32
MINERALOGY OF VIBRACORE HEAVY-MINERAL CONCENTRATES AND PRELIMINARY STRATIGRAPHIC FRAMEWORK OF THE SOUTHERN INNER CONTINENTAL SHELF OF NORTH CAROLINA Nort" Carolilla , . ". '. .... .. . -" .... ,,,,. . ., ., : • Long Bay NORTH CAROLINA GEOLOGICAL SURVEY OPEN-FILE REPORT 94-2

MINERALOGYMineralogy ofVibracore Heavy-MineralConcentrates and Preliminary Stratigraphic Frameworkofthe Southern Inner Continental ShelfofNorth Carolina by John G. Nickerson, Wenfeng

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

••

MINERALOGYOF VIBRACORE

HEAVY-MINERALCONCENTRATES AND

PRELIMINARYSTRATIGRAPHIC FRAMEWORK OF THESOUTHERN INNER CONTINENTAL SHELFOF NORTH CAROLINA

Nort" Carolilla

• •, ~

~""'-'-;-:""",-;:-'!:f'd' •. ". '. ...... . -".... ,,,,.. ..~., ., :• Long Bay

NORTH CAROLINA GEOLOGICAL SURVEY

•OPEN-FILE REPORT 94-2

Mineralogy of Vibracore Heavy-Mineral Concentrates andPreliminary Stratigraphic Framework of the Southern Inner

Continental Shelf of North Carolina

by

John G. Nickerson, Wenfeng Li, Mary E. Watson, andRichard C. Dentzman

North Carolina Geological Survey

Open-File Report 94-2

1994

Charles H. Gardner, Director and State Geologist

STATE OF NORTH CAROLINA

JAMES B. HUNT, JR., GOVERNOR

DEPARTMENT OF ENVIRONMENT,HEALTH AND NATURAL RESOURCESJOHNATHAN B. HOWES, SECRETARY

CONTENTS

Abstract....................................................................................................................................... IIntroduction IPrevious heavy-mineral work 4Laboratory procedures................................................................................................................ 4

Heavy-mineral separation and concentration 4Processing for textural data '" 5Mineralogy........................... 6

Stratigraphy 6Results 8Conclusions 8Acknowledgments 10Reference cited.............. 10Appendix A I IAppendix B................................................................................................................................ 14Appendix C....... I 8Appendix D 2 IAppendix E.. 26

ILLUSTRATIONS

Figure I. Cape Fear Cuspate Foreland project area 22. Location of vibracores in southern portion of study area 33. Location of vibracores in northeastern portion of study area 34. Preliminary stratigraphic framework 65. Total heavy mineral content (THM) versus mean grain size (0) 96. Average total heavy mineral content (THM) by stratigraphic unit.............................. 9

Mineralogy of Vibracore Heavy-Mineral Concentrates and PreliminaryStratigraphic Framework of the SouthernInner Continental Shelf of North Carolina

by

John G. Nickerson, North Carolina Geological SurveyWenfeng Li, North Carolina State University

Mary E. Watson, North Carolina Geological Surveyand Richard C. Dentzman, North Carolina State University

ABSTRACT

Heavy-mineral (specific gravity (sp gr) >2.96)and textural data for 113 samples from 47vibracores obtained from the southern inner Con­tinental Shelf of North Carolina are presented. Apreliminary lithostratigraphic framework for theproject area is also presented. Subsamples fromheavy-mineral concentrates from the vibracoreswere examined. Average total heavy-mineral(THM) content, expressed as a weight percentageof the bulk sample, is 0.51 percent in a range of<0.01 percent to 3.25 percent with a standard de­viation of 0.50 percent. Average economic heavymineral (EHM) content of the heavy-mineral con­centrates is 45.78 weight percent in a range of 4.61percent to 68.87 weight percent. Ilmenite is themost abundant heavy mineral, averaging 26.60weight percent of the heavy-mineral concentrates.

Mean grain-size for the clastic samples is 2.88phi (0), in a range of 0.850 to 4.440 with a stan­dard deviation of 1.00. Lithostratigraphic and lim­ited biostratigraphic analyses reveal that Oligoceneage sands in the project area contain the highestpercentage of heavy minerals. These sands aver­age 0.86 weight percent THM. Grain-size analy­ses of all clastic samples indicates that medium­grained to very fine grained quartz sands (1.90 to3.50) have weight percent THM values greaterthan or equal 1.0. These values are considered toolow to warrant economic exploitation. Additional,more detailed analyses to determine the distribu­tion of heavy minerals within stratigraphic units,

however, may be of interest to other investigations.

INTRODUCTION

This paper presents a listing of heavy-min­eral (specific gravity (sp gr) > 2.96) and texturaldata from a reconnaissance study of 47 vibracoresfrom the southern inner Continental Shelfof NorthCarolina. A preliminary lithostratigraphic frame­work for the project area is also presented. Mostof the vibracores were obtained from the Cape Fearcuspate foreland area (Figures 1,2, and 3). Thiswork is part of a multi-year project aimed at de­veloping the stratigraphic framework and assess­ing the potential for heavy-mineral resources alongthe southern inner Continental ShelfofNorth Caro­lina. This is the fourth interim report generatedfrom this project.

The first report (Hoffman and others, 1991)included the basic geology and heavy-mineral con­tent of 19 vibracores. Mineralogical data fromthese 19 vibracores were summarized in Nickersonand others (1993) and are not repeated in this re­port. The second report (Nickerson and others,1993) provided a summary of sample processingprocedures and a tabulation of heavy-mineral datafor 193 samples from 67 vibracores. The third re­port (Snyder and others, 1994) presented a work­ing model of the stratigraphic framework for theinner shelf area from Mason Inlet to New Inlet,based on shallow, high-resolution seismic data.

The Coastal Engineering Research Center

Are

ao

fFig

ure

3

.--------------L

.,34

°00'

N

Exp

lana

tion

I2

5K

mI

I25

Mil

esI

I25

Nau

tica

lMil

esI

•V

ibra

core

Loc

atio

n(

r'~

Bat

hym

etri

cco

ntou

r/

"//

L..

...:

.------------l3

3°3

N

of.e.,

\) 77°0

0'W

Are

ao

fFig

ure

2

Wil

min

gton

I.....

!"~. \:;:"

;,."

~...

Fig

ure

1.C

ape

Fea

rcu

spat

efo

rela

ndpr

ojec

tar

ea(

Ea)

,an

dit

sre

lati

onsh

ipto

the

Nor

thC

arol

ina

Con

tine

ntal

She

lfem

baym

ents

of

Ons

low

Bay

and

Lon

gB

ay.

Explanation

10KmI I10 Miles

I I10 Nautical Miles

I I

• Vibracore Location

/ Bath)metric contour

)4°00"N

33C40'N

•1142

739.

..~. ''i. ,~.. '~."',.-~,:~, ••. .- -~.

18°30'W

2000•1S000'W 11°30'W

Figure 2. Location and USGS number for vibracores examined in this study in the Cape Fearcuspate foreland area, southern Onslow Bay and northeastern Long Bay

Explanation10Km

I I10 Miles

I I10 Nautical Miles

I I• Vibracore Location

"_< Bathymetric:, contour

77'30' W 77°00'W 76'40' W

34·30' N

Figure 3. Location and USGS number for vibracores examined in this study in the northeasternportion of the sudy area, northern Onslow Bay.

3

(CERC) of the U. S. Anny Corps of Engineerscollected the vibracores in 1971 and 1972 as a partof a CERC reconnaissance study designed to locateand inventory suitable sand resources and toacquire geologic data along the AtlanticContinental Shelf. This program was known asthe Inner Continental Shelf Sediment and Structureprogram (ICONS).

The North Carolina portion of the ICONS studyresulted in two companion reports (Meisburger,1977; 1979). The first report dealt exclusively withsand nourishment resources from this area; thesecond report presented lithologic, textural, andlimited biostratigraphic data for the North CarolinaICONS study area. Meisburger (1979) correlatedcores using lithologic data supported by limitedbiostratigraphic data.

The U.S. Geological Survey (USGS)inventoried and renumbered the ICONS vibracoresafter obtaining custody of them. The USGSnumbering scheme for the vibracores is usedherein; however, the CERC vibracore codes arealso provided for cross-reference purposes. An "R"designation following the core number indicates areplicate vibracore.

PREVIOUS HEAVY-MINERAL WORK

Meisburger (1979) reported small quantities ofcolored, translucent mineral grains in these cores,and noted that their occurrence was mostlyrestricted to the "surficial and near-surfacedeposits." He perfonned heavy-liquid separationof a "few selected samples" in bromofonn (sp gr =2.87) and detennined that most of these coloredtranslucent mineral grains were heavier than quartz.He also noted that most of these minerals were pinkto red, pale-yellow, or pale yellowish-green, andidentified these grains as gamet, staurolite, andepidote, respectively, based upon previousmineralogical studies of the surficial shelfsediments in the area (pilkey, 1963; Moore andGorsline, 1963; Gorsline, 1963).

Eighty-seven ocean floor grab-samples fromthe North Carolina Continental Shelf wereanalyzed for mineralogy and texture (Grosz andothers, 1990). Of the 87 samples, 54 were fromthe area referred to in that report as "south ofHatteras" which partially coincides with the currentstudy area. These samples averaged 1.04 weightpercent heavy minerals in a range of 0.04 to 3.27weight percent with a standard deviation of 0.71.

Textural and mineralogical analyses for193samples from 67 of the 114 ICONS vibracores werereported by Nickerson and others (1993). Thesesamples averaged 0.56 weight percent total heavyminerals (THM) in a range of<0.01 to 3.69 weightpercent with a standard deviation of 0.48.

The economic heavy minerals (EHM)ilmenite, leucoxene, rutile, zircon, monazite, andthe aluminosilicates (undifferentiated kyanite,sillimanite, and andalusite) comprised an averageof 44.4 weight percent of the heavy-mineralconcentrates in a range of 0.27 to 68.1 weightpercent. Ilmenite was found to be the mostabundant EHM in the concentrates with an averageweight percent of 26.07. The remaining EHMsuite, on average, contained 5.75 weight percentrutile, 5.73 weight percent zircon, 4.45 weightpercent leucoxene, 3.54 weight percentaluminosilicates, and 0.36 weight percentmonazite.

Mean grain size for the clastic samples wasdetermined to be 2.740. Grain size analysesindicated that sediments with THM content greaterthan or equal to 1.0 weight percent had mean grainsizes that fell between the 2.00 and 4.00 sizeclasses (fine- to very fine grained sand).

LABORATORY PROCEDURES

Heavy-Mineral Separation and Concentration

The procedures used in processing thevibracores are outlined in Nickerson and others(1993). Vibracores were opened, photographed,

4

Processing for Textural Data

smaller heavy-mineral concentrates « 10 g) weresplit at 0.5 A. On average, the dominant mineralphases in the separations were as follows:

described, subsampled, and processed for heavy­mineral content. Channel subsamples (about onekilogram) were taken to provide material fortextural and compositional analyses, and to producean archive sample. The remainder of the core wasconsumed in the processing for heavy-minerals.

Preconcentration of the heavy minerals wasperformed with a 3-tum spiral device where waterand centrifugal force act as separation agents. Thisseparation produced two subsamples: a spiralconcentrate and a spiral reject. Heavy-liquidseparation of the spiral concentrate throughAcetylene Tetrabromide (Tetrabromoethane, sp gr= 2.96) produced the final heavy-mineralconcentrates referred to as SHTBS (Spiral HeavyTetrabromoethane Sinks). A subsample of thespiral rejects material was also processed throughAcetylene Tetrabromide to estimate the amount ofheavy minerals "lost" in the spiraling operation.The spiral reject heavy-liquid concentrate isreferred to as SLTBS (Spiral LightTetrabromoethane Sink).

SeparationFerromagnetics

0.2 A fraction0.4 A fraction

0.6 A fraction

1.8 A fraction

> 1.8 A fraction

Mineralsilmenite, iron oxides, and traceamounts of epidote, aluminosilicates.zircon (with inclusions) andpyroboles (undifferentiatedamphiboles and pyroxenes)

ilmenite and garnet

ilmenite, epidote, staurolite. and

pyroboles

epidote, tourmaline, sulfides(mainly framboidal pyritel

marcasite), and staurolite

leucoxene, sulfides, rutile,

aluminosilicates. and tourmaline

zircon, quartz (present as acontaminant), rutile,

aluminosilicates, and phosphate

The amount of recovered heavy minerals(RHM) in the bulk sample was calculated bydividing the SHTBS weight by the bulk sampleweight. The heavy mineral content of the spiralrejects (as estimated from a subsample) added tothe RHM amount provides the THM value on abulk sample basis.

The heavy-mineral concentrates were weighed,labeled, and fractionated using two electromagneticdevices; a Frantz lsodynamic Magnetic Separatorand a Frantz Magnetic Barrier LaboratorySeparator. The latter instrument can be set tooperate a different amperages (A) to isolatemineral species of given magnetic susceptabilities.This separation facilitates the identification andquantification of the minerals present in the heavy­mineral fractions and reduces the number ofmineral species in a given magnetic fraction. Inmost samples, 6 magnetic fractions (ferromagnetic;0.2 A; 0.4 A; 0.6 A; 1.8 A and> 1.8 A) weregenerated for each heavy-mineral concentrate;

5

Standard sieve analysis techniques were used toobtain grain-size data for all clastic samples. Meangrain size and standard deviation were calculatedusing the method of moments described by Folk(1974). A portion of the channel subsample was usedfor sieve analysis. Splits of this subsample wereweighed and wet-sieved to remove material finer than40 (0.044 mm-silt and clay fractions) and materialcoarser than -1.00 (2.0 mm- gravel fraction). Theremaining sand-sized material was sieved, weighed,and archived. Calculations of mean grain sizeincorporated the finer than 40 weight fraction.Because the gravel fraction contained mostly shellmaterial and no mineral grains, its weight was ignoredin the calculations.

A representative split of the channel subsarnplewas used to determine carbonate content by aciddigestion. This work was performed by the NorthCarolina State University Minerals ResearchLaboratory in Asheville, North Carolina. Data forweight percent carbonate and mean grain size arelisted in Appendix C.

Mineralogy

All samples were examined under a binocu­lar microscope with reflected- and transmitted-lightcapability. Mineral identification was accom­plished by observing the shape, color, and opticalproperties of the mineral grains. Short-wave (254nm) and long-wave (365 nm) ultraviolet illumina­tion aided in the identification of monazite and zir­con, respectively. A petrographic microscope wasused to confirm mineral identities. Sixteen min­erai species consistently categorized are listed inAppendix D. Visual estimation ofthe relative min­eral abundances in each magnetic fraction was ac­complished by comparing binocular volumetricestimates to area percentage diagrams ofTerry andChilingar (1955).

A thin layer of mineral grains (ideally one-grainthick) was viewed through the microscope in orderto allow for mineral identification and optimalcorrelation with the area percentage diagrams.Summing mineral species estimates across allmagnetic fractions for a given sample determinedthe final heavy-mineral composition for thatsample (Appendix D). Weight percent heavyminerals was calculated by multiplying thevolumetric estimate for a given mineral species bythe weight of that magnetic fraction, and dividingthis product by the bulk sample weight.

Detailed statistical analysis of the heavy­mineral concentrates is an ongoing thesis projectat North Carolina State University by Wenfeng Liand is planned to be presented in a future,comprehensive project report.

STRATIGRAPHY

A preliminary stratigraphic framework (Figure4) was established for this data set on the basis of:1) lithologic descriptions and photographs of thevibracores; 2) foraminiferal biostratigraphicanalysis performed on 19 project cores by LarryZarra, former geologist with the North CarolinaGeological Survey (NCGS), as summarized in

Hoffman and others (1991 )-Zarra'smicropaleontology notes remain on file at theNCGS and this work is cited extensively below as"Zarra (unpublished data);" 3) limited molluscanbiostratigraphic analysis provided by L. W. Ward,Virginia Museum of Natural History; 4) additionalbiostratigraphic work performed by Mary Watsonunder this current study; and 5) seismic sequenceanalysis of a portion of the study area as reportedin Snyder and others (1994).

Stratigraphic identifications, queried orquestioned where more data and analysis areneeded, are compiled in Appendix E. Note thatthis table includes samples for which mineralogicaland textural data have been given in earlier projectreports (Hoffman and others, 1991; Nickerson andothers, 1993). Those reports did not reflect thestratigraphic analysis done under this phase of thestudy.

Additional biostratigraphic work as well asmore complete integration of the litho- andbiostratigraphy with seismic sequence analysis ofthe region is anticipated in the next phase of thisstudy. This effort will refine the workingframework described below and stratigraphic

:>. Recent~ Qh)~

c~ Holocene~

(:;j::s0 Pleistocene

pp) PP2Pliocene

CMiocene Pungo River Fm.

~ River Bend Fm..€ Oligocene~ Oli~ocene sandf-

Eocene Castle Hayne Fm.

Paleocene Beaufort Fm.

Late Peedee Fm.Cretaceous

Figure 4. Preliminary stratigraphic frameworkfor ICONS vibracore data set.

6

assignments given to the project samples in channels cut into the underlying Peedee strata.Appendix E.

The oldest unit encountered, the PeedeeFormation of Late Cretaceous age, crops out innorthwestern and north-central Long Bay (cores732, 730, and 758). This unit is characteristicallya muddy, fine- to medium-grained quartz sand withtrace amounts ofglauconite and phosphate. Zarra(unpublished data) assigned samples from this unitto the Gansserina gansseri planktic Zone, whichis Maastrichtian (Upper Cretaceous). This unit hasbeen traced through the subbottom via seismicrecords into southern Onslow Bay as seismicsequence Kpd of Snyder and others (1994).

The Paleocene Beaufort Formation occurs incores 727, 736, 743, and 751. The unit consists ofmuddy, fine- to medium-grained glauconitic quartzsand with locally occurring turritelid-moldbiosparrudi te (core 751). Hoffman and others(1991) did not report any Paleocene section in thecores examined for that study. This unit isidentified on the basis of: I) lithologies thatcorrelate with Paleocene age sediments reportedby Harris (oral communication) from vibracoresin Long Bay; 2) the presence of Flabellum, a coralcommonly recognized as a Paleocene indicator, insample 727.2; 3) similar lithologies described fromonshore boreholes by Zarra (1991); and 4)stratigraphic identifications made by Meisburger(1979) on some of these same cores. Paleocenestrata have been reported to crop out in Long Bayby Meisburger (1979).

The middle Eocene Castle Hayne Formationcrops out in northern Long Bay (cores 752, and755) and consists ofa sandy bryozoan biomicruditeto a biosparrudite. Zarra (unpublished data)identified two diagnostic Castle Hayneforaminifera in core 755, Eponides carolinensisand Siphonina danvillensis, and core 767 containedthe middle Eocene megafossil Pectenmembranosus. Snyder and others (1994) showedthat the Castle Hayne Formation, in southernOnslow Bay, is thin, discontinuous, and occupies

7

Oligocene age deposits are represented by themolluscan-mold biosparrudite of the River BendFormation, and an unnamed fine- to very fine­grained, well-sorted, dolomitic, muddy quartz sandunit. The River Bend Formation crops out in theNew River Inlet area in cores 718, 719, and farthersouth in core 2002. The unnamed sand unit iswidespread in southwestern Onslow Bay and cropsout in cores 1159, 1145, 1146, and 797. Hoffmanand others (1991) reported that the unnamedOligocene sand unit is biostratigraphicallyequivalent to the River Bend Formation.

Core 724 penetrated Miocene Pungo RiverFormation. The lithology consists of medium­grained, poorly sorted, slightly shelly phosphaticsand. Zarra (unpublished data) noted the presenceof a middle to upper Miocene benthic indexspecies, Virgulinella miocenica, and stated that theage could be in the range of planktic Zone N9 toNIL

Several large valley-fililithosomes delineatedby seismic data in southern and south-centralOnslow Bay (PP"r unit ofSnyder and others, 1994)have been confirmed through vibracore data -to becomposed of biomicrudite, biomicrite, andbiosparrudite. These deposits, informally calledPP

Jin this study, commonly contain pieces of

bryozoans, barnacle plates, abraded fragments ofmolluscan shells, and a mixture of Pliocene andPleistocene micro and macrofaunas (cores 805,792, 2001 R in Hoffman and others, 1991; cores788, 789, 795, 803, 804 in this study). The PPJ

unit occupies 4 northwest-southeast-trendingpaleovalleys greater than 3 kilometers wide andcut more. than 15 meters deep into the Oligocenesection (Snyder and others, 1994).

Muddy shelly sands and silty clays of Pliocene,Pleistocene, or mixed PliolPleistocene age havebeen identified here as the PP2 unit. Within thisrange of lithologies, the unit exhibits a high degreeof variability throughout the study area. Thirty-

two cores have outcropping PP2 strata (AppendixE). Zarra (unpublished data) recognizedGlobigerina woodi and Globigerina eamesi, bothof which became extinct in the Pliocene, in core783. Other PP2 samples carry a clearly Pleistocenefauna (for example, Carolinapecten eboreus insample 781.2 or Chama gardneri in sample 745.1).Core 799 contained both Pliocene and Pleistocenefaunas (Mulinia congesta and Mulinia lateralis).

The PP2 unit is considered to be approximatelycorrelative with two lithosomes identified fromshallow, high-resolution seismic data by Snyderand others (1994): the lower shoreface, a seawardextension of the modern shoreface, and paleo­fluvial channel fill deposits which consist ofdistinct channel-fiJ) deposits that can be tracedlocally onto the shelf (Snyder and others, 1994).

Loose, slightly shelly, medium- to coarse­grained quartz sands present at the sediment-waterinterface along the inner shelf are interpreted torepresent the youngest unit in the area. It ispreliminarily assigned a Holocene age, and labeled"Qh/' Shells with original pigment remaining arecharacteristic of this unit. This unit likelyrepresents the two shoal lithosomes (linearshoreface-attached shoals and inner shelf sandshoals ) of Snyder and others (1994) and is mostprevalent in the Frying Pan Shoals area.

RESULTS

Data are tabulated in Appendices A, B, C,D, and E. Average THM content of the vibracores,expressed as a weight percentage of the bulksample, is 0.51 in a range of <0.0 I weight percent(sample 793.2) to 3.25 weight percent (sample1162.2) with a standard deviation of 0.50 weightpercent. Average EHM of the heavy-mineral con­centrates is 45.78 weight percent. Ilmenite is themost abundant mineral of the EHM suite, consti­tuting an average of 26.60 weight percent of theheavy-mineral concentrates.

The remainder of the average EHM content

8

contains 8.77 weight percent zircon with 4.47weight percent rutile, 4.27 weight percent alumi­nosilicates, 3.04 weight percent leucoxene, and0.19 weight percent monazite. Other minerals hav­ing lesser economic significance include stauro­lite, tourmaline, and garnet with average weightpercentages of 11.31,4.48, and 3.42, respectively.

Mean grain size for the clastic samples wasdetermined to be 2.880 (0.130 mm - fine-grainedsand) with a range of 0.800 (0.55 mm) to 4.440(0.045 mm) and a standard deviation of 1.00 (0.5mm). Grain size analysis indicates that sedimentswith weight percent THM greater than or equal to1.0 have mean grain sizes that fall between 1.90(0.26 mm) and 3.60 (0.08 mm) and are classifiedas medium- to very fine grained sand (Figure 5).Preliminary stratigraphic unit assignments indicatethat the Oligocene sand unit has the greatestpotential for heavy-mineral resources with anaverage weight percent THM of 0.86 (Figure 6).

The average zircon-tourmaline-rutile (ZTR)index (Hubert, 1962) for the quartz sands is 33, ina range of 17 to 68. The values obtained are highlyvariable and no obvious trend was identified. Theseresults are listed in Appendix C.

CONCLUSIONS

I) Heavy-mineral resource potential along thesouthern inner Continental Shelf of North Caro­lina appears to be poor based upon the examina­tion of this data set. The average THM content for113 samples from 47 vibracores is 0.51 weightpercent and is well below the 4 percent thresholdgenerally considered to be of interest for economicresource potential (Garnar, 1978).

2) Average EHM of the heavy-mineralconcentrates is 45.8 weight percent, with a rangeof 4.6 to 68.8 weight percent, and a standarddeviation of 13.8. Ilmenite is the most commonheavy mineral, constituting 26.6 weight percent ofthe heavy-mineral concentrates.

- 1- - -, - - T - - 1- - -I - T - - r - -, - - l

- 1- _ -' _ _ .1 _ _ 1_ _ _I _ ·1 _ _ 1_ _ _I _ _ JI 1 I I I I I I I

- 1- - --i - - + - - 1- - -I - - + - - I- - -I - - .,I I I I I .1 I I I

-,- - -I - - T - - 1- - -I - - T - - ,- - -,- - -,- 1- - ~ - - -1- - - 1- - ·-1 - ~ -!- - - I- - -I - - -l•I I I I·· Ie .··1 1 1 I• •- 1- - -, - - T - -- 1-. - -1'- ;- ~,- -.,-. - -I -.- l_1- __1_ ~ ~·_I~'-.J -! _ 1.-. _.~ .!. ~Ie- __,

I • I • I •• • I·" I· II. I .1·. I• • ••

3.50

~3.00

= 2.50E-i-=~ 2.00~~

=- 1.50-.=cal-..- 1.00~

0.50

0.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Mean Grain Size (0)

Figure 5. THM content versus mean grain size (0).

0.90

~ 0.80

=E-i 0.70-= 0.60~CJa..~ 0.50=-- 0040-~~ 0.30cal~

0.20a..~...< 0.10

0.00

~\;j \;j~ ""~'o c,' ) !b'

~ i' ~. ~ l:I b' ~~~ ~~. c.~ ~ &0(::' '~l'

&" R" ~tI~ cF ~R'" &'~ ~~. ~r:,~ .ffi q"tlf:.

q" q".~c,'" C?'S ~ ~c,

~.,'1>

Stratigraphic UnitFigure 6. Average weight percent total heavy minerals (THM) for stratigraphic units identified in the

Cape Fear cuspate foreland region.

9

3) Data derived from the initial 67 vibracores(Nickerson and others, 1993) are similar toconcentrations derived from the 47 vibracores inthe present study.

4) Preliminary stratigraphic unit assignmentsreveal that Oligocene sands in the project area, onaverage, contain 0.86 weight percent THM. Thisvalue is more than any other stratigraphic unit inthe project area.

ACKNOWLEDGMENTS

This project was supported in part by the U.S.Department of Interior, Minerals ManagementService (MMS) through a cooperative agreementwith the Continental Margins Committee of theAssociation ofAmerican State Geologists (AASG).This subagreement is administered and coordinatedfor MMS by the Bureau of Economic Geology,The University ofTexas at Austin and includes theNorth Carolina Department of Environment,Health, and Natural Resources as a subagreementrecipient. The MMS-AASG cooperativeagreement concerning work reported herein isnumber 14-35-0001-30643; the subagreementnumber is 30643-NC.

Andrew Grosz (USGS) provided thevibracores used in this study to the North CarolinaGeological Survey and much of the equipment usedin the sample processing. His guidance on vari­ous aspects ofthe study is gratefully acknowledged.Phillip Orozco assisted in sample processing cour­tesy of a grant supplied by the E. I. DuPont DeNemours and Company.

Reviews by Tim Davis, Steve Snyder, Al Car­penter, Charles Gardner, and Jeff Reid greatly im­proved the manuscript. Their efforts are appreci­ated.

REFERENCES CITED

Folk, R.L., 1974, Petrology of Sedimentary Rocks: Austin,Texas. Hemphill Publishing Company. 182 p.

Garnar, T.E., Jr., 1978, Geological classification andevaluation of heavy-mineral deposits: GeorgiaGeologic Survey Information Circular 49, p. 25-36.

Gorsline, D.S., 1963. Bottom sediments of the Atlantic shelfand slope off the southern United States: Journal ofGeology, v. 71, p. 422-440.

Grosz, A.E.• Hoffman, C.W., Gallagher, P.E.• Reid, J.C.• andHathaway, lC., 1990. Heavy-mineral resource potentialofsurficial sediments on the Atlantic Continental Shelfoffshore of North Carolina: a reconnaissance study:North Carolina Geological Survey Open-File Report.90-3,58 p.

Hoffman. C.W., Gallagher, P.E.• and Zarra. L., 1991,Stratigraphic framework and heavy-mineral resourcepotential of the inner Continental Shelf, Cape Fear area,North Carolina: first interim progress report: NorthCarolina Geological Survey Open-File Report. 91-3. 31p.

Hubert, J.F.. 1962, A Zircon-Tourmaline-Rutile maturityindex and the interdependence of the composition ofheavy mineral assemblages with the gross compositionand texture of sandstones: Journal of SedimentaryPetrology,v.32, no. 3. p. 440-450.

Meisburger. E.P., 1977, Sand resources of the inner ContinentalShelfof the Cape Fear region, North Carolina: U.S.ArmyCOl]>s ofEngineers. Coastal Engineering Research CenterTechnical Paper 77-11. 20 p.

Meisburger. E.P.• 1979. Reconnaissance geology ofthe innerContinental Shelf. Cape Fear region, North Carolina:U.S. Army Corps of Engineers, Coastal EngineeringResearch Center Technical Paper 79-3, 135 p.

Moore, lE., and Gorsline, D.S., 1963, Physical and chemicaldata for bottom sediments. south Atlantic coast of theUnited States: U.S. Fish and Wildlife Service. SpecialScience report, 366, 84 p.

Nickerson. lG., Li, Wenfeng. and Watson, M.E.• 1993,Heavy-mineral data for selected vibracores from thesouthern inner Continental Shelf of North Carolina:North Carolina Geological Survey Open-File Report.93-37.41 p.

Pilkey. O.H.• 1963. Heavy minerals of the U.S. southAtlantic Continental Shelf and slope: GeologicalSociety of America Bulletin. v. 74. p. 641-648.

Snyder, S.W.,. Hoffman, C.w., and Riggs, S.R., 1994,Seismic stratigraphic framework of the innerContinental Shelf: Mason Inlet to New Inlet, NorthCarolina: North Carolina Geological Survey Bulletin96,75 p.

Terry. R.D.• and Chilingar, G.V.. 1955. Summary of"concerning some additional aids in studyingsedimentary formations" by M.S. Shvetsov: Journalof Sedimentary Petrology, v. 25, p. 229-234.

10

APPENDIX A

Table showing sample number, CERC code, sample length (in meters), water depth of vibracores( in meters), bulk sample weight (in grams), weight percent of the gravel fraction of the bulk sample(+10 mesh-2 mm), and weight percent total heavy minerals (THM). Sample numbers are derived fromthe USGS core number and a decimal extension (.1, .2, etc.) to indicate a core segment that has beenisolated as a sample interval. The.1 sample is the uppermost sample interval of a core, .2 is the nextsample down, and so on. Samples are typically .5 to 2 m in length.

II

]2

Appendix A

Sample Water Bulk Sample Water BulkSample CERe Length Depth Weight Wt. % Wt.% Sample CERC Length Depth Weight WL% Wt. %Number Number !ml !ml !J:} tlOmesh IBM Number Number !ml !ml !J:} tlOmesb IBM

790.1 60 1.09 15 7,759 3.0 0.57 803.1 72 1.03 12 5,452 60.8 0.14790.2 1.53 12,847 0.8 0.97 803.2 0.99 5,196 69.5 0.05

790.3 1.35 11,768 0.1 0.74 803.3 1.16 4,323 19.7 0.22

790.4 1.34 11,853 0.1 0.51 803.4 1.23 7,477 64.9 0.07

791.1 113 1.44 16 16,495 15.1 0.24 804.1 71 2.11 13 17,844 39.7 0.16

791.2 1.40 16,644 25.5 0.07791.3 1.51 18,307 21.3 0.04 1141.2 108 1.86 15 15,410 4.8 0.48

791.4 1.50 14,176 39.3 0.08 1141.3 1.71 13,541 4.2 0.85

793.1 76 1.01 18 5,493 44.0 0.05 1142.1 109 0.30 16 824 1.9 0.34

793.2 1.02 6,218 40.1 om793.3 1.49 9,157 48.1 0.01 1156.1 88 1.50 27 9,261 4.1 0.96

793.4 1.59 10,103 46.4 0.02 1156.2 1.57 8,714 1.2 1.001156.3 2.18 14,295 2.2 1.32

796.1 78 1.92 14 12,901 30.1 0.50 1156.4 0.90 5,597 0.2 0.93

796.2 1.06 7,742 0.3 0.15796.3 1.40 10,675 0.1 0041 1157.1 89 1.15 17 9,001 12.1 0.43

1157.2 1.90 14,596 0.2 1.18

797.1 48 1.62 13 12,703 1.3 0.62 1157.3 1.55 11,965 0.1 1.65

797.2 1.54 13,185 0.2 0.62 1157.4 1.37 8,218 0.3 2.06

797.3 1.50 12,663 0.2 0.55797.4 1.51 12,405 0.1 0.61 1162.1 104 1.20 13 8,709 8.9 1.22

1162.2 1.23 9,161 0.4 3.25

798.1 49 1.66 15 12,776 10.4 lAO2000.1 .64 1.20 19 8,752 1.8 0.11

799.1 50 1.01 II 6,994 5.0 0.50 2000.2 1.61 13,832 1.7 0.08

799.2 2.11 12,017 4.0 0.38 2000.3 0.76 5,658 3.6 0.41

799.3 2.31 18,940 15.7 1.57 2000.4 0.90 6,534 2.5 0.69

799.4 0.74 4,936 10.1 0.32Count (n): 113 113

800.1 51 2.10 II 14,341 22.7 0.66 Average: 17.0 0.51

800.2 1.81 9,162 2.0 0.15 Maximum: 69.5 3.25

800.3 1.09 5,381 0.7 0.07 Minimum: 0.1 <0.01800.4 1.14 8,790 21.4 0.34 Stan. Dev. 19.6 0.50

13

APPENDIX B

Table showing sample number, a short lithologic description, and total heavy mineral content (THM)for samples in the study.

14

SampleNumber

718.1720.3720.4721.1721.2722.1722.2722.3723.1723.2728.1728.2728.3729.1729.2730.1731.1731.2737.1737.2737.3737.4739.1739.2739.3741.1741.2741.3741.4745.1745.2745.3745.4747.1748.1748.2749.1752.1758.1759.1759.2760.1760.2762.1763.1763.2

Appendix B

Litholoeic Description

phosphatic, sandy, moldic biomicruditesandy, moldie, biomicrite / calcareous, fine-grained quartz sandcalcareous, fine-grained quartz sandvery fine grained quartz sandi muddy quartz sandi silty, laminated mudstonesilty mudstone I fine-grained quartz sandshelly, loose, fine- to medium-grained quartz sandsilty, sandy daymuddy, shelly, medium- to fine-grained quartz sand I phosphatic, sandy, dolomite cobblemuddy, shelly, medium-grained quartz sand I shell beds I flat, oblong pebbles at basesandy, bryozoan biomicrudite, scattered pebblesmuddy, medium- to fine-grained quartz sand I silty claysilty daysilty clayshelly, muddy, medium- to fine-grained quartz sandsilty organic-rich claymuddy, coarse- to fine-grained quartz sand I glauconitic, phosphatic, silty mudstoneslightly shelly, muddy medium- to fine-grained quartz sand / sandy dayglauconitic, phosphatic, very fine grained, sandy, dolomitic clayshelly, muddy, fine-grained quartz sandmuddy, fine-grained quartz sand, scattered shellssilty laminated mudstone/lenses of sand, silty partings,silty laminated mudstone/lenses of sand, silty partings,coarse-grained quartz sand / muddy, fine-grained quartz sand / silty mudstonesilty mudstonesilty mudstonemuddy, slightly shelly, fine-grained quartz sandsandy bryozoan biomicruditesandy bryozoan biomicruditesandy bryozoan biomicruditemuddy fine-grained sandsilty laminated claysilty laminated claysilty laminated clay Ifine-grained muddy sandsandy shell hashsandy biomicruditesandy biomicruditesandy biomicritebryozoan biomicruditemuddy, slightly shelly, medium- to granular-sized quartz sand, fines downwardslightly muddy, shelly medium- to fine-grained quartz sandshelly, muddy coarse to fine-grained quartz sand I organic-rich clayshelly, coarse- to fine-grained quartz sandshelly, coarse- to fine-grained quartz sandshelly, sandy clayl shelly, muddy coarse-grained quartz sandshelly, muddy coarse-grained sand I sandy clayshelly, muddy, coarse- to medium-grained quartz sand / sandy clay

15

Wt%111M

0.220.501.160.860.541.280.071.110.490.060.280.010.050.670.950.270.820.220.990.140.220.090.690.090.060.330.060.070.061.310.120.040.500.280.310.180.250:180.610.981.261.020,370.480.730.32

SampleNumber

Appendix B

LitholoKic DescriptionWt%TUM

763.3765.1765.2766.1766.2778.1781.1781.2782.1786.1786.2

786R.I786R.2

788.2788.3789.1789.2790.1790.2790.3790.4791.1791.2791.3791.4793.1793.2793.3793.4796.1796.2796.3797.1797.2797.3797.4798.1799.1799.2799.3799.4800.1800.2800.3800.4

interbedded shelly, muddy, medium- to fine-grained quartz sand & organic rich clay 0.64silty, muddy, fine-grained quartz sandi shellsl wood fragments 0.63coarse-medium, clean quartz sand 0.46muddy, fine-grained quartz sand 1.11muddy, fine-grained quartz sand I calcareous muddy quartz sand 0.82medium- to coarse-grained, slightly shelly clean quartz sand 0.34muddy, shelly, coarse- to medium-grained quartz sand with abraded (rounded) shell fragments 0.41muddy,shelly, fine- to coarse-grained quartz sand 0.27shelly quartz sand I phosphatic, sandy, moldic biomicrudite 0.21pebbly, shelly, medium-grained quartz sand 0.69sandy, bryozoan biomicrudite 0.15moldic biomicruditewith common mollusc steinkems 0.14glauconitic, phosphatic, silty, dolomitic quartz sand 0.12biomicrudite 0.05biomicrudite 0.07sandy biomicrudite 0.24sandy bryozoan biomicrudite 0.08medium-grained quartz sand I phosphatic, dolomitic quartz sand 0.57glauconitic, phosphatic, fine-grained, dolomitic quartz sand 0.97phosphatic, muddy, fine-grained, dolomitic quartz sand 0.74glauconitic, phosphatic, fine-grained, dolomitic quartz sand 0.51shelly coarse sand I muddy medium-grained quartz sandi sandy biomicrudite 0.24sandy biomicrudite 0.07sandy biomicrudite 0.04sandy biomicrudite 0.08bryozoan biomicrudite 0.05bryozoan biomicrudite 0.01bryozoan biomicrudite 0.01bryozoan biomicrudite 0.02shelly fine-grained quartz sand I shelly, muddy coarse- to medium-grained quartz sand I silty, sandy clay 0.50dolomitic, muddy, silty, fine-grained quartz sand 0.15dolomitic, muddy, silty, fine-grained quartz sand 0.41muddy, dolomitic, fine-grained quartz sand, phosphate, glauconite 0.62muddy, dolomitic, fine-grained quartz sand, phosphate, glauconite 0.62muddy, dolomitic, fine-grained quartz sand, phosphate, glauconite 0.55muddy, dolomitic, fine-grained quartz sand, phosphate, glauconite 0.61thin shell lag with coarse- to fine -grained quartz sand I muddy, dolomitic fine-grained quartz sand 1.40slightly shelly, coarse- to fine-grained quartz sand with scattered pebbles 0.50interbedded slightly shelly, muddy quartz sand and organic-rich clay and muddy fine-grained quartz sand 0.38muddy, very shelly, fine-grained quartz sand I muddy, shelly quartz sands 1.57phosphatic, muddy, dolomitic sands 0.32Silty clay I muddy, shelly quartz sand 0.66slightly shelly, silty, clay wi lenses of shelly, medium- to coarse-grained quartz sand 0.15slightly shelly, silty, clay wi lenses of shelly, medium-to coarse-grained quartz sand 0.07muddy, shelly quartz sandi muddy, dolomitic quartz sand 0.34

16

SampleNumber

803.1803.2803.3803.4804.1

1141.21141.31142.11156.11156.21156.31156.41157.11157.21157.31157.41162.11162.22000.12000.22000.32000.4

Appendix B

LitholoKic Description

thin coarse, shelly quartz sand I bryozoan biomicruditebryozoan biomicruditebryozoan biomicruditebryozoan biomicruditebryozoan biomicruditephosphatic, glauconitic, dolomitic muddy quartz sand, rounded, and well-sortedphosphatic, glauconitic, dolomitic muddy quartz sand, rounded, and well-sortedslightly shelly, muddy, medium-to coarse-grained quartz sandshelly, muddy fine-grained quartz sand I laminated silty clayshelly, muddy fine-grained quartz sand I laminated silty clayshelly, muddy fine-grained quartz sand, laminated silty clay I shelly, med·fine grained quartz sandglauconitic, very fine grained quartz sandmuddy, shelly, coarse- to medium-grained quartz sandslightly muddy, fine-grained quartz sand, glauconiteslightly muddy, fine-grained quartz sand, glauconiteslightly muddy, fine-grained quartz sand, glauconiteshelly, muddy, medium-grained quartz sandmuddy fine-grained quartz sandshelly, coarse-grained quartz sandshelly fine-grained quartz sandshelly fine-grained quartz sandshelly fine-grained quartz sand

17

Wt%TIIM

0.140.050.220.070.160.480.850.340.961.001.320.930.431.181.652.061.223.250.110.080.410.69

APPENDIX C

Sample number, THM in weight percent, zircon-tourmaline-rutile index (ZTR) for the quartz sandsamples, mean grain size (in phi units) for all clastic samples, and weight percent carbonate. ZTR indexis a measure of the samples maturity; ZTR= (Zircon+Tourmaline+Rutile in weight percent)/(sum ofthe transparent minerals in weight percent).

18

APPENDIXCMean Mean

Sample Wt% ZTR Grain CoCO) Sample Wt% ZTR Grain CaCO)Number IBM Index Size <0> :ID!& Number TI!M lmkx Size <0> ~

718.1 0.22 58.9 749.1 0.25 60.1

720.3 0.50 48.5 752.1 0.18 83.5720.4 1.16 38 14.3

758.1 0.61 51.5721.1 0.86 4.20 15.0721.2 0.54 32 2.43 6.7 759.1 0.98 18 2.56 18.2

759.2 1.26 29 2.27 21.9722.1 1.28 28 2.33 30.3722.2 0.07 4.37 18.0 760.1 1.02 25 1.91 27.1722.3 1.11 38 2.38 20.4 760.2 0.37 18 1.81 26.4

723.1 0.49 20 67.9 762.1 0.48 47 1.62 50.3723.2 0.06 93.5

763.1 0.73 17 2.36 17.5728.1 0.28 3.90 14.6 763.2 0.32 34 1.80 38.1728.2 0.01 4.44 19.7 763.3 0.64 25 3.24 20.3728.3 0.05 4.39 17.0

765.1 0.63 42 2.68 14.8729.1 0.67 39 1.79 25.3 765.2 0.46 42 1.60 4.6729.2 0.95 3.60 58.3

766.1 1.11 26 2.66 16.3730.1 0.27 3.28 54.4 766.2 0.82 26 2.14 20.3

731.1 0.82 18 2.76 44.6 778.1 0.34 27 2.15 9.9731.2 0.22 3.12 71.7

781.1 0.41 24 1.23 52.6737.1 0.99 24 2.96 20.9 781.2 . 0.27 35 1.67 55.2737.2 0.14 24 4.10 13.7737.3 0.22 4.26 17.9 782.1 0.21 61.3737.4 0.09 4.35 18.5

786.1 0.69 39 1.29 47.8739.1 0.69 40 2.18 20.1 786.2 0.15 94.0739.2 0.09 4.28 19.9739.3 0.06 4.34 26.7 786R.I 0.14 86.7

786R.2 0.12 47 4.14 25.3741.1 0.33 41 2.61 18.1741.2 0.06 93.8 788.2 0.05 95.7741.3 0.07 90.6 788.3 0.07 93.8741.4 0.06 89.5

789.1 0.24 56.8745.1 1.31 35 2.86 14.2 789.2 0.08 95.9745.2 0.12 4.35 24.2745.3 0.04 4.40 26.9 790.1 0.57 25 2.20 34.1745.4 0.50 4.06 15.7 790.2 0.97 50 3.60 53.8

790.3 0.74 41 3.89 50.5747.1 0.28 0.85 76.4 790.4 0.51 36 4.05 51.7

748.1 0.31 58.7 791.1 0.24 29 1.61 56.8748.2 0.18 70.6 791.2 0.07 84.3

19

APPENDIXCMean Mean

Sample Wt% ZTR Grain CaC03

Sample Wt% ZTR Grain CaC03Number :rHM Index Size (0) Wt% Number IBM ~ Size (0) m!&791.3 0.04 94.0791.4 0.08 94.7 804.1 0.16 87.1

793.1 0.05 99.6 1141.2 0.48 32 3.07 41.8793.2 0.01 99.5 1141.3 0.85 34 3.10 41.8793.3 0.01 99.6793.4 0.02 99.3 1142.1 0.34 27 1.82 46.3

796.1 0.50 43 1.48 45.9 1156.1 0.96 3.43 26.6796.2 0.15 68 4.11 20.9 1156.2 1.00 3.48 20.7796.3 0.41 57 4.20 18.1 1156.3 1.32 34 2.93 19.7

1156.4 0.93 21 3.08 5.5797.1 0.62 48 3.45 38.0797.2 0.62 34 3.52 38.2 1157.1 0.43 26 1.56 14.6797.3 0.55 50 3.57 33.2 1157.2 1.18 17 2.54 5.9797.4 0.61 52 3.74 27.6 1157.3 1.65 23 2.79 4.4

1157.4 2.06 20 2.93 6.3798.1 1.40 48 3.40 24.5799.1 0.50 30 1.64 8.1 1162.1 1.22 36 2.78 16.6

1162.2 3.25 41 2.97 9.2799.2 0.38 25 2.25 25.2799.3 1.57 39 2.36 45.3 2000.1 0.11 34 1.49 5.9799.4 0.32 22 57.0 2000.2 0.08 40 1.70 13.0

2000.3 0.41 39 2.20 23.5800.1 0.66 31 2.04 42.0 2000.4 0.69 38 2.48 19.7800.2 0.15 4.15 20.7800.3 0.07 4.42 21.8 Count (n): 113 63 80 113800.4 0.34 40 3.14 37.8 Average: 0.51 34 2.91 42.4

Maximum: 3.25 68 4.44 99.6803.1 0.14 77.9 Minimum: <0.01 17 0.85 4.4803.2 0.05 93.9 Stan. De\': 0.50 11 0.98 29.2803.3 0.22 68.5803.4 0.07 82.5

20

APPENDIX D

Table showing sample number, THM in weight percent, weight percent EHM of the heavy-mineralconcentrates, and weight percentages for the sixteen minerals categorized in this study. The mineralabundances are expressed as weight percentages of the heavy-mineral concentrates. "ND" means notdetected, or concentrations below visually quantifiable limits « 1%); trace amounts of minerals, whichwere visuaHy quantifiable, are reported as <0.0 I weight percent. Mineral species abbreviations are:MAG=magnetite, ILM=ilmenite, GAR=garnet, STA=staurolite, EPI=epidote, PYR=pyroboles(undifferentiated pyroxenes and amphiboles), SIK=aluminosilicates (undifferentiated kyanite, sillimaniteand andalusite), TOU=tourmaline, LEU=leucoxene (altered ilmenite), RUT=rutile, ZIR=zircon,MON=monazite, PHO=phosphate, GLA=glauconite, SUL=sulfides (framboidal pyrite/marcasite),CAR=carbonate material (generaHy sulfide-filled foraminiferal tests), and OTH=unidentified mineralgrains.

Summary statistics for the data set are given at the end of the table. "COUNT" in summary statisticsrefers to number of samples used in calculations.

21

App

endi

xD

Sam

ple

Wt%

lVt%

MA

GU

..MG

AR

STA

Erl

PYR

SIK

TOU

LEU

RUT

ZIR

MO

NPU

OG

LAS

UL

CAR

OTH

Num

ber

IHM

EH

MW

t%W

t%\V

t%W

t%W

t%W

t%\V

t%.ID

!&W

t%W

t%\V

t%W

t%W

tCk

Wtz

,W

t%J:

rt!&~

718.

10.

225

2.7

NO

35.0

56.

0016

.82

16.3

8N

O3.

742.

723.

0]1.

039.

91N

O4.

08N

ON

ON

O1.

27

720.

30

.50

47.2

NO

29.6

93.

452

].8

49.

77N

O3.

31]1

.6]

3.45

5.65

5.13

NO

2.53

NO

NO

3.37

0.20

720.

41.

1650

.2N

O29

.09

6.04

19.9

47.

07N

O1.

387.

886.

955.

717.

11N

O3.

47N

ON

ON

D5.

37

721.

10

.86

52.5

NO31

.64

8.45

14.2

08.

39N

O4.

885.

283.

514

.30

8.13

NO

4.11

NO

NO

NO

7.10

721.

20.

5440

.5N

O22

.53

1.J1

14.7

88.

115

.20

5.43

6.45

2.67

5.75

4.1

6N

O2.

42N

ON

ON

O21

.39

722.

11.

285

2.0

NO

36.1

34.

3412

.28

12.6

45

.32

3.88

6.75

4.13

2.63

5.2]

NO

3.51

NO

NO

NO

3.17

722.

20.

0763

.8N

D42

.03

2.38

15.8

67.

935.

553.

662.

384.

693.

11]0

.35

NO

1.04

ND

NO

NO

1.04

722.

31.

1159

.2N

O41

.88

2.90

10.0

07.

791.

572.

814.

012.

903.

128.

50N

O5.

31N

O3.

99N

O5.

23

723.

10.

4960

.4N

O45

.84

4.37

7.95

13.9

35.

373.

061.

063.

712.

045.

78N

D3.

34N

O0.

091.

551.

91

723.

20.

0633

.1N

D15

.90

2.65

5.12

3.71

0.53

3.29

0.47

2.35

6.29

5.23

NO

3.29

NO

45.4

15.

76N

O72

8.1

0.28

47.2

NO

28.7

44.

151.

5224

.00

15.4

74.

393.

984.

812.

896.

42N

O0.

58N

O1.

26N

O1.

80

728.

20.

0124

.0N

ON

ON

O3

.00

5.0

030

.00

7.00

NO

7.0

05.

005.

00N

ON

ON

O35

.00

NO

3

728.

30.

0537

.8N

O15

.82

1.58

3.95

27.6

818

.98

8.14

2.37

1.46

3.]4

9.28

NO

ND

NO

3.42

NO

4.18

729.

10

.67

38.8

NO

20.7

86.

546.

649.

9413

.56

5.21

]7.1

33.

292.

497.

00N

O0.

59N

D3.

17N

O3.

67

729.

20.

9568

.9N

O48

.2]

1.98

]3.2

1N

DN

O2.

360.

661.

323.

4013

.58

NO

8.49

NO

3.40

NO

3.40

tv73

0.]

0.27

49.5

NO

34

.]4

2.73

13.0

119

.99

3.22

5.84

1.62

2.58

1.42

5.58

NO

3.21

NO

6.68

NO

NO

N7

3].

]0.

8237

.7<

0.01

19.0

05.

1011

.07

17.4

718

.97

6.85

5.65

4.60

2.04

5.18

NO

3.05

ND

0.06

NO

0.96

731.

20.

2247

.8N

O28

.49

2.08

13.9

06.

954.

864.

586.

958.

053.

613.

05N

D9.

150.

697.

63N

OND

737.

10.

9944

.2N

O30

.04

1.69

5.08

32.9

01.

491.

161.

291.

042.

529.

39N

O0

.18

NO<

0.01

NO

13.2

1

737.

20.

1434

.2N

D11

.45

ND

1.53

24.0

827

.48

6.]

84.

052.

243.

4710

.89

NO

ND

ND

NO

NO

8.63

737.

30.

2233

.8N

O16

.24

0.81

0.81

34.6

12

0.3

03.

501.

622

.56

3.75

7.71

NO

NO

NO

NO

NO

8.07

737.

40.

093

2.8

'1.

5815

.77

NO

2.21

27.6

224

.71

7.0

01.

851.

063.

695.

29N

ON

ON

ON

ON

D9.

23

739.

10.

6947

.6<

0.01

24.5

24.

3915

.07

9.7

41.

923.

728.

264

.66

6.48

8.26

NO

6.52

NO

5.63

NO

0.82

739.

20.

0940

.2N

O14

.59

0.73

10.9

414

.59

2.]9

6.14

7.29

5.0

07.

716.

77N

O1.

35N

O18

.65

NO

4.06

739.

30

.06

20.0

NO

NO

3.00

10.0

010

.00

3.0

05

.00

5.00

5.0

07.

003.

00N

O2.

00N

O37

.00

NO

10.0

0

741.

10.

3361

.3N

O36

.00

1.56

6.86

13.1

03

.37

5.61

5.83

3.97

5.17

10.5

2N

D2.

86N

DN

ON

O5.

16

741.

20

.06

45.8

NO

19.2

52.

14]7

.82

3.56

NO

4.30

1.43

2.87

2.72

16.6

6N

D6.

44N

D22

.82

NO

NO74

1.3

0.07

39.9

NO

21.4

42.

1428

.59

3.57

NO

3.57

7.]

52.

715.

007.

13N

O9.

280

.7]

7.99

NO

0.71

741.

30.

0739

.9NO

2].

44

2.14

28.5

93.

57N

O3.

577

.]5

2.71

5.00

7.13

NO

9.28

0.71

7.99

NO

0.71

741.

40.

0644

.6NO

24.4

33.

7025

.91

3.70

ND

7.41

7.66

3.52

4.04

5.19

NO

3.90

NO

9.23

NO

1.30

745.

11.

3156

.2N

O33

.86

3.24

4.38

17.4

89.

533.

837.

305

.36

5.35

.7.

86N

O1.

02N

ON

ON

O0.

8J

745.

20.

1242

.7N

O19

.36

2.32

3.87

26.3

419

.36

4.51

3.87

5.6

44.

588.

57N

ON

ON

O0.

45N

D1.

[3

745.

30.

044

4.2

NO

23.5

3N

O5.

4919

.61

15.6

92.

16N

O4.

315.

598.

63N

ON

ON

D15

.00

NO

NO

745.

40

.50

55.2

NO

16.0

11.

71N

O20

.19

20

.]2

22.8

41.

446.

023.

426.

93N

DN

ON

ON

ON

O1.

33

747.

10.

2862

.2N

O36

.89

4.97

]0.6

42.

13N

D2.

912

.]3

1.45

2.03

18.8

8N

O5

.00

ND

0.87

NO

]2.0

9

748.

]0.

3155

.7N

D35

.81

2.59

]5.6

94.

43N

D3.

654.

782.

133.

2410

.91

NO

14.4

3N

O1.

76N

O0.

57

App

endi

xD

Sam

ple

\Vt%

Wt%

MA

G11

..MG

AR

ST

AE

PI

PYR

SIK

TOU

LEU

RU

TZ

IRM

ON

PH

OG

LA

SUL

CA

RO

TH

Num

ber

TII.M

EHM

\Vt%

\Vt%

\Vt%

Wt%

Wt%

Wt%~~~

Wt%

Wt%

\Vt%~~

\Vt%

Wt%~

748.

20.

1851

.1N

O29

.90

0.65

19.5

05.

25N

O5.

904.

553.

053.

508.

75N

O12

.80

NO

4.40

NO

1.75

749.

10.

2551

.31.

2935

.55

1.29

16.5

16.

46N

O5.

312.

291.

004.

185.

31N

O13

.09

NO

1.06

5.95

0.71

752.

10.

1834

.0N

O16

.01

5.60

24.0

22.

40N

O1.

994.

001.

002.

9911

.96

ND

1.99

NO24

.02

NO

4.00

758.

10.

6123

.1N

O14

.82

1.65

10.8

011

.30

0.47

3.31

5.21

0.86

1.02

3.15

NO

4.99

NO

40.5

9N

D1.

8375

9.1

0.98

38.7

ND

18.8

81.

6110

.37

21.8

120

.91

7.72

4.23

2.50

3.72

5.89

NO

2.17

NO

NO

NO

0.21

759.

21.

2651

.1N

O34

.12

5.59

17.2

615

.01

3.46

2.34

5.61

2.53

2.86

9.24

ND

0.42

NO

NO

NO

1.57

760.

11.

0247

.9<0

.01

28.5

52.

1310

.30

28.4

86.

861.

881.

733.

023.

1711

.33

NO

0.29

NO

NO

ND

2.27

760.

20.

3744

.9N

D31

.57

1.51

13.7

925

.31

6.87

2.49

1.38

1.43

2.76

6.69

NO

0.12

NO

0.02

NO

6.06

762.

10.

4867

.5N

D44

.25

2.25

15.0

05.

251.

501.

754.

502.

753.

7515

.00

NO

2.75

NO

ND

NO

1.25

763.

10.

7345

.0<0

.01

21.1

43.

2514

.79

29.0

83.

825.

992.

432.

902.

286.

61N

O0.

35N

ON

DN

O1.

3076

3.2

0.32

48.2

NO

21.8

35.

3118

.82

16.9

7N

O2.

617.

282.

264.

0311

.49

NO

0.02

NO

1.86

0.02

1.50

763.

30.

6446

.7N

O30

.80

2.70

6.37

19.7

79.

273.

925.

283.

473.

614.

90N

O0.

58N

O4.

800.

194.

3476

5.1

0.63

50.1

NO

23.0

90.

8713

.33

17.5

52.

005.

6811

.34

5.26

8.19

8.48

NO

0.57

NO

NO

NO

3.66

765.

20.

4656

.8N

O21

.51

2.57

17.8

66.

134.

395.

8810

.57

6.89

5.15

10.7

8N

ON

ON

O0.

23N

O1.

4276

6.1

1.11

49.7

NO

28.2

71.

134.

3931

.78

3.12

3.52

2.09

4.35

3.97

9.64

ND

0.53

NO

NO

ND

7.21

N76

6.2

0.82

49.5

NO

32.6

71.

696.

4828

.99

1.34

1.82

2.94

3.45

3.84

7.75

NO

0.07

ND

NO

0.64

8.32

l",.

)77

8.1

0.34

48.1

<0.0

127

.60

4.48

17.3

818

.56

0.07

4.95

4.38

2.93

6.78

5.88

NO

0.69

NO

NO

0.68

5.63

781.

10.

4136

.9N

O20

.22

14.8

522

.72

14.8

70.

753.

046.

432.

533.

207.

91N

O2.

07N

ON

ON

O1.

4178

1.2

0.27

50.4

NO

27.5

13.

5216

.64

17.9

2N

D4.

207.

123.

273.

6911

.77

ND

0.55

NO

2.84

ND

0.98

782.

10.

2152

.5N

O25

.45

28.2

73.

533.

53N

O4.

177.

07N

O5.

8617

.01

NO

2.17

NO

NO

NO

2.93

786.

10.

6951

.8N

O30

.20

9.83

14.4

08.

701.

711.

344.

592.

223.

7014

.39

NO

0.95

NO

6.95

NO

1.01

786.

20.

157.

0N

O2.

002.

003.

002.

001.

002.

00N

DN

O2.

001.

00N

O2.

00N

O83

.00

ND

NO78

6R.1

0.14

34.2

ND

J8.0

53.

0112

.03

5.0J

ND

NO

5.00

NO

4.59

11.5

6N

D3.

801.

2035

.76

NO

NO

786R

.20.

1240

.8<0

.01

19.5

62.

673.

961.

59N

O8.

251.

43N

O7.

985.

05N

O5.

830.

0541

.73

ND

1.90

788.

20.

054.

6N

DN

O1.

088.

082.

00N

O0.

92N

ON

O1.

382.

31N

D3.

92N

O80

.31

NO

NO

788.

30.

0712

.2N

D5.

511.

655.

515.

201.

101.

357.

00N

O3.

152.

25N

O6.

15N

O61

.15

NO

ND78

9.1

0.24

58.2

ND

31.0

05.

4713

.96

9.40

2.77

4.66

6.11

2.29

6.57

13.7

0N

O2.

74N

O1.

24N

O0.

1178

9.2

0.08

49.1

NO

22.7

14.

4212

.61

6.31

1.26

1.85

4.42

1.11

4.95

18.4

6N

O1.

37N

O20

.54

ND

NO

790.

10.

5742

.2N

O20

.66

4.80

19.0

519

.38

NO

5.96

4.00

3.13

3.63

8.80

NO

4.64

NO

1.25

NO

4.70

790.

20.

9746

.5N

O18

.5)

0.52

10.8

50.

60<

0.01

8.51

2.16

1.31

3.50

14.6

6N

O6.

87N

O24

.53

1.16

6.71

790.

30.

7468

.6N

O33

.23

2.22

7.86

0.31

NO

16.3

21.

932.

115.

0211

.31

NO

3.86

0.J5

10.6

41.

532.

9179

0.4

0.5)

62.0

NO

27.9

11.

3511

.51

NO

ND

15.9

70.

862.

594.

3411

.24

ND

5.06

0.49

11.3

01.

376.

0319

1.1

0.24

43.9

NO

24.5

23.

0920

.46

20.6

8N

O2.

664.

401.

994.

2810

.44

ND

3.81

ND

ND

NO

3.61

791.

20.

0740

.2N

O27

.64

1.49

4.49

26.6

5N

D2.

520.

250.

5)3.

516.

07N

O7.

59N

O11

.96

6.55

0.76

791.

30.

0426

.4N

O6.

560.

442.

158.

74N

D2.

131.

310.

565.

8711

.26

NO

8.44

ND

29.1

821

.63

1.13

App

endi

xD

Sam

ple

Wt%

Wt%

MA

GIL

MG

AR

STA

EP

IPY

RS

IKT

OU

LEU

RU

TZ

IRM

ON

PH

OG

LAS

UL

CA

RO

TH

Num

ber

111M

.EllM

Wt%

Wt%

Wt%~

..ID

2£W

t%W

t%.1Y

t!&~~

Wt%~

..wc&~

Wt%~~

791.

40.

0812

.5N

O3.

720.

747.

4411

.16

NO

0.77

2.74

NO

5.46

2.56

NO

6.41

ND

46.4

412

.56

NO79

3.1

0.05

67.3

NO

38.0

34.

5913

.11

3.28

0.66

3.44

4.59

NO

5.17

20.6

6N

O3.

44N

ON

D1.

721.

31

793.

20.

0115

.0N

O5.

002.

007.

00N

O3.

00N

DN

DN

O5.

005.

00N

O3.

00N

O70

.00

NO

NO79

3.3

0.01

8.6

ND

2.52

0.84

1.68

0.84

NO

1.32

NO

NO

0.79

3.97

NO

NO

ND

88.0

3N

ON

O79

3.4

0.02

8.8

NO

2.98

0.60

1.39

0.40

NO

0.20

NO

NO

1.60

4.01

NO

2.80

NO

86.0

3N

ONO

796.

10.

5055

.6<0

.01

30.6

97.

6812

.10

11.4

80.

064.

138.

092.

227.

5511

.02

ND

4.14

NO

0.84

ND

NO79

6.2

0.15

66.0

NO

28.7

11.

517.

562.

521.

012.

481.

514.

998.

492

].3

4N

O9.

93N

O9.

96N

ONO

796.

30.

4142

.2N

O]9

.76

4.03

9.85

NO

<0.0

12.

822.

62N

D7.

6012

.02

NO

12.2

01.

8019

.90

NO7.

39

797.

10.

6264

.3<0

.01

39.7

11.

609.

980.

53N

O7.

462.

692.

085.

299.

81N

O6.

29N

O3.

37N

O11

.20

797.

20.

6264

.5<0

.01

33.6

42.

2512

.36

1.23

NO

14.4

01.

081.

914.

2310

.3]

NO

5.14

NO

0.83

NO

12.6

2

797.

30.

5559

.7<0

.01

37.3

82.

8710

.92

1.82

NO

2.51

1.80

3.10

3.97

12.7

0N

O5.

38N

O3.

40N

O14

.16

797.

40.

6153

.9N

O34

.53

0.89

1].0

31.

58N

O1.

311.

193.

124.

3410

.61

NO

4.42

NO

0.36

NO

26.6

1

798.

11.

4066

.0N

O36

.82

2.72

11.1

20.

88N

O8.

383.

392.

889.

308.

62N

O9.

31N

O0.

72N

O5.

8679

9.]

0.50

50.5

NO

31.3

73.

826.

5523

.74

6.54

3.18

4.64

2.21

3.92

9.80

NO

0.62

NO

0.65

NO

2.95

799.

20.

3848

.2<0

.01

29.6

91.

387.

6627

.30

7.56

2.66

2.38

3.06

3.63

9.18

NO

0.35

NO

2.9]

0.25

1.99

tv79

9.3

1.57

54.9

ND

33.7

21.

397.

6019

.72

3.06

2.27

4.75

2.18

4.49

]2.2

0N

O2.

850.

151.

040.

044.

55~

799.

40.

3241

.3N

O26

.89

4.95

13.5

417

.08

NO

4.39

3.00

2.05

2.17

5.85

NO

7.3]

ND

10.9

11.

000.

88

800.

10.

6652

.6N

O34

.95

7.19

12.8

314

.04

1.46

3.86

5.65

1.53

6.41

5.90

NO

1.80

NO

0.93

NO

3.45

800.

20.

1548

.5N

O27

.20

3.89

7.77

15.5

42.

338.

3413

.22

1.11

3.34

8.47

NO

1.11

NO

6.55

-N

O1.1

180

0.3

0.07

40.5

NO

25.3

02.

535.

905.

902.

532.

354.

220.

783.

138.

93N

O0.

47N

O37

.95

NO

ND

800.

40.

3446

.6N

D23

.22

5.56

10.8

115

.78

1.3]

2.60

4.92

1.57

6.30

12.8

7N

O5.

13N

D6.

18N

O3.

73

803.

10.

1450

.2-

NO

31.8

43.

7014

.81

11.1

10.

742.

567.

401.

523.

3410

.90

NO

1.30

NO

10.0

1N

O0.

78

803.

20.

0514

.0N

ON

D1.

0010

.00

NO

1.00

5.00

3.00

NO

7.00

2.00

ND

5.00

1.00

65.0

0N

ONO

803.

30.

2251

.9N

O26

.70

4.92

14.0

512

.03

1.41

3.49

10.0

02.

976.

5712

.19

NO

3.59

NO

2.08

NO

NO80

3.4

0.07

48.4

NO

23.4

33.

17]5

.83

9.50

0.63

1.83

4.43

3.67

5.50

13.9

3N

O4.

47N

O13

.60

ND

NO80

4.1

0.16

47.7

0.01

23.8

413

.09

3.08

11.3

4N

O2.

0011

.66

1.24

4.48

16.1

7N

O3.

030.

709.

20N

O0.

15

1141

.20.

4845

.3<0

.01

23.2

74.

2919

.70

13.2

0N

O4.

165.

374.

056.

077.

75N

O7.

75N

O1.

96N

O2.

41

1141

.30.

8547

.2N

O27

.52

5.08

15.4

114

.98

0.62

2.78

4.89

1.57

7.46

7.86

NO

6.70

ND

NO

NO

5.13

lf42

.10.

3442

.9N

D22

.73

7.10

17.1

020

.66

0.71

4.32

5.00

2.87

3.61

9.40

NO

6.50

NO

NO

NO

ND11

56.1

0.96

52.4

NO

29.2

22.

888.

2817

.76

NO

2.50

1.80

2.24

5.77

12.6

4N

O4.

04N

O2.

270.

0910

.51

1156

.21.

0041

.6N

O28

.01

3.04

10.0

520

.36

0.74

1.21

0.77

1.00

2.78

8.59

NO

2.76

NO

1.62

0.01

19.0

7

1156

.31.

3248

.5N

O31

.44

1.73

12.1

219

.26

0.01

1.32

3.84

1.78

4.77

9.24

No

3.57

NO

1.91

NO

9.00

1]56

.40.

9337

.3N

O26

.41

2.90

10.9

719

.50

<0.0

10.

310.

632.

002.

446.

13N

O1.

833.

841.

22N

O21

.81

1157

.10.

4351

.7<0

.01

33.0

31.

2610

.71

16.2

0N

O5.

273.

094.

483.

755.

010.

191.

14N

O11

.25

NO

4.62

1157

.21.

1844

.5<0

.01

32.5

02.

2917

.67

22.2

2N

O1.

991.

262.

512.

804.

68N

O0.

09N

ON

ON

O12

.00

1157

.31.

6550

.1<0

.01

34.7

23.

0915

.78

20.1

4N

O2.

001.

843.

065.

604.

70N

O0.

05N

ON

DN

D9.

00

App

endi

xD

Sam

ple

Wt%

Wt%

MA

GIL

MG

AR

STA

EP

IPY

RSI

KTO

ULE

UR

UT

ZIR

MO

NPH

OG

LA

SUL

CA

RO

THN

um

ber

THM

EUM~

Wt%

lVt%

Wt9

'.,~

\Vt%

Wt%

Wt%

JY!.2

'£lV

t%W

t%~~

Wt%

Wt%

Wt%

Wt%

1157

.42.

0647

.9N

O35

.51

2.89

15.8

420

.42

NO

1.29

1.23

2.35

3.14

5.60

NO

3.05

NO

0.45

NO

8.23

1162

.11.

2254

.4N

O37

.14

4.58

15.2

97.

930.

173.

845.

130.

366.

566.

49N

O7.

45N

ON

ON

D5.

0511

62.2

3.25

37.4

NO

18.2

81.

4513

.20

6.44

NO

2.02

0.78

2.02

7.05

8.07

NO

7.13

NO

1.83

NO

31.7

42O

OCl.1

0.11

51.3

NO

26.0

82.

3012

.67

24.1

70.

775.

438.

835.

036.

967.

76N

ON

ON

ON

DN

ON

O20

00.2

0.08

61.1

ND

31.7

60.

117.

15]9

.31

2.32

6.76

7.75

5.28

8.80

8.54

ND

0.45

ND

ND

ND

0.45

2000

.30.

4159

.8N

D31

.29

1.51

7.99

21.9

10.

024.

618.

198.

975.

998.

95N

O0.

47N

ON

ON

O0.

1020

00.4

0.69

63.4

<0.0

135

.38

0.99

10.2

220

.19

0.04

3.98

4.03

6.19

9.05

8.79

NO

ND

NO

NO

NO

1.15

Co

un

t(n

):11

311

319

109

109

112

108

71II

I10

610

011

311

3I

101

II78

2091

Ave

rage

:0.

5145

.78

0.15

26.6

03.

4211

.31

13.3

45.

484.

274.

483.

044.

478.

770.

193.

830.

9816

.00

3.30

5.13

Max

imum

:3.

2568

.87

1.58

48.2

128

.27

28.5

934

.61

30.0

022

.84

]7.1

38.

979.

302

].3

40.

1914

.43

3.84

88.0

321

.63

31.7

4M

inim

um:<

O.O

I4.

61<

0.01

2.00

0.44

0.81

0.31

<0.

010.

200.

250.

360.

791.

000.

190.

020.

05<

0.01

0.01

0.10

Sta

n.D

ev:

0.50

13.8

00.

459.

353.

385.

698.

797.

403.

273.

061.

691.

883.

95n/

a3.

171.

0822

.77

5.35

5.86

N U'I

,"

APPENDIX E

Table showing sample number, preliminary stratigraphic unit, and weight percent total heavy minerals(THM) for all CERC vibracore samples from the Cape Fear cuspate foreland project area. See text fordescriptions of units and for key to abbreviations used.

Note that this table includes samples for which mineralogical and textural data have been given inearlier project reports (Hoffman and others, 1991; Nickerson and others, 1993). Those reports did notreflect the stratigraphic work done under this phase of the study.

26

APPENDIXESample Wt% Sample Wt%Number Stratigraphic Unit IBM Number Stratigraphic Unit TI:IM

718.1 River Bend 0.22 739.2 PP2 0.09719.1 Oligocene sand 0.74 739.3 PP

2 0.06719.2 River Bend 0.18 740.1 PP2 0.87720.3 Oligocene sand 0.50 740.2 PP. 0.03720.4 Oligocene sand 1.16 740.3 PP. 0.02721.1 PP2 0.86 741.1 PP2 0.33721.2 PP2 0.54 741.2 Castle Hayne 0.06722.1 Qh. 1.28 741.3 Castle Hayne 0.07722.2 PP2 0.07 741.4 Castle Hayne 0.06722.3 PP2 1.11 742.1 PP2 0.47723.1 PP2 0.49 742.2 PP2 0.86723.2 PP. 0.06 742.3 Paleocene 0.73724.1 PP2 0.44 743.1 Qh. and PP2 0.69724.2 PP2 0.64 743.2 Paleocene 0.30724.3 Pungo River 1.00 745.1 PP2 1.31726.1 Qh, and PPz 0.48 745.2 PP2 0.12

726R.I PP2 0.07 745.3 PP2 0.04726R.2 PP2 0.12 745.4 PP2 0.50726R.3 PP: 0.17 747.1 Qh. 0.28726R.4 PP2 0.69 748.1 ?????? 0.31

727.1 PP2 0.18 748.2 ?????? 0.18727.2 PP. and Paleocene? 0.02 749.1 ?????? 0.25727.3 Paleocene 0.52 750.1 PP2 0.55727.4 Paleocene 0.23 751.1 PP2 0.74728.1 PP2 0.28 751.2 Paleocene 1.10728.2 PP2 0.01 752.1 Castle Hayne 0.18728.3 PP2 0.05 753.1 Qh. and PP2and PP. 0.28729.1 PP2 and Peedee? 0.67 754.1 PP2 and n??? 0.42729.2 Peedee 0.95 754R.1 Qh. 1.98730.1 Peedee 0.27 754R.2 Qh. 0.90731.1 PP2 and Peedee? 0.82 754R.3 Qh. 1.35731.2 Pcedee 0.22 754R.4 Qh. 0.94732.1 Peedee 0.23 755.1 Castle Hayne 0.09732.2 Peedee 0.21 755.2 Castle Hayne 0.05732.3 Peedee 0.16 756.1 PP1 0.10733.1 Qh. and PP2 and Peedee 2.11 756.2 PP1

0.07734.1 Qh. and PP2 1.84 757.1 Qh. 0.39734.2 PP2 and Paleocene? 0.84 758.1 Peedee 0.61735.1 PP2 0.86 759.1 Qh, 0.98735.2 PP2 0.55 759.2 PP2 1.26735.3 Peedee 0.70 760.1 Qh. 1.02736.1 Qh. and Paleocene? 0.95 760.2 Qh. 0.37736.2 Paleocene 0.98 761.1 PP, 0.43737.1 PP2 0.99 761.2 PP: and ?? 0.26737.2 PP2 0.14 762.1 PP2

0.48737.3 PP2 0.22 763.1 PP2 0.73737.4 PP2 0.09 763.2 PP2 0.32738.1 PP: 0.58 763.3 PP2 0.64738.2 PP2 0.67 764.1 Qh. 0.83738.3 Oligocene sand 0.83 764.2 PP: 0.55738.4 Oligocene sand 0.62 764.3 PPz 0.22739.1 PP2 0.69 765.1 PPz 0.63

27

APPENDIXESample Wt% Sample Wt%Number Stratigraphic Unit IHM Number Stratigraphic Unit mM

765.2 PP2 0.46 783.2 PP

2 0.65766.1 PP

21.1] 783.3 PP

2 0.77766.2 PP

2 0.82 783.4 PPz 0.34767.1 Qh. and PPz 1.03 785.1 Qh. and PPz 0.4]767.2 PP

2 0.54 785.2 PPz 0.48767.3 Castle Hayne 0.02 785.3 PP. 0.19768.] Qh. 0.97 785.4 PP. 0.16768.2 Qh. 1.18 786.1 PP. 0.69768.3 PP

2 0.30 786.2 PP. 0.]5768.4 PP: 0.23 786R.] PP. 0.14769.1 PP, 1.31 786R.2 Oligocene sand 0.12769.2 PP: 0.39 787.] PPz and PP. 0.46769.3 PP: 0.32 787.2 Oligocene sand 1.11769.4 PPz 0.26 787.3 Oligocene sand 0.76770.1 Qh. 0.20 787.4 Oligocene sand 0.36770.2 Qh. 0.13 788.2 PP. 0.05770.3 Qh. 0.35 788.3 PP1 0.07771.1 PP, 1.28 789.] PP

1 0.24771.2 PP: 0.47 789.2 PP1 0.0877].3 PP

2 0.65 790.1 Qh. and Oligocene sand 0.5777].4 PP: 0.37 790.2 Oligocene sand 0.97772.1 Qh. 1.07 790.3 Oligocene sand 0.74772.2 PP, 1.14 790.4 Oligocene sand 0.51772.3 PP: 1.09 791.1 Qh. and PP. 0.24772.4 PP: 0.58 791.2 PP. 0.07773.1 Qh

1 0.44 791.3 PP. 0.04773.2 Qh

1 0.35 791.4 PP. 0.08773.3 Qh

1 1.09 792.1 PP. 0.04774.1 PPz 0.53 792.2 PP. <0.01774.2 PP, 0.28 792.3 PP. 0.01774.3 PP: 0.14 792.4 PP. 0.03775.1 Qh

l 0.67 793.1 PP. 0.05775.2 PPz 0.40 793.2 PP. 0.01775.3 PP, 0.46 793.3 PP. 0.0]776.1 Qh~ 1.02 793.4 PP. 0.02776.2 Qh

l 0.2] 794.1 Oligocene sand 0.29776.3 PPz 0.42 794.2 Oligocene sand 0.38777.1 Qh

l0.4] 794.3 Oligocene sand 0.02

777.2 Qhl 0.53 795.] PP1 om

777.3 Qhl 0.42 795.2 PP

J om777.4 Qh

l 0.36 795.3 PP. 0.10778.] Qh

l 0.34 796.1 Qh. and PP2 0.50779.1 Qh

l 0.38 796.2 Oligocene sand 0.15779.2 Qh

l 0.31 796.3 Oligocene sand 0.41779.3 Qh. 0.26 797.1 Oligocene sand 0.62780.1 Qh l and PPz 0.84 797.2 Oligocene sand 0.62780.2 PP, 0.27 797.3 Oligocene sand 0.55780.3 PP: 0.44 797.4 Oligocene sand 0.6]78].1 PP: 0.4] 798.1 Oligocene sand ].4078].2 PP: 0.27 799.1 PP: 0.50782.1 PP. 0.2] 799.2 PP: 0.38783.1 PP: 0.62 799.3 PPz 1.57

28

APPENDIXESample Wt% Sample Wt%Number Stratigraphic Unit TI!M Number Strath:raphic Unit IHM

799.4 Oligocene sand 0.32 1153.1 Qh, and PP2 0.33800.1 PP2 0.66 1153.2 Oligocene sand 1.08800.2 PP2 0.15 1153.3 Oligocene sand 0.95800.3 PP2 0.07 1153.4 Oligocene sand 0.83800.4 PP2 and Oligocene sand 0.34 1154.1 Qh. 0.38801.3 PP2 0.54 1154.2 Qh l and Oligocene sand 0.43801.4 PP: 1.05 1154.3 Oligocene sand 2.45803.1 PP

1 0.14 1154.4 Oligocene sand 1.40803.2 pp\ 0.05 1155.1 PP: 0.40803.3 PP1 0.22 1155.2 PP2 0.51803.4 PP1 0.07 1156.1 Qh, and PP2 0.96804.1 PP1 0.16 1156.2 PP: 1.00805.1 PPt 0.05 1156.3 PP2 1.32805.2 PP1 0.01 1156.4 Oligocene sand 0.93805.3 PP1 0.02 1157.1 PP: and Oligocene sand 0.43805.4 pp\ 0.01 1157.2 Oligocene sand U8

1140.1 Qhl 0.65 1157.3 Oligocene sand 1.65

1140.2 Oligocene sand 0.44 1157.4 Oligocene sand 2.061140.3 Oligocene sand 0.54 1158.1 PP. 0.141141.2 Oligocene sand 0.48 1158.2 PP1

0.081141.3 Oligocene sand 0.85 1158.3 PP I and Oligocene sand 0.171142.1 PP1 0.34 1159.1 Oligocene sand 3.691143.2 PP1 0.52 1159.2 Oligocene sand 1.521144.1 PP1 0.14 1159.3 Oligocene sand 1.521144.2 PP1 0.18 1159.4 Oligocene sand 0.871145.1 Oligocene sand 0.63 1160.1 PP: 0.851145.2 Oligocene sand 1.19 1160.2 PP1 and Oligocene sand 0.841146.1 Oligocene sand 0.74 1161.1 Qh, 0.651146.2 Oligocene sand 0.50 1161.2 PP: 0.741146.3 Oligocene sand 0.77 1161.3 PP2

0.531146.4 Oligocene sand 0.81 I162.1 PP: 1.221147.1 PP: 0.76 1162.2 PP: 3.251147.2 PP2 0.26 1163.3 Oligocene sand 0.91

1147RI PP2 0.47 1163.4 Oligocene sand 0.971147R2 PP: 0.78 2000.1 Qh, 0.11

1148.1 Qhl 0.65 2000.2 Qh

l0.08

1148.2 PP2 0.62 2000.3 Qht 0.411149.1 Qh

l 0.32 2000.4 Qhl

0.691149.2 Oligocene sand 0.29 200lRI PP2 1.121149.3 Oligocene sand 0.32 200IR.2 PP1 0.021149.4 Oligocene sand 0.26 200IR3 PPt 0.031I50.1 Qh l and PP: 0.80 200IR4 PP1

om1150.2 PP1 0.19 2002.1 River Bend 0.381150.3 PP1 0.14 2002.2 River Bend 0.411150.4 PP1 0.16 2002.3 River Bend 0.391151.1 PP1 0.05 2002.4 River Bend 0.471151.2 PP1 0.05 Count (n): 3061151.3 PP1 0.10

Average: 0.541151.4 PP, 0.07

Maximum: 3.691152.1 PP2 0.701152.2 PP: 1.18 Minimum: <0.01

1152.3 PP: 0.61 Stan. Dev.: 0.49

29