7
WHITEPAPER Address: P.O. Box 4633 Nydalen, N0405 Oslo, Norway Telephone: +47 23 00 98 00 Fax: +47 23 00 98 01 www.energymicro.com Minimizing Energy Consumption in Resistive Sensing Applications by Anders Guldahl, Application Engineer Introduction The ease with which resistance can be measured, coupled with the large number of simple, lowcost devices whose resistance changes with other physical properties, accounts for the wide range of resistive sensing applications. These include measuring temperature, pressure, humidity, position, displacement, etc. using electromechanical devices like potentiometers or other transducers such as thermistors and piezoresistive strain gauges. Increasingly such applications are an integral part of more sophisticated electronic systems where the sensor may be just one of many inputs that a microcontroller (MCU) needs to monitor. Here it is important to recognize that the system should be focused on performing its main task or function and not distracted by the measurement process, until that input is required or necessary. This is particularly important for systems that spend a lot of time in standby or lowpower modes and typically includes most batterypowered equipment but, in these energyconscious times, the benefit of low power consumption is a valued feature in more and more product designs. By considering several sensing applications, this article will look at how different types of resistive sensors operate and the measurement processes involved. In particular, the article will consider measurement methods pertinent to microcontrollerbased systems where dedicated onchip peripheral circuits allow sensors to be monitored autonomously, without waking the processor from a sleep mode. Resistive sensing applications 1. Position or movement One of the simplest resistive sensors is the potentiometer, which can be configured as either a linear or rotary device to measure position or movement. The traditional potentiometer is an electromechanical device that uses a wiper to contact a resistive track, with the resistance being measured between the wiper and one end of the track. In most cases, the resistance will vary in direct proportion to the wiper position, assuming that the track has a uniform crosssection. Hence: Resistance = resistivity x length / crosssectional area Here, ‘resistivity’ is dependent on the track material and ‘length’ is the distance between the wiper and the end of the track, which may be along an arc for a rotary potentiometer. Tracks can also be

Minimizing9EnergyConsumptioninResistive9Sensing …WHITEPAPER)! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Minimizing9EnergyConsumptioninResistive9Sensing …WHITEPAPER)! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

Minimizing  Energy  Consumption  in  Resistive  Sensing  Applications  

 by    

Anders  Guldahl,  Application  Engineer    

Introduction  The  ease  with  which  resistance  can  be  measured,  coupled  with  the  large  number  of  simple,  low-­‐cost  devices  whose  resistance  changes  with  other  physical  properties,  accounts  for  the  wide  range  of  resistive  sensing  applications.  These  include  measuring  temperature,  pressure,  humidity,  position,  displacement,  etc.  using  electro-­‐mechanical  devices  like  potentiometers  or  other  transducers  such  as  thermistors  and  piezo-­‐resistive  strain  gauges.  

Increasingly  such  applications  are  an  integral  part  of  more  sophisticated  electronic  systems  where  the  sensor  may  be  just  one  of  many  inputs  that  a  microcontroller  (MCU)  needs  to  monitor.  Here  it  is  important  to  recognize  that  the  system  should  be  focused  on  performing  its  main  task  or  function  and  not  distracted  by  the  measurement  process,  until  that  input  is  required  or  necessary.  This  is  particularly  important  for  systems  that  spend  a  lot  of  time  in  stand-­‐by  or  low-­‐power  modes  and  typically  includes  most  battery-­‐powered  equipment  but,  in  these  energy-­‐conscious  times,  the  benefit  of  low  power  consumption  is  a  valued  feature  in  more  and  more  product  designs.  

By  considering  several  sensing  applications,  this  article  will  look  at  how  different  types  of  resistive  sensors  operate  and  the  measurement  processes  involved.  In  particular,  the  article  will  consider  measurement  methods  pertinent  to  microcontroller-­‐based  systems  where  dedicated  on-­‐chip  peripheral  circuits  allow  sensors  to  be  monitored  autonomously,  without  waking  the  processor  from  a  sleep  mode.  

Resistive  sensing  applications  

1. Position  or  movement  One  of  the  simplest  resistive  sensors  is  the  potentiometer,  which  can  be  configured  as  either  a  linear  or  rotary  device  to  measure  position  or  movement.  The  traditional  potentiometer  is  an  electromechanical  device  that  uses  a  wiper  to  contact  a  resistive  track,  with  the  resistance  being  measured  between  the  wiper  and  one  end  of  the  track.  In  most  cases,  the  resistance  will  vary  in  direct  proportion  to  the  wiper  position,  assuming  that  the  track  has  a  uniform  cross-­‐section.  Hence:  

Resistance  =  resistivity  x  length  /  cross-­‐sectional  area  

Here,  ‘resistivity’  is  dependent  on  the  track  material  and  ‘length’  is  the  distance  between  the  wiper  and  the  end  of  the  track,  which  may  be  along  an  arc  for  a  rotary  potentiometer.  Tracks  can  also  be  

Page 2: Minimizing9EnergyConsumptioninResistive9Sensing …WHITEPAPER)! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

configured  with  a  taper  to  deliberately  introduce  a  non-­‐linear  relationship  between  resistance  and  wiper  position  e.g.  a  logarithmic  potentiometer  is  commonly  used  for  volume  control  in  audio  applications.  Other  forms  of  potentiometer  use  more  complex  constructions  and  may  serve  more  specialized  purposes  e.g.  a  multi-­‐turn  potentiometer  can  be  made  with  a  helical  resistive  element  and,  when  operated  by  a  reel  of  wire,  becomes  a  string  potentiometer  (see  figure  1)  capable  of  measuring  much  larger  distances  than  a  simple  slider  potentiometer.  

 Figure  1.  A  string  potentiometer  

2. Temperature  A  widely  used  device  for  the  electrical  measurement  of  temperature  is  the  thermistor,  a  word  created  from  the  descriptive  term  ‘thermal  resistor’.  The  thermistor  is  a  two  terminal  device  whose  resistance  normally  varies  linearly  with  temperature  over  its  specified  operating  range:  

ΔR  =  k  ΔT  

Here  k  is  the  temperature  coefficient  of  the  thermistor  material,  which  can  be  either  positive  (PTC)  i.e.  resistance  increases  with  increasing  temperature,  or  negative  (NTC).  Thermistors  are  generally  made  from  ceramics  or  polymers  but  devices  called  resistive  temperature  detectors  (RTD)  using  pure  metals,  such  as  platinum,  operate  in  a  similar  manner  but  over  a  much  wider  temperature  range.  A  disadvantage  of  RTDs  is  that  accurate  measurements  require  the  use  of  a  four-­‐wire  circuit.  Some  thermistors,  normally  PTC  types,  are  deliberately  designed  to  be  non-­‐linear  such  that  their  resistance  rises  suddenly  at  a  certain  temperature.  These  devices  act  as  switches  and  fuses  but  can  also  be  used  as  threshold  sensors  in  a  MCU-­‐based  temperature  sensing  applications  e.g.  reacting  to  critical  oil  or  coolant  temperatures  in  automotive  engine  management  systems.  

Page 3: Minimizing9EnergyConsumptioninResistive9Sensing …WHITEPAPER)! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

3. Pressure  Strain  gauges  provide  an  inexpensive  but  sensitive  and  reliable  means  of  measuring  pressure.  Strictly,  a  strain  gauge  measures  force  as  a  consequence  of  the  deformation  of  a  conducting  element,  resulting  in  a  change  in  its  resistance.  However  as  force  =  pressure  x  area,  then  pressure  applied  to  a  diaphragm,  for  example,  can  readily  be  translated  to  a  force  bearing  on  a  strain  gauge.  Metal  foils  strain  gauges  are  simple  devices  formed  from  a  long,  thin  conductive  metal  strip  attached  to  an  insulating  flexible  backing  material.  By  arranging  the  conductor  as  a  zigzagged  series  of  parallel  tracks,  as  shown  in  figure  2,  the  gauge  is  made  more  sensitive  to  force  applied  in  one  direction.  The  force  stretches  the  track  causing  it  to  become  longer  and  thinner,  with  both  these  effects  resulting  in  an  increase  in  the  tracks  electrical  resistance.  

 Figure  2.  A  metal  foil  strain  gauge  

Another  type  of  strain  gauge,  which  also  results  in  a  change  in  resistance,  is  the  piezo-­‐resistor.  Piezo-­‐resistivity  is  a  property  of  semiconductor  materials,  such  as  germanium,  polycrystalline  silicon  and  selectively  doped  single-­‐crystal  silicon,  where  its  resistivity  changes  when  mechanical  stress  is  applied.  This  effect  is  much  greater  than  the  simple  change  in  geometry  achieved  with  a  metal  foil  strain  gauge,  resulting  in  a  much  more  sensitive  device  that  has  been  extensively  exploited  in  recent  years  using  MEMS  (micro-­‐electromechanical  systems)  technology  e.g.  as  used  in  GPS  aircraft  navigation  equipment  to  precisely  measure  altitude.  

4. Light  Sensor  As  its  name  suggests,  a  photo-­‐resistor,  alternatively  known  as  a  light  dependent  resistor  (LDR),  is  a  device  whose  resistance  changes  with  exposure  to  light.  In  the  past,  photo-­‐resistors  were  used  in  applications  ranging  from  camera  light  meters  to  controlling  streetlights  -­‐  today  most  designs  are  likely  to  use  photodiodes  or  phototransistors.  Like  photo-­‐resistors,  when  configured  with  a  reverse  biased  p-­‐n  junction,  these  devices  operate  in  a  photoconductive  mode  i.e.  their  resistance  decreases  with  increasing  light  intensity.  Photodiodes  with  zero  bias  behave  as  photovoltaic  (PV)  devices,  generating  an  output  voltage  in  response  to  light  exposure.  PV  solar  cells  are  effectively  just  large  area  photodiodes.  

Page 4: Minimizing9EnergyConsumptioninResistive9Sensing …WHITEPAPER)! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

Many  applications  for  light  sensors  only  require  threshold  detection,  rather  than  an  absolute  measure  of  light  intensity.  So  while  a  phototransistor  is  not  truly  a  resistive  sensor,  its  use  to  control  the  current  flowing  through  a  separate  resistor,  as  shown  in  figure  3,  falls  within  the  remit  of  this  discussion,  particularly  when  we  consider  below  the  resistance  measurement  methods  relevant  to  connecting  sensors  to  microcontrollers.  

   Figure  3.  Light  sensor  setup  

5. Other  resistive  sensing  applications  This  article  does  not  attempt  to  provide  an  exhaustive  review  of  every  type  of  resistive  sensor  or  the  many  diverse  applications.  Sensors  not  specifically  covered  here  range  from  highly  specialized  devices,  such  as  anisotropic  magneto-­‐resistive  (AMR)  sensors  used  for  measuring  the  earth’s  magnetic  field,  through  to  those  found  in  more  everyday  situations  e.g.  the  resistive  touchscreen  interfaces  found  in  many  retail  point  of  sale  terminals.  But,  regardless  of  the  technology  or  application  the  following  measurement  methods  are  applicable  to  all  types  of  resistive  sensors.  

Resistance  measurement  methods  and  MCU  interface    As  an  analog  component,  a  resistive  sensor  is  most  readily  measured  by  placing  it  in  an  electric  circuit  such  as  a  voltage  divider  or  a  Wheatstone  bridge.  These  circuits  are  shown  in  figure  4.  In  the  potential  divider  circuit  (left)  the  measured  voltage  VMEAS  is  used  to  calculate  the  sensor  resistance  RX  (knowing  VREF  and  R1).  The  Wheatstone  bridge  method  requires  R2  to  be  adjusted,  in  a  precise  and  calibrated  manner,  until  the  voltage  across  the  galvanometer  Vg  is  ‘nulled’  (i.e.  zero)  at  which  point  RX  =  R2.    

Page 5: Minimizing9EnergyConsumptioninResistive9Sensing …WHITEPAPER)! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

 Figure  4.  Potential  divider  and  Wheatstone  bridge  circuits  for  measuring  resistance  

The  potential  divider  method  is  generally  accurate  enough  for  the  majority  of  resistive  sensing  applications  discussed  above.  This  is  fortunate  as  this  circuit  configuration  readily  lends  itself  to  solutions  that  require  the  sensor  to  be  connected  to  a  microcontroller.  

1. MCU  connection  with  separate  excitation  and  measurement  pins  The  two-­‐pin  connection  shown  in  figure  5  directly  implements  a  potential  divider  circuit,  with  a  known-­‐value,  fixed  resistor  R1  in  series  with  the  resistive  sensor  device  RX.  The  MCU  supplies  an  excitation  voltage  VREF  to  the  top  of  the  divider  chain  and  then  samples  the  voltage  VMEAS  across  the  sensor.  This  excitation  voltage  is  only  applied  for  long  enough  to  ensure  a  stable  reading  can  be  obtained.  Some  MCUs  include  on-­‐chip  ADCs  but,  for  low-­‐power  sensing  applications,  an  analog  comparator  and  a  simple  DAC,  either  operating  as  a  successive  approximation  ADC  or  simply  providing  threshold  detection,  may  be  a  better  option.  

 Figure  5.  Two-­‐pin  resistive  sensor  measurement  

Page 6: Minimizing9EnergyConsumptioninResistive9Sensing …WHITEPAPER)! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

2. Single-­‐pin  MCU  sensor  connection  Microcontroller  interfaces  are  often  highly  configurable,  allowing  the  possibility  of  using  just  a  single  pin  to  provide  both  the  excitation  voltage  and  measure  the  sensor  output.  Clearly  these  have  to  be  sequential  activities,  which  is  why  a  capacitor  is  placed  in  parallel  with  the  sensor,  as  shown  in  figure  6,  to  hold  the  excitation  voltage  while  the  pin  switches  from  excitation  to  measurement  mode.  During  the  measurement  phase  the  capacitor  discharges  through  the  sensor  at  a  rate  that  is  dependent  on  its  resistance.  This  single-­‐pin  solution  is  particularly  suited  to  go/no-­‐go  applications  where  a  sensor  is  simply  being  used  to  monitor  a  threshold  condition  as  illustrated  in  figure  7.  

 Figure  6.  Single-­‐pin  resistive  sensor  measurement  

 Figure  7.  Active  and  inactive  sensor  discharge  curves  

The  Energy  Micro  solution  for  resistive  sensing  Energy  Micro’s  EFM32  series  of  microcontrollers  is  highly  optimized  for  ultra  low  power  sensing  applications.  Its  Low  Energy  Sensor  Interface  (LESENSE)  operates  with  a  low  frequency  clock,  monitoring  up  to  16  sensors  with  an  average  current  consumption  of  just  1.2μA,  while  leaving  the  MCU  in  a  deep  sleep  mode.  The  device’s  Peripheral  Reflex  System  (PRS)  then  allows  these  low-­‐energy  peripherals  to  be  configured  using  sequencer  and  decoder  circuits  to  detect  and  evaluate  a  combination  of  sensor  states  

Page 7: Minimizing9EnergyConsumptioninResistive9Sensing …WHITEPAPER)! Address:!P.O.Box4633Nydalen,N30405Oslo,!NorwayTelephone:!+4723009800 Fax:!+4723009801

WHITEPAPER      

Address:  P.O.  Box  4633  Nydalen,  N-­‐0405  Oslo,  Norway  Telephone:  +47  23  00  98  00  Fax:  +47  23  00  98  01  www.energymicro.com  

 

and  event  patterns  before  waking  the  MCU.  Figure  8  shows  a  light  sensor  application  as  one  illustration  of  how  designers  can  really  take  advantage  of  the  EFM32  MCU’s  features  to  maximize  system  performance  while  keeping  energy  consumption  to  the  absolute  minimum.  

 Figure  8.  Light-­‐sensing  with  the  Energy  Micro  EFM32  MCU