laboratory - NASA

RETURN -i.,-"

MATRIX

I --3n-2

NO

AM+ 1= 0

I x_x/Al I

YES

K= 2

IJ_4_7_lo_.°°MI

Aj = Aj - Aj_l Aj_2

Aj+I

Aj+I - Aj

X K - (Aj_ l) (XK_ l)

XK=

Aj

K=K+l

I K=K- i

_--_x_ = x_- %-J-i "xK + i

9_ _.

Page 99: Microwave Laboratory - NASA

it

0

A

v

v+ o

_ a

--3

%

-- _ o_°ooo #•4- _ n a n H H H

m N m

DL;_ L

- 95 -

Page 100: Microwave Laboratory - NASA

JE = NXF + 1

I JED = JE+NYF-I = 2NYF(Initially)

PE_Q

I_-_ I

I is (uK

IDIF = IUj

L=L$1

PTY(L) = _Y

I is DIF = 0

I pTxL ;u_- PO_Nl= DIF

--_AAY = AAY + DX l--V"

AAX = AAX + DX

I

_YES

NO

- uKl l

I

DX + AAX I

PTYCLL)

Pn(_)

PTX(LL)

_X(_)

_ = MAX(PTY(1)>, I = i, (L-J + i)CONV. I

_-m'X(LL)

_-TT

.-p_C(LL)

J=2, L ]

I _ Pn(_) = PTY(J- l)

YES

I _:_-_ I

JJ=J, L-I I

I PTXjj _- I_rXjj+l IPTYjj _ PTYjj+I

NO = _ YES

- 96 -

Page 101: Microwave Laboratory - NASA

f

--II+ i

G_

LI LI tl 110

I1 II

II

I

I i.

r

n

?

tt 11 11

,_,,,

lull _

I

&5 &l II

i:o _,

_ •II II P,4

fl II II II II II II II II

o

V

m

>

t- i_1

i ii i

t_t

m

o_+ II

T

I_: t--

I_, i

_D

V ,

, I

I

LII

r-

I

' iF

,.-t

It '11

- 9? -

Page 102: Microwave Laboratory - NASA

%1

-.,...,

_ cJ _i

I

t

m

_E^

__i_, -D.i ^ r

÷÷

-ID _I"

_ -r_

o _r-_ • _

m

.I

- g8 -

Page 103: Microwave Laboratory - NASA

.I

I is MO = 0 I YES

R = i "R_sOF mTRIX EQUATIONJ_SPACE CHARGE DENSITY"

I__ I

I_=_ I

_rY(:<)= j

I = (N-I)_"F+ i

P'_(K)=RI{(1)*m{

K=K+I

NO 1__<_ I_s

NO

PTYjj _ _DJ --o ,JJ= K,_i|

!

[NTYL,L = 1,8][PTYL, L = 1,8] K = 1

CONTINUE

I CONTINUE

NN=NN+ 1 I

RETURN

- 99 -

Page 104: Microwave Laboratory - NASA

i is MO = 0 I YES

_o

R-_ LWRITE "U-FIELD C_ THIS CYCLE" V

nY(K) = J

I = (N-I)NrF+_.

P_(K)= U(1)K=K+I

NO 1 I

[ NO

___ PrY_j = _rYjj _ o , JJ = K,_ I'I |

WRITE NTXNN I

[NTYL;L- 1,8][PTYL, L = 1,8] K = 1

WRITE "FIELD OF lAST CYCLE"

TW0b'_

I CONTINUE

_o_ H_-_+_

- i00 -

Page 105: Microwave Laboratory - NASA

_m

+

+

H N

v

l n

m

b

1

"I-I_m

ii

_. +

a

L_

liii A

l +

+

w

- lO1-

Page 106: Microwave Laboratory - NASA

REFERENCES

l.

2

3_

V. Hamzsj "Design Analysis of Electrostatic Thrustors by a Computer

Technique," Microwave Laboratory Report No. 1327, Stanford University

(May 1965).

V. Hamza and G. So Kino, "Error Analysis of a Numerical Solution to

Space-charge-flow Problems," Microwave Laboratory Report No. 1335,

Stanford University; submitted for publication to Quarterly of

Applied Mathematics, June 1965.

V. Hamza_ "Convergence and Accuracy Criteria of Iteration Methods

for the Analysis of Axially Symmetric and Sheet Beam Electrode

Shapes with an Emitting Surface_" Microwave Laboratory Report No. 1332

Stanford University; Submitted for publication to IEEE Trans. on

Electron Devices, May 1965.

_- 102-

Page 107: Microwave Laboratory - NASA

ERRATUM to AFCRL-TDR-65-816

In DD Form 1473, last page of above report, initial date of period covered

by the report, given as 23 Mar '63 should read 21 Mar '63.

Distribution: one copy of ERRATUM sheet to all recipients of report listed

in Distribution List in report.

MCDONNEll.