17
DPhy v1.2 Decoder MIPI 2.5Gb/s Protocol Decoder Hardware DataSheet & User Manual January 2018 - Rev 1.31

MIPI DPhy Preprocessor - movingpixel.commovingpixel.com/DPhyDecodeDatasheetV1_31.pdf · 2018. 1. 25. · • The MIPI DPhy signals being monitored must be nearly within specification

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • DPhy v1.2 Decoder

    MIPI 2.5Gb/s Protocol Decoder Hardware DataSheet

    &

    User Manual

    January 2018 - Rev 1.31

  • IMPORTANT SAFETY and USAGE INFORMATION

    Please review the following safety precautions to avoid injury and prevent damage to this

    product or any products connected to it.

    To avoid potential hazards, use this product only as specified.

    Only The Moving Pixel Company should perform service procedures. Do not attempt

    service yourself. Return the unit to The Moving Pixel Company for service.

    While using this product, you may need to access other parts of a larger system. Read the safety sections of the other component

    manuals for warnings and cautions related to operating the system.

    To Avoid Fire or Personal Injury or Damage to Equipment

    Qualified Personnel to Operate this Product

    This manual and the product marking assumes that the user has more than basic

    electrical/electronic circuit knowledge and is a person comfortable by experience and

    education to safely connect probes to electrical circuits and systems. Do not operate this

    equipment nor connect it to any circuit or system if you are not qualified to do so by

    either education or experience.

    Use Proper Power Cord.

    Use only the power cord specified for this product and certified for the country of use.

    Use only the external power supply that is included with the product.

    Connect and Disconnect Properly.

    Do not connect or disconnect probes or test leads while they are connected to a voltage

    source.

    Ground the Product.

    This product is not inherently grounded through the grounding conductor of the power

    cord; it has a “floating” power supply. The negative lead of the power supply is directly

    connected to the metal shell of the unit and all SMA connections are also electrically

    connected to the metal shell of the unit. It is possible that improper connection to an

    external system could electrify the shell to potentially high voltages above “ground”.

    To avoid electric shock, the product must be tied to ground externally.

    Before making connections to the input or output terminals of the product, ensure that the

    product is properly grounded.

    Any markings, symbols, or textual references to “ground”, GND, and similar refer to the

    metal shell of the unit and assume that the metal shell is tied to a saftey ground

    externally.

  • Observe All Terminal Ratings.

    To avoid fire or shock hazard, observe all ratings and markings on the product. Consult

    the product manual for further ratings information before making connections to the

    product.

    The inputs are not rated for connection to mains or Category II, III, or IV circuits.

    Connect the probe reference lead to earth ground only, no floating grounds allowed.

    Power Disconnect.

    The power cord disconnects the product from the power source. Do not block the power

    cord; it must remain accessible to the user at all times.

    Do Not Operate Without Covers.

    Do not operate this product with covers or panels removed.

    Do Not Operate With Suspected Failures.

    If you suspect that there is damage to this product, have it inspected by The Moving

    Pixel Company.

    Avoid Exposed Circuitry.

    Do not touch exposed connections and components when power is present.

    Do Not Operate in Wet/Damp Conditions.

    Do Not Operate in an Explosive Atmosphere.

    Keep Product Surfaces Clean and Dry.

    Provide Proper Ventilation.

    Refer to the manual’s installation instructions for details on installing the product so it

    has proper ventilation.

    Symbols and Terms

    These terms may appear in this manual:

    WARNING. Warning statements identify conditions or practices that could

    result in injury or loss of life.

    CAUTION. Caution statements identify conditions or practices that could result

    in damage to this product or other property.

  • These terms may appear on the product:

    DANGER indicates an injury hazard immediately accessible as you read the marking.

    WARNING indicates an injury hazard not immediately accessible as you read the

    marking.

    CAUTION indicates a hazard to property including the product.

    The following symbol(s) may appear on the product:

  • Before Operating the Instrument

    • Verify the ambient temperature: 5 °C to +45 °C.

    • Verify the operating humidity: 8% to 80% relative humidity at up to +32 °C

    5% to 45% relative humidity above +32 °C up to +45 °C noncondensing,

    and is limited by a maximum wet-bulb temperature of +29 °C

    (derates relative humidity to 32% at +45 °C)

    • Verify the operating altitude: 3,000 m, derate maximum operating temperature by 1 °C per 300 meters above 1500 meters altitude.

    CAUTION.

    Operate in upright position only, keeping cooling holes on the sides of the unit clear of

    obstructions.

    Power Supply Requirements for the external power supply (provided):

    Source Voltage 100–240 VAC

    Frequency 50–60 Hz

    Power Consumption 70 W maximum

    It may be helpful to check our website for any updates to this documentation before you

    operate the instrument: http://www.movingpixel.com/MIPI.html

    If you have any questions at all about the warnings or operating conditions listed above:

    STOP! Do not operate the instrument.

    Contact The Moving Pixel Company and resolve your question before continuing.

    Contacting The Moving Pixel Company

    Phone +1.503.626.9663 US Pacific Time Zone (UTC-8)

    Fax +1.503.626.9653

    Address The Moving Pixel Company

    4905 SW Griffith Drive, Suite 106

    Beaverton, Oregon 97005 USA

    Email [email protected]

    Web site http://www.movingpixel.com

    http://www.movingpixel.com/PG3A.htmlmailto:[email protected]://www.movingpixel.com/

  • Declaration of Conformity

    The Moving Pixel Company declares that the DPhyDecoderV1.2 product

    conforms to the following Standards:

    • EN/IEC 61326-1:2013, Class A Radiated Emissions

    • AS/NZS CISPR 11:2011 Class A Radiated Emissions

    • FCC 15.109(g):2014 Class A Radiated Emissions

    • FCC 15.109:2014 Class A Radiated Emissions

    • ICES-003:2012 Class A Radiated Emissions

    • VCCI:2014-04 Class A Radiated Emissions

    • EN/IEC 61326-1:2013, Class A Conducted Emissions

    • AS/NZS CISPR 11:2011 Class A Conducted Emissions

    • FCC 15.107:2014 Class A Conducted Emissions

    • ICES-003:2012 Class A Conducted Emissions

    • VCCI:2014-04 Class A Conducted Emissions

    • EN61326-1:2013 Industrial in the following areas:

    • IEC 61000-4-2:2008 ESD immunity

    • IEC 61000-4-3:2010 RF electromagnetic field immunity

    • IEC 61000-4-4:2012 Electrical fast transient/burst immunity

    • IEC 61000-4-5:2005 Power line surge immunity

    • IEC 61000-4-6:2013 Conducted RF immunity

    • IEC 61000-4-8:2009 Magnetic Field immunity

    • IEC 61000-4-11:2004 Voltage dips and interruptions immunity

    • Equipment type: Test and measurement equipment, indoor use only.

    • Pollution Degree 2 as defined in IEC61010-1. Rated for indoor use only.

    • This product is intended for use in nonresidential areas only. Use in residential areas may

    cause electromagnetic interference.

    Emissions which exceed the levels required by this standard may occur when this

    equipment is connected to a test object.

    For compliance with the EMC standards listed here, high quality shielded interface cables

    that incorporate low impedance connection between the cable shield and the connector

    shell should be used.

  • 7

    Product end-of-life handling Observe the following guidelines when recycling an instrument or component:

    Equipment recycling. Production of this equipment required the extraction and use of natural resources. The equipment may contain substances that could be

    harmful to the environment or human health if improperly handled at the product’s

    end of life. To avoid release of such substances into the environment and to

    reduce the use of natural resources, we encourage you to recycle this product in

    an appropriate system that will ensure that most of the materials are reused or

    recycled appropriately.

    This symbol indicates that this product complies with the applicable European Union requirements according to Directives 2012/19/EU and 2006/66/EC on waste electrical and electronic equipment (WEEE) and batteries. For information about recycling options, check the Support/Service section of the

    Tektronix Web site (www.tektronix.com).

    Restriction on Hazardous Substances Directive 2011/65/EU

    EN 50581:2012 – Technical documentation for the assessment of electrical and electronic

    products with respect to the restrictions of hazardous substances.

    http://www.tektronix.com/

  • 8

    MIPI DPhy Decoder

    1.0 General:

    The MIPI DPhy v1.2 Decoder (DPhyDkd) is the hardware probe that supports MIPI

    DPhy signal acquisition with protocol decode occuring on a host Windows PC. Users

    familiar with the predecessor product “DphyDecoder” will note a nearly complete

    overlap of function and look and feel.

    The DPhyDkd supports:

    • sophisticated real-time triggering

    • “Rx” mode and “Sniff” mode

    • real-time status monitoring

    • activity statistics

    • status LED indicators

    • “Sniff” mode: active probes, solder-down, for minimal loading of the device under test.

    • “Rx” mode includes internal active termination and SMA connectors

    • USB 3.0 for fast data transfer

    The control and decode software that is provided with DPhyDkd (DPhyDecoderCtl)

    interfaces to the hardware and provides the following features:

    • Configuration control

    • Disassembly of the captured information in a logic analyzer-like format.

    • Reassembly and display of any video information captured

    • Storage of captured video frame(s) to a file(s). Refer to the DPhyDecoderCtl document for a detailed treatment of all the

    software features.

    DPhyDkd support up to 4 data lanes and 1 clock lane. Data rate operation up to 2.5 Gb/s

    per lane is supported. Connection to the DUT is via 5 active solder-down probes

    (supplied), one per lane or via SMA for Rx mode. Power for the DPhyDkd comes from

    an external desktop universal power supply. It also features a “Trigger” output on an

    SMA connector that can drive into a 50 ohm termination.

    Configuration and control and PC acquisition of the captured data from the DPhyDkd is

    via a USB 3.0 connection to the PC-based software application DPhyDecoderCtl. Refer

    to the DPhyDecoderCtl manual for the details of operating this software.

  • 9

    2.0 Requirements:

    • The DPhyDkd must be connected to a PC via USB 2.0/USB3.0.

    • The PC must be running the DphyDecoderCtl application and must have the drivers (provided) installed correctly. This will require Admin privelages on the

    PC.

    • The PC must be running Microsoft Windows Win7-32/64 bit or Win 8/Win 10

    • The MIPI DPhy signals being monitored must be nearly within specification from both a protocol and an electrical point-of-view. This becomes more important as

    the link bitrate increases.

  • 10

    3 Connections and Indicators

    3.1 USB

    The USB connection between the unit and the PC is made via the rear panel. The

    connector is labeled “USB”. It accepts the “B” end of a mini-USB 3.0 cable. The cable

    provided has enhanced retention features.

    3.2 Power

    This is covered in the next section “Usage”.

    3.3 Front Panel Indicator LEDs

    There are 8 front-panel indicators. Except as noted, they are “sticky” in that if an event

    occurs, the LED will light for a fixed period of time so that a human observer can see it

    happen.

    From left to right they are and indicate as follows:

    Idle Green. There is no traffic at the present time

    HSTraffic Green. There is High Speed traffic present.

    LP Traffic Green. There is Low Power traffic present.

    BTA Green. A Bus Turn Around cycle is in progress

    ULPS Green. Bus is in Ultra Low Power State.

    TriggerGreen. The trigger conditions specified via the GUI have been met.

    Errors Red, not sticky (the associated indicator in the GUI is sticky). CRC and/or

    Checksum errors have been detected. The reason this indicator is not

    sticky is so that a user can get a real-time feel for the error rate and

    feedback if the user is making an adjustment that may affect the error rate.

    Spare – Yellow, this is reserved for future use. Currently it comes on at power up and

    stays on.

  • 11

    3.4 Probe heads

    In “Sniff” mode, signal acquisition from the DUT is via 5 active, solder-down probe

    heads: one for the clock lane and one each for up to 4 data lanes. Lanes are labeled at the

    Decoder end of the cable.

    For the highest electrical performance, we recommend a small whisker of wire be

    soldered between the probe tip end and the circuit under test. This will give the system

    some mechanical flexibility and will help prevent damage to either the probe tip ends or

    the circuit under test.

    Unused probe heads should be wrapped up in an antistatic container such as a nickel bag.

    If a user expects to not use particular lanes long-term, the probe head and cable can be

    unplugged and removed from inside the unit. Removal will keep the probe head out of

    the user’s way and lessen the likelihood of damage (but remember where you put it; they

    are easy to lose and quite expensive to replace!).

    Probe polarity is identified in the following illustration. Probe + should connect to

    D-PHY lane Dp , with probe – connecting to D-PHY Dn. If the input resistors to the

    probe become damaged as a result of soldering/de-soldering, etc., they may be replaced

    with 1.33 K 1% 0603 resistors. All normal soldering and ESD precautions must be

    observed.

    Probe head tip resistors are user-replaceable. 10 spare resistors are provided for each

    probe head. Users are cautioned that probe tip resistor soldering replacement requires a

    fair bit of skill in order to avoid damage to the probe head circuit board.

    +

    -HEATSHRINK(color varies, clear shown)

    CONNECTOR

    on back

    When soldering the probe directly to traces or pads or vias, care must be taken to prevent

    mechanical stress to the probe head else circuit damage may result.

  • 12

    The colors on the end of the probes are meaningless. They are provided to help with

    probe logistics. When shipped, Data Lane one is Red, Data Lane two is Green, Clock is

    Clear, Data Lane three is Blue, and Data Lane 4 is White (following the resistor color

    code). The probes are all interchangeable, including the clock. However, calibration will

    be slightly affected by interchanging the probes.

    For usage information, see section 4 below.

    3.5 SMA inputs

    In “Rx” mode, signal acquisition from the DUT is via 10 SMA connectors: two for the

    differential clock lane and two for each differential lane for up to 4 data lanes. Lanes are

    labeled at the Decoder end of the cable. In Rx mode, these signals are actively

    terminated by the unit in response to the protocol on the wires.

  • 13

    4 Operation

    4.1 Modes:

    There are two modes of operation: “Sniff” mode and “Rx” mode.

    “Sniff” mode acquires the signal from the DUT via the active solder-down probe heads.

    This is generally used “mid-bus” when there is a DPhy Transmitter connected to a DPhy

    receiver and the user wants to monitor and/or decode the traffic on the bus. The active

    probes non-invasively allow the user to monitor the traffic. The unit does not interact

    with either the transmitter or the receiver.

    4.2 Connections:

    4.2.1 “Sniff” mode:

    Connect the USB cable to the PC, and the probe heads to the DUT. Make sure the black

    ground wire is attached to the DUT ground.

    We have found that the best way to connect the solder-down probes to the DUT is to

    solder short (~7mm) “whisker” wires to each of the probe tips then down to the DUT.

    Tie the probe head to the DUT with some electrical tape to stabilize the setup and strail-

    relieve the whisker wires.

    If short whisker wires cannot work for a particular setup, the user can extend the length to

    the probe head by soldering a 100-200 ohm resistor to the DUT then extending the other

    end to the probe head. This wire can be up to ~40mm before significant signal

    degradation occurs. Note that this additional resistance will cause some degradation of

    the DPhy signal amplitude. In critical applications, the probe tip resistors value should be

    reduced by the amount of the additional external resistance.

    4.2.2 “Rx” Mode:

    Connect the DUT transmitter to the SMA connections via high-quality 50 ohm coaxial

    cables. We recommend the length not exceed 70cm. The limitation is not due to the

    high-speed nature of the signal; it is due to MIPI DPhy LP mode not being terminated at

    the receiver and yet having fairly fast risetimes. Longer connections result in many

    reflections during LP signals. After about 90cm of length, the decoder may get confused

    by the reflections.

    In Rx mode, the unit actively terminates the signals as required by the protocol. Further,

    it will also respond (as programmed by the user via the DphyDecoderCtl GUI) to BTA

    requests as a normal receiver would. This response is rudimentary and the unit does not

    have the capability to respond differently to different types of BTA requests.

  • 14

    Connect the external 24 volt power supply to DPhyDkd via the connector on the rear

    panel marked “24 Vdc”.

    Note that there is a LED visible through a hole next to the power connector. This LED

    will light with a green color when power is applied to the unit.

    Upon power-up, the left-most two leds (“Idle” and “HS Traffic”) will blink back and

    forth a few times to indicate that the internal boot process is complete.

    This system is intended to be operated in a lab environment where proper grounding of

    all equipment and surfaces is implemented. The system monitors very small signals

    across a very wide frequency range and is easily upset by large EM fields and static

    discharges.

  • 15

    4.3 Clock delay line setting

    The DPhyDkd was designed to operate with systems that may not be within spec,

    particularly with respect to the clock-to-data timing relationship. We have provided an

    adjustment available through the GUI so that a user can optimize the timing. As the user

    operates closer to the maximum clock rate limit for the DPhyDkd (the setting becomes

    more sensitive with number of lanes), this setting gets very critical, working over a

    ~400pS range typically at 1.5Gbps. A clue that the timing needs adjustment is that the

    DPhyDkd has no errors at lower frequencies. If it detects errors at the highest bit rates,

    the user should try changing this setting over a +/- 200pS range. The GUI has a button

    that automates the search for the best possible setting of this delay line.

    4.4 Synchronization

    In MIPI DPhy v1.2 at bitrates greater than 1.5 Gbps, transmitters are required to send a

    training sequence periodically so that receivers can optimize their sampling phase. The

    DPhyDkd hardware has enough timing margin such that it does not actually need to train

    to recover the signal as long as it was transmitted within spec since the timing variation

    allowed in the spec is less than the acquisition setup and hold time required by the

    DPhyDkd. However, if the transmitter is out of spec, the signal can still be acquired by

    using the methods outlined in the paragraph above (4.3).

  • 16

    5.0 Electrical specification for the DPhyDecoder V1.2

    Characteristic Specification Notes

    Maximum data rate 2.5 Gb/s per lane

    Maximum clock rate 1250 MHz

    Input Impedance, active probes 2.0k to ground in

    parallel with less than

    1pF, each side of the

    Differential input

    This will slightly reduce the

    LP voltage high signal

    depending on the output

    impedance of the source

    Trigger Out, impedance ~50 ohms

    Trigger Out, amplitude ~3.3V open circuit

    1.65V into 50 ohms

    Logic low is ground.

    Probe Head tip resistors 1.33k, 1% 0603 package style, lead-free

    Storage Capacity, video data 256MBytes

    512Mbytes total vector storage

    (half is overhead).

    Clock delay range ~9 nS

    External Power Supply 24 Vdc, 50 watts max Universal, supplied

    Operating Environment 20-30 degrees C

    Less than 15,000’

    elevation

    No condensing humidity

    Lab environment

    No strong, stray fields

    No static discharges

    Weight ~1170 grams approximate, without supply

    Weight, power supply and cord ~475 grams approximate

    Overall Dimensions 345mm x 195mm x

    80mm

    Approximate, without supply

    Note that this product is RoHS compliant, even though it is currently exempt from RoHS

    requirements.

  • 17

    For more information contact:

    The Moving Pixel Company

    4905 SW Griffith Drive

    Suite 106

    Beaverton, Oregon 97005

    www.movingpixel.com

    [email protected]

    +1.503.626.9663 phone PST

    http://www.movingpixel.com/mailto:[email protected]