6
Indian Journal of Experimental Biology Vol. 41, October 2003, pp. 1095-1100 Milestones in the genetical research on rhizobia Gursham S Randhawa & Anvita Kumar Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, India Phone:. 91-1332-285808; Fax: 91-1332-273560; E-mail: [email protected] The first isolation of the rhizobial bacteria from the legume roots was done in 1888. Since then a large number of scientists have made efforts to understand the molecular basis of Rhizobium-legume symbiosis. The important developments of 115 years of genetical research on rhizobia have been listed in this article. Keywords: Legume, Nitrogen fixation, Rhizobium, Symbiosis 1888 Assimilation of atmospheric nitrogen by root nodules demonstrated I Isolation of root nodule bacteria by pure culture techniques; the name Bacillus radicicola proposed for these bacteria 2 1889 Root nodule bacteria renamed as Rhizobium 3 1921 Rhizobia divided into fast- and slow- growing groups4 1954 Gene transfer by transformation with linear DNA reported in Rhizobium by R. Balassa (cited by G. Balassa, 1963)5 1967 Gene transfer by transduction reported in rhizobia 6 Gene transfer by conjugation reported in Rhizobium leguminosarum bv. trifolii; plasmid control of nodule forming ability suggested 7 1968 Gene transfer by conjugation reported in Rhizobium lupini8 1971 Specialized transduction reported in Sino rhizobium meliloti 9 1973 Transformation of R. leguminosarum bv. trifolii with plasmid DNA to 1974 P-group antibiotic resistance plasmid of Pseudomonas aeruginosa transferred by conjugation to R I · It . egummosarum Physical evidence for the presence of plasrnids in rhizobia presented l2 1976 Chromosomal recombination and mapping in R. leguminosarum reported l3 1977 Construction of circular linkage map of the chromosome of S. meliloti l4 , 15 Large plasrnids detected in different Rhizobium species 16 1978 Transposon Tn5 transferred to Rhizobium by the suicide plasmid vector pJB4JI 17 , Heat treatment method employed for isolating non-nodulating mutants of R. leguminosarum by. 1 // trifolii l8 .. /

Milestones in the genetical research on rhizobianopr.niscair.res.in/bitstream/123456789/23344/1/IJEB 41... · 2013-11-12 · The first isolation of the rhizobial bacteria from the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Indian Journal of Experimental Biology Vol. 41, October 2003, pp. 1095-1100

Milestones in the genetical research on rhizobia

Gursham S Randhawa & Anvita Kumar

Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, India

Phone:. 91-1332-285808; Fax: 91-1332-273560; E-mail: [email protected]

The first isolation of the rhizobial bacteria from the legume roots was done in 1888. Since then a large number of scientists have made efforts to understand the molecular basis of Rhizobium-legume symbiosis. The important developments of 115 years of genetical research on rhizobia have been listed in this article. •

Keywords: Legume, Nitrogen fixation, Rhizobium, Symbiosis

1888 • Assimilation of atmospheric nitrogen by root nodules demonstrated I • Isolation of root nodule bacteria by pure culture techniques; the name Bacillus radicicola proposed

for these bacteria2

1889 • Root nodule bacteria renamed as Rhizobium3

1921 • Rhizobia divided into fast- and slow- growing groups4

1954 • Gene transfer by transformation with linear DNA reported in Rhizobium by R. Balassa (cited by G. Balassa, 1963)5

1967 • Gene transfer by transduction reported in rhizobia6

• Gene transfer by conjugation reported in Rhizobium leguminosarum bv. trifolii; plasmid control of nodule forming ability suggested7

1968 • Gene transfer by conjugation reported in Rhizobium lupini8

1971 • Specialized transduction reported in Sino rhizobium meliloti9

1973 • Transformation of R. leguminosarum bv. trifolii with plasmid DNA to

1974 • P-group antibiotic resistance plasmid of Pseudomonas aeruginosa transferred by conjugation to R I · It . egummosarum

• Physical evidence for the presence of plasrnids in rhizobia presentedl2

1976 • Chromosomal recombination and mapping in R. leguminosarum reported l3

1977 • Construction of circular linkage map of the chromosome of S. meliloti l4, 15

• Large plasrnids detected in different Rhizobium species 16

1978 • Transposon Tn5 transferred to Rhizobium by the suicide plasmid vector pJB4JI17 ,

• Heat treatment method employed for isolating non-nodulating mutants of R. leguminosarum by. 1/ / trifolii l8

.. /

1096 INDIAN J EXP BIOL, OCTOBER 2003

• Construction of circular linkage map of the chromosome of R. leguminosarum 19

• Discovery of host specificity and nodule forming genes on plasmid pRLlJI of R. leguminosarum2o

1979 • Discovery of nodulation genes on plasmid in R. leguminosarum biovar trijoW21

• Generalized transduction reported in S. melilotp2 • Genes coding for nitrogenase enzyme located on a large plasmid of R. leguminosarum23

• Identification and characterization of large plasmids in S. meliloti24

1980 • Cowpea group Rhizobium species strain NGR234 found to nodulate the non-legume Parasponia25

• Homology of nitrogenase genes of different species of rhizobia demonstrated26

1981 • A general method described for site-directed mutagenesis of rhizobia27

• Nodulation and nitrogen fixation genes located on a megaplasmid in S. melilotP8.29 • R. trijolii plasmid containing nodulation genes transferred to R. leguminosarum and A. tumejaciens30

• S. meliloti nifH gene sequenced31

1982 • Slow-growing rhizobia placed under the genus Bradyrhizobium32 • Fast growing rhizobia isolated from root nodules of soybean in China3

)

• Cloning of nodulation genes of S. meliloti by complementation34

• Mobilization of the S. meliloti megaplasmid carrying nodulation and nitrogen fixation genes into other rhizobia and Agrobacterium35

• Construction of a broad host range cosrnid cloning vector for genetic analysis of Rhizobium36

1983 • Construction of improved suicide plasmid vectors for transposon Tn5 mutagenesis of rhizobia37• 38

• S. meliloti promoters studied by fusion to lacZ gene of E. coli39

• Symbiotic mutations located on chromosome of S. meliloti40

• nifH and nifDK genes found on separate operons in Bradyrhizobiumjaponicum41

1984 • Common nodulation genes of S. meliloti42 and R. leguminosarum43 sequenced • Pseudonodules formed on alfalfa by A. tumejaciens and E. coli containing S. meliloti genes44

• Transposon Tn5 found to specify streptomycin resistance in rhizobia45•46

1985 • Two megaplasmids detected in S. meliloti47

• Identification of nodDABC gene products of rhizobia48•49

• Mutants defective in exo-polysaccharide production found to induce ineffective nodules5o

1986 • Plant flavone, luteolin, found to induce expression of S. meliloti nodulation genes51

• S. meliloti nodulation genes found to be related to virulence genes of A. tumejaciens52

1987 • Plant signal interacting with nodD gene product identified53

• Physical characterization of S. meliloti megaplasmids54

• nijA gene of S. meliloti found to be oxygen regulated55

1988 • New genera Sinorhizobium56 and Azorhizobium57 recognized • C4-dicarboxylic acid transport genes of S. meliloti located58

•59

• Rhizobial extracellular signal (later called nod factor) stimulating mitosis of plant cells detected60• 61

1989 • Subcellular localization of nodD gene product in R. leguminosarum reported62

• A novel exo-polysaccharide having function in nodulation of alfalfa by S. meliloti identified63

RANDHA W A & KUMAR : MILESTONES IN GENETICAL RESEARCH ON RHIZOBIA

1990 • Identification of the molecular signal detennining host specificity of S. melilotl-64 • Genetic map of S. meliloti megaplasmid presented65

1991 • S. fredii gene nole involved in cultivar specific nodulation of soybean characterized66

1992 • Rhizobium species NGR234 strain found to synthesize a family of Nod factors67

• Development of high frequency chromosomal mobilization system in S. meliloti68

• Genetic mapping of symbiotic loci on S. meliloti chromosome69

• Mutational analysis of the S. meliloti nifA promoter70

1993 • Physical map of the genome of S. meliloti 1021 presented71

• Physical and genetic map of B. japonicum 110 genome presented72

1994 • Expression of insecticidal crystal protein gene from Bacillus thuringiensis in rhizobia73

1995 • Molecular analysis of the S. meliloti mucR gene carried oue4

1997 • New genus Mesorhizobium recognized75

• Complete nucleotide sequence of symbiotic plasmid of Rhizobium species NGR234 determined76

1097

• Natural endophytic association between R. leguminosarum biovar trifolii and rice roots discovered77• 78

1998 • A new genus Allorhizobium proposed79

• Succinoglycan found to be required for initiation and elongation of infection threads during nodulation of alfalfa by S. meliloti80

• noLO and noel of Rhizobium species NGR234 characterized81

2000 • Similar requirements of S. meliloti and a mammalian pathogen described82

• A close relation between Agrobacterium and Rhizobium discovered83

• Complete genome of Mesorhizobium loti sequenced84.

85

• Rhizobial inoculation found to increase growth of rice86

• Discovery of the dependence of alfalfa root nodule invasion efficiency on S. meliloti polysaccharides87

2001 • Complete genome of S. meliloti sequenced88, 89. 90

2002 • Complete genome of B. japonicum USDAIlO sequenced91

• Identification of two quorum-sensing systems in S. meliloti92

2003 • Expression of R. leguminosarum bv. viciae genes encoding for amino acid transporters found essential for symbiosis93

References 1 Hellriegel H & Wilfarth H, Untersuchungen tiber die

Stickstoffnahrung der Gramineon und Leguminosen. Beilageheft zu der Ztschr. Ver. Rtibenzucker-Industrie Deutschen Reichs, (1888) pp. 234.

2 Beijerinck M W, Die bakterien de papilionaceen-knollchen, Bot Zeitung, 46 (1888) 725.

3 Frank B, Ueber die plizsymbiose der \eguminosen Ber. Deut, Bot Gosell, 7 (1889) 332.

4 Lohnis F & Hansen R, Nodules bacteria of leguminous plants, J Agric Res, 20 (1921) 543.

5 Balassa G, Genetic transformation in Rhizobium: A review of the work of R. Balassa, Bacteriol Rev, 27 (1963) 228.

6 Kowalski M, Transduction in Rhizobium meliloti, Acta Microbiol Pol, 16 (1967) 7.

7 Higashi S, Transfer of clover infectivity of Rhizobium trifolii to Rhizobium phaseoli as mediated by an episomic factor, J Gen. Appl Microbiol, 13 (1967) 391.

8 Heumann W, Conjugation in star-forming Rhizobium lupini, Mol Gen Genet, 102 (1968) 132.

9 Sik T & Orosz L, Chemistry and genetics of Rhizobium meliloti phage 16-3, Plant Soil, Special Volume (1971) 57.

1098 INDIAN J EXP BIOL, OCTOBER 2003

IO O'Gara F & Dunican L K, Transformation and physical properties of an R-factor RP4 transferred from Escherichia coli to Rhizobium trifolii, J Bacteriol, 116 (1973) 1177.

11 Beringer, J E, R factor transfer in Rhizobium leguminosarum, J Gen Microbiol, 84 (1974) 188.

12 Sutton W D, Some features of the DNA of Rhizobium bacteroids and bacteria, Biochim Biophys Acta, 366 (1974) J.

13 Beringer J E & Hopwood D A, Chromosomal recombination and mapping in Rhizobium leguminosarum, Nature, 264 (1976) 291.

14 Meade H M & Signer E R, Genetic mapping of Rhizobium meliloti, Proc Natl Acad Sci USA, 74 (1977) 2076. .

15 Kondorosi A, Kiss G B, Forrai T, Vincze E & Banfalvi Z, Circular linkage map of Rhizobium meliloti chromosome, Nature, 268 (1977) 525.

16 Nuti M P, Ledeboer AM, Lepidi A A & SchiJperoort R A. Large plasmids in different Rhizobium species, J Gen Microbial, 100 (1977) 241.

17 Beringer J E, Beynon J L, Buchanan-Wollaston A V & Johnston A W B, Transfer of the drug-resistance transposon Tn5 to Rhizobium, Nature, 276 (1978) 633.

18 Zurkowski W & Lorkiewicz Z, Effective method for the isolation of non-nodulating mutants of Rhizobium trifolii, Genet Res, 32 (1978) 311.

19 Beringer J E, Hoggan S A & Johnston A W B, Linkage mapping in Rhizobium leguminosarum by means of R plasmid-mediated recombination, J Gen Microbiol, 104 (1978) 201.

20 Johnston A W B, Beynon J L, Buchanan-Wollaston A V, Setchell S M. Hirsch P R & Beringer J E, High frequency transfer of nodulation ability between strains and species of Rhizobium, Nature, 276 (1978) 634.

21 Zurkowski W & Lorkiewicz Z, Plasmid mediated control of nodulation in Rhizobium trifolii, Arch Microbiol, 123 (1979) 195.

22 Casadesus J & Olivares J, Generalized transduction in Rhizobium meliloti by a thermosensitive mutant of bacteriophage DF2, J Bacteriol, 139 (1979) 316.

23 Nuti M P, Lepidi A A, Prakash R K, Schilperoort R A & Cannon F C, Evidence for nitrogen fixation (nij) genes on indigenous Rhizobium plasmids, Nature . 282 (1979) 533.

24 Casse F. Boucher C. Julliot J S. Michel H & Denarie J. Identification and characterization of large plasmid sin Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbial. 113 (1979) 229.

25 Trinick M J & Galbraith J. The Rhizobium requirements of the non-legume Parasponia in relation to the cross-inoculation group concept of legumes. New Phytol. 86 (1980) 17.

26 Ruvkun G B & Ausubel F M. Interspecies homology of nitrogenase genes. Proc Natl Acad Sci USA. 77 (1980) 191 .

27 Ruvkun G B & Ausubel. F.M. A general method for site­directed mutagenesis in prokaryotes, Nature, 289 (1981) 85.

28 Banfalvi Z. Sakanyan. V. Koncz C, Kiss A. Dusha I & Kondorosi A, Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of Rhizobium meliloti, Mol Gen Genet, 184 (1981) 318.

29 Rosenberg C, Boistard P, Denarie J & Casse-Delbart F. Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti, Mol · Gen Genet, 184 (1981) 326.

30 Hooykaas P J J, Van BrusseJ A A N, Den Dulk-Ras H, van Slogteren G M S & Schilperoort R A, Sym plasmid of

Rhizobium trifolii expressed in different Rhizobium species and Agrobacterium tumefaciens. Nature, 291 (1981) 351.

31 Torok 1& Kondorosi A. Nucleotide sequence of Rhizobium meliloti nitrogenase reductase (nifH) gene, Nucl Acids Res, 9 (1981) 5711.

32 Jordan D C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. Nov., a genus of slow growing root nodule bacteria from leguminous plants, Int J Syst Bacteriol, 32 (1982) 136.

33 Keyser H H, Bohlool B B. Hu T S & Weber D F, Fast growing rhizobia isolated form root nodules of soybean. Science. 215 (1982) 1631.

34 Long S R, Buikema W J & Ausubel F M, Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod mutants, Nature , 298 (1982) 485.

35 Kondorosi A, Kondorosi E. Pankhurst C E, Broughton W J & Banfalvi Z. Mobilization of a Sinorhizobium meliloti megaplasmid carrying nodulation and nitrogen fixation genes into other rhizobia and Agrobacterium. Mol Gen Genet, 188 (1982) 433.

36 Friedman A M, Long S R, Brown S E. Buikema W J & Ausubel F M. Consturction of a broad host range cosmid cloning vector and its use in genetic analysis of Rhizobium mutants, Gene, 18 (1982) 289.

37 Selvaraj G & Iyer V N, Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol, 156 (1983) 1292.

38 Simon R, Priefer U & PUhler A, A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in gram negative bacteria, Biotechnology. 1 (1983) 784.

39 Sundaresan V. Ow D W & Ausubel F M. Activation of Klebsiella pneumoniae and Rhizobium meliloti nitrogenase promoters by gIn (ntr) regulatory proteins, Proc Natl Acad Sci USA, 80 (1983) 4030.

40 Forrai T. Vincze E, Banfalvi Z, Kiss G B, Randhawa G S & Kondorosi A, Localization of symbiotic mutations in Rhizobium meliloti, J Bacteriol, 153 (1983) 635.

41 Kaluza K, Fuhrmann M, Hahn. M, Regensburger B & Hennecke H. In Rhizobium japonicum the nitrogenase genes nifH and nifDK are separated. J Bacteriol. 155 (1983) 915 .

42 Torok I, Kondorosi E, Strpkowski T. Posfai J & Kondorosi A, Nucleotide sequence of Rhizobium meliloti nodulation genes, Nucl Acids Res, 12 (1984) 9509.

43 Rossen L, Johnston A W B. Downie J A, DNA sequence of the Rhizobium leguminosarum nodulation genes nod A, B and C required for root hair curling, Nucl Acids Res. 12 (1984) 9497.

44 Hirsch A M, Wilson K J, Jones D G, Bang W, Walker G C & Ausubel F M, Rhizobium meliloti genes allow Agrobacterium tumefaciens and Escherichia coli to form Pseudonodules on alfalfa. J Bacteriol, 158 (1984) 1133.

45 Selvaraj C & Iyer V N, Transposon Tn5 specifies streptomycin resistance in Rhizobium spp .• J Bacteriol. 158 (1984) 580.

46 De Cos G F. Finan T M. Signer E R & Walker G C, Host­dependent transposon Tn5-mediated streptomycin resistance. J Bacteriol. 159 (1984) 395.

47 Banfalvi Z, Kondorosi E & Kondorosi A, Rhizobium meliloti carries two megap\asmids, Plasmid, 13 (1985) 129.

48 Downie J A, Knight C D, Johnston A W B & Rossen L, Identification of genes and gene products involved in the

RANDHAWA & KUMAR : MILESTONES IN GENETICAL RESEARCH ON RHIZOBIA 1099

nodulation of peas by Rhizobium leguminosarum, Mol Gen Genet, 198 (1985) 255.

49 Egelhoff T T & Long S R, Rhizobium meliloti nodulation genes: identification of nodDABC gene products, purification of nodA protein, and expression of nadA in Rhizobium meliloti, J Bacterial, 164 (1985) 591.

50 Leigh J A, Signer E R & Walker G C, Exopolysaccharide­deficient mutants of Rhizobium meliloti that form ineffective nodules, Proc Natl Acad Sci USA , 82 (1985) 6231.

51 Peters N K, Frost J W & Long S R, A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes, Science, 233 (1986) 977.

52 Dylan T, Ielpi L, Stanfield S, Kashyap L & Douglas C, Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens, Proc Natl Acad Sci, USA, 83 (1986) 4403.

53 Horvath B, Bachem C W B, Schell J & Kondorosi A, Host­specific regulation of nodulation genes in· Rhizobium is mediated by a plant-signal, interacting with the nodD gene product, EMBO J, 6 (1987) 841.

54 Burkhardt B, Schillik D & PUhler A, Physical characterization of R. meliloti megaplasmids, Plasmid, l7 (1987) 13.

55 Ditta G, Virts E, Palomares A & Kim C, The nifA gene of Rhizobium meliloti is oxygen regulated, J Bacterial, 169 (1987) 3217.

56 Chen W X, Yan G H & Li Y, Numerical taxonomic study of fast growing soybean rhizobia and a proposal that Rhizobium fredii are assigned to Sino rhizobium, sp. nov, Int J Syst Bacterial, 38 (1988) 392.

57 Dreyfus B, Garcia J L & Gillis M, Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata., Int J Syst Bacteriol, 38 (1988) 89.

58 Finan T M, Oresinik I & Bottacin A, Mutants of Rhizobium meliloti that are defective in succinate metabolism, J Bacteriol, 170 (1988) 3396.

59 Watson R J, Chan Y K, Wheatcroft R, Yang A-F & Han S, Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid, J Bacteriol, 170 (1988) 927.

60 Schmidt J, Wingender R, John M, Wieneke U & Schell J, Rhizobium meliloti nodA and nodB genes are involved in generating compounds that stimulate mitosis of plant cells, Proc Natl Acad Sci USA , 85 (1988) 8578.

61 Faucher C, Maillet F, Vasse J, Rosenberg C, van Brussel A A N, Truchet G & Denarie J, Rhizobium meliloti host range nodH gene determines production of an alfalfa-specific extracellular signal, J Bacteriol, l70 (1988) 5489.

62 Schlaman H R M, Spaink H P, Olcker R J H & Lugtenberg B J J, Subcellular localization of the nodD gene product in Rhizobium leguminosarum, J Bacteriol, l71 (1989) 4686.

63 Glazebrook J & Walker G C, A novel exopolysaccharide can function in place of the caIcofiour-binding exopolysaccharide in nodulation -of alfalfa by Rhizobium meliloti, Cell, 56 (1989) 661.

64 Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome J-C & Denarie J, Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal, Nature, 344 (1990) 781.

65 Charles T C & Finan T M, Genetic map of Rhizobium meliloti megaplasmid pRmeSU47b, J Bacteriol, 172 (1990) 2469.

66 Krishnan H B & Pueppke S G, nol-C, a Rhizobium fredii gene involved in cultivar-specific nodulation of soybean shares homology with a heat shock gene, Mol Microbiol, 5 (1991) 737.

67 Price N P J, Relie B, Talmont F, Lewin A, Prome D, Pueppke S, Maillet S, Denarie J, Prome J-C & Broughton W J, Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated, Mol Microbiol, 6 (1992) 3575.

68 Klein S, Lohman K, Clover R, Walker G C & Signer E R, A directional, high-frequency chromosomal mobilization system for genetic mapping of Rhizobium meliloti, J Bacteriol, 174 (1992) 324.

69 Glazebrook J, Meiri G & Walker G C, Genetic mapping of the symbiotic loci on the Rhizobium meliloti chromosome, Mol Plant-Microbe Interact, 5 (1992) 223.

70 Argon P G, Ditta G S & Helinski DR, Mutational analysis of the Rhizobium meliloti nifA promoter, J Bacteriol, 174 (1992) 4120.

71 Honeycutt R J, McClelland M & Sobral B W S, Physical map of the genome of Rhizobium meliloti 1021, J Bacteriol, 175 (1993) 6945.

72 KUndig C, Hennecke H & Gottfert M, Correlated physical and genetic map of the Bradyrhizobium japonicum I IO genome, J Bacteriol, 175 (1993) 613.

73 Sk0t L, Timms E & Mytton L R, The effect of toxin­producing Rhizobium strains, on larvae of Sitona flavescens feeding on legume roots and nodules, Plant Soil, 163 (1994) 141.

74 Keller M, Roxlou A, Weng W M, Schmidt M, Quandt J, Karsten N, Jording D, Arnold W & PUhler A, Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan, Mol. Plant-Microbe Interact., 8 (1995) 267.

75 Jarvis B D W, van Berkum P, Chen W X, Naur S M, Fernandez M P & Cleyet Marel C, Reclassification of R. loti, R. huakuii, R. ciceri and R. mediterraneum into a new genus Mesorhizobium, Int J Syst Bacteriol, 47 (1997) 895.

76 Freiberg C, Fellay R, Balroch A, Broughton W J, Rosenthal A & Perret X, Molecular basis of symbiosis between Rhizobium and legumes, Nature, 387 (1997) 394.

77 Yanni Y G, Rizk R Y, Corich V, Squartini A., Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, Schmidt T M, Mateos P F, Ladha J K & Dazzo F B, Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth, Plant Soil, 194 (1997) 99.

78 Reddy PM, Ladha J K, So RB, Hernandez R J, Ramos M C, Angeles 0 R, Dazzo F B & de Bruijn F J, Rhizobial communicatjon with rice roots: Induction of phenotypic changes, mode of invasion and extent of colonization, Plant Soil, 194 (1997) 81.

79 De Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins M D, Kersters K, Dreyfus B & Gillis M, Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal, llSEM, 48 (1998) 1277.

80 Cheng H-P & Walker G C, Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti, J Bacteriol, 180 (1998) 5183.

1100 INDIAN J EXP BIOL, OCTOBER 2003

81 Jabbouri S, Relic B, Hann M, Kamalaprija P, Burger U, Pome D, Prome J C & Broughton W J, noLO and noll (Hsn Ill) of Rhizobium sp. NGR234 are involved in 3-D­Carbamoylation and 2-D-Methylation of Nod factors, J Bio Chem, 273 (1998) 12047.

82 LeVier K, Phillips R W, Grippe V K, Roop R M & Walker G C, Similar requirements of a plant symbiont and a mammalian for prolonged intracellular survival, Science, 287 (2000) 2492.

83 Pulawska J, Maes M, Willems A, Sobiczewski P, Phylogenetic analysis of 23S rRNA gene sequences of Agrobacterium, Rhizobium and Sinorhizobium strains, Syst Appl Microbial, 23 (2000) 238.

84 Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M & Tabata S, Complete genome structure of the nitrogen­fixing symbiotic bacterium Mesorhizobium loti, DNA Res, 7 (2000) 331.

85 Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, ldesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M & Tabata S, Complete genome structure of the nitrogen­fixing symbiotic bacterium Mesorhizobium loti (supplement), DNA Res, 7 (2000) 381.

86 Biswas J C, Ladha J K & Dazzo F B, Rhizobia inoculation improves nutrient uptake and growth of lowland rice, Soil Sci Soc Am J, 64 (2000) 1644.

87 Pellock B J, Cheng H P & Walker G C, Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides, J Bacteriol, 182 (2000) 4310.

88 Galibert F, Finan T M, Long S R, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett M J, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis R W, Dreano S,

Federspiel N A, Fisher R F, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman R W, Jones T, Kahn D, Kahn M L, Kalman S, Keating D H, Kiss E, Komp C. Lelaure V, Masuy D, Palm C, Peck M C, Pohl T M, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter F J. Weidner S, Wells D H, Wong K, Yeh K C & Batut J, The composite genome of the legume symbiont Sinorhizobium meliloti, Science, 293 (200 I) 668.

89 Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Balut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S & Galibert F, Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021 , Proc Natl Acad Sci, 98 (2001) 9877.

90 Barnett M J, Fisher R F, Jones T, Komp C, Abola A P, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman R W, Kahn D, Kahn M L, Kalman S, Keating D H, Palm C, Peck M C, Surzycki R, Wells D H, Yeh K C, Davis R W, Federspiel N A & Long S R, Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid, Proc Natl Acad Sci, 98 (2001) 9883.

91 Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, lriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M & Tabata S, Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDAllO, DNA Res, 9 (2002) 189.

92 Marketon M M & Gonzalez J E, Identification of two quorum-sensing systems in Sinorhizobium meliloti, 184 (2002) 3466.

93 Lodwig E M, Hosie A H F, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie J A & Poole P S, Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis, Nature , 422 (2003) 722.