35
Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Embed Size (px)

Citation preview

Page 1: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Mitsubishi Electric Research Labs

Progressively Refined Reflectance Fields from Natural Illumination

Wojciech Matusik

Matt Loper

Hanspeter Pfister

Page 2: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

MotivationMotivation

• Complex natural scenes are difficult to acquire• Acquisition needs to be easy and robust• Image-based lighting offers high realism • We would like to relight image-based models at

any scale (from small objects to cities)

Page 3: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

MotivationMotivation

• Image-based Relighting– no scene geometry – just images– no assumptions about scene reflectance properties

Page 4: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Previous WorkPrevious Work

• Forward Approaches– Georghiades 99, Debevec 2000, Malzbender 01,

Masselus 02, Peers 03

• Inverse Approaches– Zongker 99, Chuang 00, Wexler 02

• Pre-computed Light Transport– Sloan 02, Ng 03

Page 5: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Reflectance FieldReflectance Field

• 8D function:

[Debevec 2000]

),;,;,;,( rrrriiiir vuvuf

(θr,φr)

(ur,vr)

(θi,φi)

(ui,vi)

Page 6: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Reflectance (Weighting) FunctionReflectance (Weighting) Function

• Assumes incident illumination originates at infinity

• x,y are image space coordinates

θi

φi

),;,( iiw yxf

Page 7: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Light Transport ModelLight Transport Model

• A light flow in the scene can be modeled as a multiple-input / multiple-output linear system:

TLB

Scene

light transport

matrix

T

Incident Light

L

Observed Image

B

Unroll to a vector Unroll to a vector

Page 8: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Light Transport ModelLight Transport Model

• Solve independently for each output pixel multiple-input / single-output linear system :

LTb ii

Scene

light transport

vector

Ti

Incident Light

L

Observed Pixel

bi

Page 9: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

RepresentationRepresentation

• Approximate Ti as a sum of 2D rectangular kernels Rk,i, each with weight wk,i.

k

ikiki RwT ,,

θi

φi

Page 10: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Inverse EstimationInverse Estimation

• Given input images Lj we record observed pixel values bij:

• Given matrix L and vector bi the goal is to estimate Ti

– Positions and sizes of the rectangular kernels Rk,i

– Weights wk, i

jiij LTb

,...],[,...],[ 2121 LLTbb iii

Page 11: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Estimating Kernel WeightsEstimating Kernel Weights

• Assume that we know sizes and positions of the kernels Rk,i and would like to compute their weights

0minarg2 iiiiw wtosubjectbwA

LTb ii

02

1minarg

i

iTi

Tiii

Ti

Tiw

wtosubject

bAwwAAw

ii wLRLRw ikk

ik

,, iiwA

•Efficient solution using quadratic programming

Page 12: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Estimating Kernel Positions & SizesEstimating Kernel Positions & Sizes

• Hierarchical kd-tree subdivision of the kernels input image domain

• At each level choose subdivision that reduces error the most

• Kernels are non-overlapping

2

iii bwA

Page 13: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Kernel SubdivisionsKernel Subdivisions

specular

refractive

1 2 3 4 5 10 20 24

subsurface

scattering

glossy

hard

shadow

Subdivisions

Page 14: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Spatial CorrectionSpatial Correction

• The kernels search strategy does not always work• Solution: For each output pixel:

– try kernel positions and sizes of the neighboring output pixels

– try shifted versions of the current kernels– solve for new weights– keep new kernels if the error decreases

Page 15: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Integration with Incident IlluminationIntegration with Incident Illumination

• Is very efficient• For each output pixel i

• The incident illumination is stored as a summed-area table to evaluate

kiikiki

kikikiii LRwLRwLTb ,,,,

iik LR ,

Page 16: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Data AcquisitionData Acquisition

• We have built two acquisition systems– Indoor scenes / small objects

– Outdoor scenes (city)

Page 17: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Acquisition System IAcquisition System I

Page 18: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Example Input ImagesExample Input Images

Page 19: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Results Results

• Refractive and specular elements

Prediction Actual

Page 20: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Results – New IlluminationResults – New Illumination

Page 21: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Results - White Vertical BarResults - White Vertical Bar

Prediction Actual

Page 22: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

ResultsResults

Estimate Actual

• Diffuse elements, shadows

Page 23: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Results - White Vertical BarResults - White Vertical Bar

Page 24: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

ResultsResults

Estimate Actual

• Subsurface Scattering

Page 25: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Results - White Vertical BarResults - White Vertical Bar

Page 26: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

ResultsResults

• Glossy elements and interreflections

Estimate

Actual

Page 27: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Results - White Vertical BarResults - White Vertical Bar

Page 28: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

ResultsResults

• One shifted version of the same image used as input illumination

Page 29: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Acquisition System IIAcquisition System II

• Two Synchronized CamerasCamera #1 Camera #2

Page 30: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Example Observed ImagesExample Observed Images

Page 31: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Results – Relighting The CityResults – Relighting The City

• White vertical bar

Page 32: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

LessonsLessons

• Inverse approaches benefit from good kernel search strategies & more computation power

• Inverse approaches are more efficient than forward approaches

• Challenges:– Scene needs to be static– Varied set of input illumination– Illumination is not at infinity

Page 33: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

ConclusionsConclusions

• Advantages of our algorithm:– Natural Illumination Input– All-frequency Robustness– Compact Representation– Progressive Refinement– Fast Evaluation– Simplicity

Page 34: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

Future WorkFuture Work

• New acquisition systems– object and camera are fixed w.r.t. each other and they

rotate in a single, natural environment

• Combining representations from different viewpoints and proxy geometry

• Coarse-to-fine estimation in the observed image space– start with low resolution observed images & search

exhaustively for the best kernels– propagate the kernels to higher resolution images

Page 35: Mitsubishi Electric Research Labs Progressively Refined Reflectance Fields from Natural Illumination Wojciech Matusik Matt Loper Hanspeter Pfister

AcknowledgementsAcknowledgements

• Jan Kautz• Barb Cutler• Jennifer Roderick Pfister• EGSR Reviewers