76
Mod´ elisation math´ ematique des vagues David Lannes Institut de Math´ ematiques de Bordeaux et CNRS UMR 5251 Journ´ ee des doctorants David Lannes (IMB) Mod´ elisation math´ ematique des vagues Valenciennes, 10/09/2015 1 / 30

Mod elisation math ematique des vagues · Mod elisation math ematique des vagues David Lannes Institut de Math ematiques de Bordeaux et CNRS UMR 5251 Journ ee des doctorants David

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

  • Modélisation mathématique des vagues

    David Lannes

    Institut de Mathématiques de Bordeaux et CNRS UMR 5251

    Journée des doctorants

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 1 / 30

  • Goal

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 2 / 30

  • Goal

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 2 / 30

  • Goal

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 2 / 30

  • Where do waves come from? How are they created?

    Source: Les vagues en équations, Pour la Science, no 409, novembre 2011David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 3 / 30

  • Where do waves come from? What is their speed?

    Sir Isaac Newton(1642-1727)Principia Mathematica, 1687

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 4 / 30

  • Where do waves come from? What is their speed?

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 4 / 30

  • Where do waves come from? What is their speed?

    Leonhard Euler(1707-1783)Mémoires de l’Académie royale des sciences et desbelles lettres de Berlin, 1757 Equations of fluid mechanics

    ρ(∂tU + U · ∇X ,zU) =−∇X ,zP + ρgdiv U =0

    This equations are very general

    What do they tell us about waves?

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 5 / 30

  • Where do waves come from? What is their speed?

    Leonhard Euler(1707-1783)Mémoires de l’Académie royale des sciences et desbelles lettres de Berlin, 1757 Equations of fluid mechanics

    ρ(∂tU + U · ∇X ,zU) =−∇X ,zP + ρgdiv U =0

    This equations are very general

    What do they tell us about waves?

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 5 / 30

  • Where do waves come from? What is their speed?

    Giuseppe Lodovico Lagrangia(Joseph Louis Lagrange)(1736-1813)Mémoire sur la théorie dumouvement des fluides, 1781

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 6 / 30

  • Where do waves come from? What is their speed?

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 6 / 30

  • Where do waves come from? What is their speed?

    Source: Les vagues en équations, Pour la Science, no 409, novembre 2011

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 7 / 30

  • Where do waves come from? What is their speed?

    Comparison of Newton and Lagrange’s formulas

    Lagrange: c =√gH.

    All waves have same speed

    Newton: c = 1√2π

    √gL where L is the wave length of the wave

    Waves of different wavelength propagate differently

    Source: Les vagues en équations, Pour la Science, no 409, novembre 2011

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 8 / 30

  • Where do waves come from? What is their speed?

    Comparison of Newton and Lagrange’s formulas

    Lagrange: c =√gH.

    All waves have same speed

    Newton: c = 1√2π

    √gL where L is the wave length of the wave

    Waves of different wavelength propagate differently

    Source: Les vagues en équations, Pour la Science, no 409, novembre 2011

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 8 / 30

  • Where do waves come from? What is their speed?

    Comparison of Newton and Lagrange’s formulas

    Lagrange: c =√gH.

    All waves have same speed

    Newton: c = 1√2π

    √gL where L is the wave length of the wave

    Waves of different wavelength propagate differently

    This is dispersion:

    Source: Les vagues en équations, Pour la Science, no 409, novembre 2011

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 8 / 30

  • Where do waves come from? What is their speed?

    Comparison of Newton and Lagrange’s formulas

    Lagrange: c =√gH.

    All waves have same speed

    Newton: c = 1√2π

    √gL where L is the wave length of the wave

    Waves of different wavelength propagate differently

    Comparison for a wave a0(x) = sin(x) + 0.5 sin(2x).

    Source: Les vagues en équations, Pour la Science, no 409, novembre 2011

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 8 / 30

  • Where do waves come from? What is their speed?

    Recall how waves are created

    Source: Les vagues en équations, Pour la Science, no 409, novembre 2011

    So the good formula should be

    Newton: c = 1√2π

    √gL

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 9 / 30

  • Where do waves come from? What is their speed?

    Recall how waves are created

    Source: Les vagues en équations, Pour la Science, no 409, novembre 2011

    So the good formula should be

    Newton: c = 1√2π

    √gL

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 9 / 30

  • Closer to the shore Another formula!

    Closer to the shore we observe:

    And the relevant formula is

    Lagrange: c =√gH

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 10 / 30

  • Closer to the shore Another formula!

    Closer to the shore we observe:

    And the relevant formula is

    Lagrange: c =√gH

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 10 / 30

  • Closer to the shore What happens?

    Siméon DenisPoisson

    (1780–1840)

    Augustin LouisCauchy(1789–1857)

    Sir George BiddellAiry(1801–1892)

    Sir George GabrielStokes(1819–1903)

    A single formula with twodifferent asymptotic regimes

    Lagrange’s formula in shallowwater (H/L→ 0),Newton’s formula in deep water(H/L→∞).

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 11 / 30

  • Closer to the shore What happens?

    Siméon DenisPoisson

    (1780–1840)

    Augustin LouisCauchy(1789–1857)

    Sir George BiddellAiry(1801–1892)

    Sir George GabrielStokes(1819–1903)

    A single formula with twodifferent asymptotic regimes

    Lagrange’s formula in shallowwater (H/L→ 0),Newton’s formula in deep water(H/L→∞).

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 11 / 30

  • Modern mathematical approaches Notations

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 12 / 30

  • Modern mathematical approaches The free surface Euler equations

    The free surface Euler equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt

    Definition

    Equations (H1)-(H9) are called free surface Euler equations.

    ONE unknown function ζ on a fixed domain Rd THREE unknown functions U on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 13 / 30

  • Modern mathematical approaches The free surface Euler equations

    The free surface Euler equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    Definition

    Equations (H1)-(H9) are called free surface Euler equations.

    ONE unknown function ζ on a fixed domain Rd THREE unknown functions U on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 13 / 30

  • Modern mathematical approaches The free surface Euler equations

    The free surface Euler equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    3 curl U = 0

    Definition

    Equations (H1)-(H9) are called free surface Euler equations.

    ONE unknown function ζ on a fixed domain Rd THREE unknown functions U on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 13 / 30

  • Modern mathematical approaches The free surface Euler equations

    The free surface Euler equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    3 curl U = 0

    4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.

    Definition

    Equations (H1)-(H9) are called free surface Euler equations.

    ONE unknown function ζ on a fixed domain Rd THREE unknown functions U on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 13 / 30

  • Modern mathematical approaches The free surface Euler equations

    The free surface Euler equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    3 curl U = 0

    4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 U · n = 0 on {z = −H0 + b(X )}.

    Definition

    Equations (H1)-(H9) are called free surface Euler equations.

    ONE unknown function ζ on a fixed domain Rd THREE unknown functions U on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 13 / 30

  • Modern mathematical approaches The free surface Euler equations

    The free surface Euler equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    3 curl U = 0

    4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 U · n = 0 on {z = −H0 + b(X )}.6 ∂tζ −

    √1 + |∇ζ|2U · n = 0 on {z = ζ(t,X )}.

    Definition

    Equations (H1)-(H9) are called free surface Euler equations.

    ONE unknown function ζ on a fixed domain Rd THREE unknown functions U on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 13 / 30

  • Modern mathematical approaches The free surface Euler equations

    The free surface Euler equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    3 curl U = 0

    4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 U · n = 0 on {z = −H0 + b(X )}.6 ∂tζ −

    √1 + |∇ζ|2U · n = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)-(H9) are called free surface Euler equations.

    ONE unknown function ζ on a fixed domain Rd THREE unknown functions U on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 13 / 30

  • Modern mathematical approaches The free surface Euler equations

    The free surface Euler equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    3 curl U = 0

    4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 U · n = 0 on {z = −H0 + b(X )}.6 ∂tζ −

    √1 + |∇ζ|2U · n = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)-(H9) are called free surface Euler equations.

    ONE unknown function ζ on a fixed domain Rd THREE unknown functions U on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 13 / 30

  • Modern mathematical approaches The free surface Euler equations

    The free surface Euler equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    3 curl U = 0

    4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 U · n = 0 on {z = −H0 + b(X )}.6 ∂tζ −

    √1 + |∇ζ|2U · n = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)-(H9) are called free surface Euler equations.

    ONE unknown function ζ on a fixed domain Rd THREE unknown functions U on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 13 / 30

  • Modern mathematical approaches The free surface Bernoulli equations

    The free surface Bernoulli equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    3 curl U = 0

    4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 U · n = 0 on {z = −H0 + b(X )}6 ∂tζ −

    √1 + |∇ζ|2U · n = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)’-(H9)’ are called free surface Bernoulli equations.

    ONE unknown function ζ on a fixed domain Rd ONE unknown function Φ on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 14 / 30

  • Modern mathematical approaches The free surface Bernoulli equations

    The free surface Bernoulli equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 div U = 0

    3 U = ∇X ,zΦ4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 U · n = 0 on {z = −H0 + b(X )}6 ∂tζ −

    √1 + |∇ζ|2U · n = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)’-(H9)’ are called free surface Bernoulli equations.

    ONE unknown function ζ on a fixed domain Rd ONE unknown function Φ on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 14 / 30

  • Modern mathematical approaches The free surface Bernoulli equations

    The free surface Bernoulli equations

    1 ∂tU + (U · ∇X ,z)U = −1ρ∇X ,zP − gez in Ωt2 ∆X ,zΦ = 0

    3 U = ∇X ,zΦ4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 U · n = 0 on {z = −H0 + b(X )}6 ∂tζ −

    √1 + |∇ζ|2U · n = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)’-(H9)’ are called free surface Bernoulli equations.

    ONE unknown function ζ on a fixed domain Rd ONE unknown function Φ on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 14 / 30

  • Modern mathematical approaches The free surface Bernoulli equations

    The free surface Bernoulli equations

    1 ∂tΦ +12 |∇X ,zΦ|

    2 + gz = −1ρ(P − Patm) in Ωt2 ∆X ,zΦ = 0

    3 U = ∇X ,zΦ4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 U · n = 0 on {z = −H0 + b(X )}6 ∂tζ −

    √1 + |∇ζ|2U · n = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)’-(H9)’ are called free surface Bernoulli equations.

    ONE unknown function ζ on a fixed domain Rd ONE unknown function Φ on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 14 / 30

  • Modern mathematical approaches The free surface Bernoulli equations

    The free surface Bernoulli equations

    1 ∂tΦ +12 |∇X ,zΦ|

    2 + gz = −1ρ(P − Patm) in Ωt2 ∆X ,zΦ = 0

    3 U = ∇X ,zΦ4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 ∂nΦ = 0 on {z = −H0 + b(X )}.6 ∂tζ −

    √1 + |∇ζ|2U · n = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)’-(H9)’ are called free surface Bernoulli equations.

    ONE unknown function ζ on a fixed domain Rd ONE unknown function Φ on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 14 / 30

  • Modern mathematical approaches The free surface Bernoulli equations

    The free surface Bernoulli equations

    1 ∂tΦ +12 |∇X ,zΦ|

    2 + gz = −1ρ(P − Patm) in Ωt2 ∆X ,zΦ = 0

    3 U = ∇X ,zΦ4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 ∂nΦ = 0 on {z = −H0 + b(X )}.6 ∂tζ −

    √1 + |∇ζ|2∂nΦ = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)’-(H9)’ are called free surface Bernoulli equations.

    ONE unknown function ζ on a fixed domain Rd ONE unknown function Φ on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 14 / 30

  • Modern mathematical approaches The free surface Bernoulli equations

    The free surface Bernoulli equations

    1 ∂tΦ +12 |∇X ,zΦ|

    2 + gz = −1ρ(P − Patm) in Ωt2 ∆X ,zΦ = 0

    3 U = ∇X ,zΦ4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 ∂nΦ = 0 on {z = −H0 + b(X )}.6 ∂tζ −

    √1 + |∇ζ|2∂nΦ = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)’-(H9)’ are called free surface Bernoulli equations.

    ONE unknown function ζ on a fixed domain Rd ONE unknown function Φ on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 14 / 30

  • Modern mathematical approaches The free surface Bernoulli equations

    The free surface Bernoulli equations

    1 ∂tΦ +12 |∇X ,zΦ|

    2 + gz = −1ρ(P − Patm) in Ωt2 ∆X ,zΦ = 0

    3 U = ∇X ,zΦ4 Ωt = {(X , z) ∈ Rd+1,−H0 + b(X ) < z < ζ(t,X )}.5 ∂nΦ = 0 on {z = −H0 + b(X )}.6 ∂tζ −

    √1 + |∇ζ|2∂nΦ = 0 on {z = ζ(t,X )}.

    7 P = Patm on {z = ζ(t,X )}.

    Definition

    Equations (H1)’-(H9)’ are called free surface Bernoulli equations.

    ONE unknown function ζ on a fixed domain Rd ONE unknown function Φ on a moving, unknown domain Ωt

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 14 / 30

  • Modern mathematical approaches Working with a fix domain

    The Lagrangian approach

    One parametrizes any fluid particle of Ωt by its initial position through thediffeomorphism Σ {

    ∂tΣ(t,X , z) = U(t,Σ(t,X , z)),

    Σ(0,X , z) = (X , z).

    Writing

    Ũ(t,X , z) =U(t,Σ(t,X , z)),

    A(t,X , z) =|∇X ,zΣ|−1

    we get {∂tU + U · ∇X ,zU = −∇X ,zP + gdiv (U) = 0

    in Ωt

    {∂tŨ = −A∇X ,z P̃ + gTr (A∇X ,zŨ) = 0

    in Ω0

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 15 / 30

  • Modern mathematical approaches Working with a fix domain

    The geometric approach (I)

    The Lagrangian diffeomorphism{∂tΣ(t,X , z) = U(t,Σ(t,X , z)),

    Σ(0,X , z) = (X , z).

    is volume preserving since U is divergence free

    Σ ∈ H = {Σ : Ω0 → Rd+1,Σ volume preserving.

    Moreover the energy is conserved

    H =1

    2

    ∫Ωt

    |U|2 + g2

    ∫Rdζ2

    =1

    2

    ∫Ω0

    |∂tΣ|2 + gG (Σ)︸ ︷︷ ︸:=L(Σ,∂tΣ)

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 16 / 30

  • Modern mathematical approaches Working with a fix domain

    The geometric approach (II)

    Defining TΣH

    TΣH = {Σ′ Ω0 → Rd+1, div (Σ′ ◦ Σ) = 0},

    the free surface Euler equations can be viewed as a critical point of theaction

    L(Σ, ∂tΣ) = =1

    2

    ∫Ω0

    |∂tΣ|2 − gG (Σ).

    Remark

    Arnold (1966): the Euler equation for an incompressible inviscid fluid canbe viewed as the geodesic equation on the group of volume-preservingdiffeomorphisms.

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 17 / 30

  • Modern mathematical approaches Working with a fix domain

    Lagrangian interface formulation (I)

    We consider a Lagrangian parametrization of the surface

    Γt = {M(t, α), α ∈ R},

    with {∂tM(t, α) = U(t,M(t, α)),

    M(0, α) = (α, ζ0(α)).

    One then has

    ∂2tM =∂tU + ∂tM · ∇X ,zU=∂tU + U · ∇X ,zU

    =− gez −1

    ρ∇X ,zP

    And since P = Patm is constant at the surface

    ∂2tM + gez =1

    ρ(−∂nP)n

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 18 / 30

  • Modern mathematical approaches Working with a fix domain

    Lagrangian interface formulation (II)

    ∂2tM + gez =1

    ρ(−∂nP)n ∂αM1∂2tM1 + (g + ∂2tM2)∂αM2 = 0

    We still need a relation between ∂tM1 and ∂tM2 !!!!

    Complex analysis

    (x , z) ∈ R2 x + iz ∈ CIncompressibility+Irrotationality=Cauchy Riemann for U

    U is holomorphic in Ωt

    ∂tM = U(t,M(t, α)) is the boundary of a holomorphic function,therefore

    ∂tM = H(Γt)∂tM

    with

    H(Γt)f (t, α) =1

    iπp.v.

    ∫f (t, α′)∂αM(t, α

    ′)

    M(t, α)−M(t, α′)dα′.

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 19 / 30

  • Modern mathematical approaches Working with a fix domain

    An Eulerian approach: The Zakharov-Craig-Sulemformulation

    Zakharov 68:1 Define ψ(t,X ) = Φ(t,X , ζ(t,X )) .

    2 ζ and ψ fully determine Φ: indeed, the equation{∆X ,zΦ = 0 in Ωt ,Φ|z=ζ = ψ, ∂nΦ|z=−H0+b = 0.

    has a unique solution Φ.3 The equations can be put under the canonical Hamiltonian form

    ∂t

    (ζψ

    )=

    (0 1−1 0

    )gradζ,ψH

    with the Hamiltonian

    H =1

    2

    ∫Rd

    gζ2 +

    ∫Ω|U|2

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 20 / 30

  • Modern mathematical approaches Working with a fix domain

    An Eulerian approach: The Zakharov-Craig-Sulemformulation

    Zakharov 68:1 Define ψ(t,X ) = Φ(t,X , ζ(t,X )) .

    2 ζ and ψ fully determine Φ: indeed, the equation{∆X ,zΦ = 0 in Ωt ,Φ|z=ζ = ψ, ∂nΦ|z=−H0+b = 0.

    has a unique solution Φ.

    3 The equations can be put under the canonical Hamiltonian form

    ∂t

    (ζψ

    )=

    (0 1−1 0

    )gradζ,ψH

    with the Hamiltonian

    H =1

    2

    ∫Rd

    gζ2 +

    ∫Ω|U|2

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 20 / 30

  • Modern mathematical approaches Working with a fix domain

    An Eulerian approach: The Zakharov-Craig-Sulemformulation

    Zakharov 68:1 Define ψ(t,X ) = Φ(t,X , ζ(t,X )) .

    2 ζ and ψ fully determine Φ: indeed, the equation{∆X ,zΦ = 0 in Ωt ,Φ|z=ζ = ψ, ∂nΦ|z=−H0+b = 0.

    has a unique solution Φ.3 The equations can be put under the canonical Hamiltonian form

    ∂t

    (ζψ

    )=

    (0 1−1 0

    )gradζ,ψH

    with the Hamiltonian

    H =1

    2

    ∫Rd

    gζ2 +

    ∫Ω|U|2

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 20 / 30

  • Modern mathematical approaches Working with a fix domain

    Question

    What are the equations on ζ and ψ???

    • Equation on ζ. It is given by the kinematic equation

    ∂tζ −√

    1 + |∇ζ|2∂nΦ|z=ζ = 0

    Craig-Sulem 93:

    Definition (Dirichlet-Neumann operator)

    G [ζ] : ψ 7→ G [ζ]ψ =√

    1 + |∇ζ|2∂nΦ|z=ζ

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 21 / 30

  • Modern mathematical approaches Working with a fix domain

    Question

    What are the equations on ζ and ψ???

    • Equation on ζ. It is given by the kinematic equation

    ∂tζ −√

    1 + |∇ζ|2∂nΦ|z=ζ = 0

    Craig-Sulem 93:

    Definition (Dirichlet-Neumann operator)

    G [ζ] : ψ 7→ G [ζ]ψ =√

    1 + |∇ζ|2∂nΦ|z=ζ

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 21 / 30

  • Modern mathematical approaches Working with a fix domain

    Question

    What are the equations on ζ and ψ???

    • Equation on ζ. It is given by the kinematic equation

    ∂tζ −√

    1 + |∇ζ|2∂nΦ|z=ζ = 0

    Craig-Sulem 93:

    Definition (Dirichlet-Neumann operator)

    G [ζ] : ψ 7→ G [ζ]ψ =√

    1 + |∇ζ|2∂nΦ|z=ζ

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 21 / 30

  • Modern mathematical approaches Working with a fix domain

    Question

    What are the equations on ζ and ψ???

    • Equation on ζ. It is given by the kinematic equation

    ∂tζ −√

    1 + |∇ζ|2∂nΦ|z=ζ = 0

    Craig-Sulem 93:

    Definition (Dirichlet-Neumann operator)

    G [ζ] : ψ 7→ G [ζ]ψ =√

    1 + |∇ζ|2∂nΦ|z=ζ

    The equation on ζ can be written

    ∂tζ − G [ζ]ψ = 0

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 21 / 30

  • Modern mathematical approaches Working with a fix domain

    • Equation on ψ. We use (H1)” and (H7)”

    ∂tΦ +1

    2|∇X ,zΦ|2 + gz = −

    1

    ρ(P − Patm) AND P|z=ζ = Patm

    w∂tΦ|z=ζ +

    1

    2|∇X ,zΦ|2|z=ζ + gζ = 0

    The equation on ψ can be written

    ∂tψ + gζ +1

    2|∇ψ|2 − (G [ζ]ψ +∇ζ · ∇ψ)

    2

    2(1 + |∇ζ|2)= 0.

    The Zakharov-Craig-Sulem equations∂tζ − G [ζ]ψ = 0,

    ∂tψ + gζ +1

    2|∇ψ|2 − (G [ζ]ψ +∇ζ · ∇ψ)

    2

    2(1 + |∇ζ|2)= 0.

    Two scalar equations on the fix d-dimensional domain Rd !

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 22 / 30

  • Modern mathematical approaches Working with a fix domain

    • Equation on ψ. We use (H1)” and (H7)”

    ∂tΦ +1

    2|∇X ,zΦ|2 + gz = −

    1

    ρ(P − Patm) AND P|z=ζ = Patmw

    ∂tΦ|z=ζ +1

    2|∇X ,zΦ|2|z=ζ + gζ = 0

    The equation on ψ can be written

    ∂tψ + gζ +1

    2|∇ψ|2 − (G [ζ]ψ +∇ζ · ∇ψ)

    2

    2(1 + |∇ζ|2)= 0.

    The Zakharov-Craig-Sulem equations∂tζ − G [ζ]ψ = 0,

    ∂tψ + gζ +1

    2|∇ψ|2 − (G [ζ]ψ +∇ζ · ∇ψ)

    2

    2(1 + |∇ζ|2)= 0.

    Two scalar equations on the fix d-dimensional domain Rd !

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 22 / 30

  • Modern mathematical approaches Working with a fix domain

    • Equation on ψ. We use (H1)” and (H7)”

    ∂tΦ +1

    2|∇X ,zΦ|2 + gz = −

    1

    ρ(P − Patm) AND P|z=ζ = Patmw

    ∂tΦ|z=ζ +1

    2|∇X ,zΦ|2|z=ζ + gζ = 0

    The equation on ψ can be written

    ∂tψ + gζ +1

    2|∇ψ|2 − (G [ζ]ψ +∇ζ · ∇ψ)

    2

    2(1 + |∇ζ|2)= 0.

    The Zakharov-Craig-Sulem equations∂tζ − G [ζ]ψ = 0,

    ∂tψ + gζ +1

    2|∇ψ|2 − (G [ζ]ψ +∇ζ · ∇ψ)

    2

    2(1 + |∇ζ|2)= 0.

    Two scalar equations on the fix d-dimensional domain Rd !

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 22 / 30

  • Modern mathematical approaches Working with a fix domain

    • Equation on ψ. We use (H1)” and (H7)”

    ∂tΦ +1

    2|∇X ,zΦ|2 + gz = −

    1

    ρ(P − Patm) AND P|z=ζ = Patmw

    ∂tΦ|z=ζ +1

    2|∇X ,zΦ|2|z=ζ + gζ = 0

    The equation on ψ can be written

    ∂tψ + gζ +1

    2|∇ψ|2 − (G [ζ]ψ +∇ζ · ∇ψ)

    2

    2(1 + |∇ζ|2)= 0.

    The Zakharov-Craig-Sulem equations∂tζ − G [ζ]ψ = 0,

    ∂tψ + gζ +1

    2|∇ψ|2 − (G [ζ]ψ +∇ζ · ∇ψ)

    2

    2(1 + |∇ζ|2)= 0.

    Two scalar equations on the fix d-dimensional domain Rd !David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 22 / 30

  • Local well posedness Linearized equations around the rest state

    Linearized equations

    {∂tζ − G [0]ψ = 0,∂tψ + gζ = 0.

    andG [0] = |D| tanh(H|D|)

    and therefore∂2t ζ + g |D| tanh(H|D|)ζ = 0

    Newton and Lagrange’s formulas:

    ∂2t ζ − gH∂2x ζ = 0 in shallow water∂2t ζ + g |D|ζ = 0 in deep water.

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 23 / 30

  • Local well posedness Linearized equations around the rest state

    Quasilinearized equations

    After differentiation and change of unknowns, the structure is

    (∂t + V · ∇)(ζ̃

    ψ̃

    )+

    (0 −G [ζ]a 0

    )(ζ̃

    ψ̃

    )= l.o.t.

    Symbolic approximation

    G [ζ] = |D|+ order 0

    Jordan block a > 0

    This is the Rayleigh-Taylor criterion (−∂zP)|z=ζ > 0.

    Theorem

    The (ZCS) is locally well posed.

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 24 / 30

  • Asymptotic expansions Nondimensionalization

    Asymptotic models

    Goal

    Derive simpler asymptotic models describing the solutions to the waterwaves equations in shallow water.

    For the sake of simplicity, we consider here a flat bottom (b = 0).

    We introduce three characteristic scales1 The characteristic water depth H02 The characteristic horizontal scale L3 The order of the free surface amplitude a

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 25 / 30

  • Asymptotic expansions Nondimensionalization

    Asymptotic models

    Goal

    Derive simpler asymptotic models describing the solutions to the waterwaves equations in shallow water.

    For the sake of simplicity, we consider here a flat bottom (b = 0).

    We introduce three characteristic scales1 The characteristic water depth H02 The characteristic horizontal scale L3 The order of the free surface amplitude a

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 25 / 30

  • Asymptotic expansions Nondimensionalization

    Asymptotic models

    Goal

    Derive simpler asymptotic models describing the solutions to the waterwaves equations in shallow water.

    For the sake of simplicity, we consider here a flat bottom (b = 0).We introduce three characteristic scales

    1 The characteristic water depth H02 The characteristic horizontal scale L3 The order of the free surface amplitude a

    Two independent dimensionless parameters can be formed from thesethree scales. We choose:

    a

    H0= ε (amplitude parameter ),

    H20L2

    = µ (shallowness parameter ).

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 25 / 30

  • Asymptotic expansions Nondimensionalization

    We proceed to the simple nondimensionalizations

    X ′ =X

    L, z ′ =

    z

    H0, ζ ′ =

    ζ

    a, etc.

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 26 / 30

  • Asymptotic expansions Nondimensionalized equations

    ∂tζ +∇ · (hV ) = 0,

    ∂t∇ψ +∇ζ +ε

    2∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)

    2

    2(1 + ε2µ|∇ζ|2)= 0,

    where in dimensionless form

    h = 1 + εζ and V =1

    h

    ∫ εζ−1

    V (x , z)dz .

    Shallow water asymptotics (µ� 1)We look for an asymptotic description with respect to µ of ∇ψ interms of ζ and V

    This is obtained through an asymtotic description of V in the fluid.

    This is obtained through an asympotic description of Φ in the fluid,Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .At first order, we have a columnar motion and therefore∇ψ = V + O(µ).Next order approximation: Green-Naghdi

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 27 / 30

  • Asymptotic expansions Nondimensionalized equations

    ∂tζ +∇ · (hV ) = 0,

    ∂t∇ψ +∇ζ +ε

    2∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)

    2

    2(1 + ε2µ|∇ζ|2)= 0,

    where in dimensionless form

    h = 1 + εζ and V =1

    h

    ∫ εζ−1

    V (x , z)dz .

    Shallow water asymptotics (µ� 1)

    We look for an asymptotic description with respect to µ of ∇ψ interms of ζ and V

    This is obtained through an asymtotic description of V in the fluid.

    This is obtained through an asympotic description of Φ in the fluid,Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .At first order, we have a columnar motion and therefore∇ψ = V + O(µ).Next order approximation: Green-Naghdi

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 27 / 30

  • Asymptotic expansions Nondimensionalized equations

    ∂tζ +∇ · (hV ) = 0,

    ∂t∇ψ +∇ζ +ε

    2∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)

    2

    2(1 + ε2µ|∇ζ|2)= 0,

    where in dimensionless form

    h = 1 + εζ and V =1

    h

    ∫ εζ−1

    V (x , z)dz .

    Shallow water asymptotics (µ� 1)We look for an asymptotic description with respect to µ of ∇ψ interms of ζ and V

    This is obtained through an asymtotic description of V in the fluid.

    This is obtained through an asympotic description of Φ in the fluid,Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .At first order, we have a columnar motion and therefore∇ψ = V + O(µ).Next order approximation: Green-Naghdi

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 27 / 30

  • Asymptotic expansions Nondimensionalized equations

    ∂tζ +∇ · (hV ) = 0,

    ∂t∇ψ +∇ζ +ε

    2∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)

    2

    2(1 + ε2µ|∇ζ|2)= 0,

    where in dimensionless form

    h = 1 + εζ and V =1

    h

    ∫ εζ−1

    V (x , z)dz .

    Shallow water asymptotics (µ� 1)We look for an asymptotic description with respect to µ of ∇ψ interms of ζ and V

    This is obtained through an asymtotic description of V in the fluid.

    This is obtained through an asympotic description of Φ in the fluid,Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .At first order, we have a columnar motion and therefore∇ψ = V + O(µ).Next order approximation: Green-Naghdi

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 27 / 30

  • Asymptotic expansions Nondimensionalized equations

    ∂tζ +∇ · (hV ) = 0,

    ∂t∇ψ +∇ζ +ε

    2∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)

    2

    2(1 + ε2µ|∇ζ|2)= 0,

    where in dimensionless form

    h = 1 + εζ and V =1

    h

    ∫ εζ−1

    V (x , z)dz .

    Shallow water asymptotics (µ� 1)We look for an asymptotic description with respect to µ of ∇ψ interms of ζ and V

    This is obtained through an asymtotic description of V in the fluid.

    This is obtained through an asympotic description of Φ in the fluid,Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .

    At first order, we have a columnar motion and therefore∇ψ = V + O(µ).Next order approximation: Green-Naghdi

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 27 / 30

  • Asymptotic expansions Nondimensionalized equations

    ∂tζ +∇ · (hV ) = 0,

    ∂t∇ψ +∇ζ +ε

    2∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)

    2

    2(1 + ε2µ|∇ζ|2)= 0,

    where in dimensionless form

    h = 1 + εζ and V =1

    h

    ∫ εζ−1

    V (x , z)dz .

    Shallow water asymptotics (µ� 1)We look for an asymptotic description with respect to µ of ∇ψ interms of ζ and V

    This is obtained through an asymtotic description of V in the fluid.

    This is obtained through an asympotic description of Φ in the fluid,Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .At first order, we have a columnar motion and therefore∇ψ = V + O(µ).

    Next order approximation: Green-Naghdi

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 27 / 30

  • Asymptotic expansions Nondimensionalized equations

    Saint-Venant

    {∂tζ +∇ · (hV ) = 0,∂tV + εV · ∇V +∇ζ = 0.

    where we dropped all O(µ) terms.

    Shallow water asymptotics (µ� 1)We look for an asymptotic description with respect to µ of ∇ψ interms of ζ and V

    This is obtained through an asymtotic description of V in the fluid.

    This is obtained through an asympotic description of Φ in the fluid,Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .At first order, we have a columnar motion and therefore∇ψ = V + O(µ).

    Next order approximation: Green-Naghdi

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 27 / 30

  • Asymptotic expansions Nondimensionalized equations

    Green-Nadghi

    {∂tζ +∇ · (hV ) = 0,(I + µT )

    (∂tV + εV · ∇V

    )+∇ζ + µQ(V ) = 0.

    where we dropped all O(µ2) terms.

    Shallow water asymptotics (µ� 1)We look for an asymptotic description with respect to µ of ∇ψ interms of ζ and V

    This is obtained through an asymtotic description of V in the fluid.

    This is obtained through an asympotic description of Φ in the fluid,Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .At first order, we have a columnar motion and therefore∇ψ = V + O(µ).Next order approximation: Green-Naghdi

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 27 / 30

  • Asymptotic expansions Nondimensionalized equations

    Justification

    One needs to prove that the solution exists on a time interval [0,T/ε]with T independent of µ

    One needs bounds on the solution on this time scale

    The previous proof does not work!

    G [ζ]ψ ∼ |D|ψ + order 0 (symbolic analysis)G [ζ]ψ ∼ µ∇((1 + εζ)∇ψ) + O(µ2) (shallow water expansion)

    Symbolic analysis and shallow water expansions are not compatible

    Justification OK away from wave breaking and shoreline

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 28 / 30

  • Asymptotic expansions Nondimensionalized equations

    Justification

    One needs to prove that the solution exists on a time interval [0,T/ε]with T independent of µOne needs bounds on the solution on this time scaleThe previous proof does not work!

    Beware the W 1,∞\C 1(Rd) waves!!!

    G [ζ]ψ ∼ |D|ψ + order 0 (symbolic analysis)G [ζ]ψ ∼ µ∇((1 + εζ)∇ψ) + O(µ2) (shallow water expansion) Symbolic analysis and shallow water expansions are not compatibleJustification OK away from wave breaking and shoreline

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 28 / 30

  • Asymptotic expansions Nondimensionalized equations

    Justification

    One needs to prove that the solution exists on a time interval [0,T/ε]with T independent of µOne needs bounds on the solution on this time scaleThe previous proof does not work!

    Beware the big waves!!!

    G [ζ]ψ ∼ |D|ψ + order 0 (symbolic analysis)G [ζ]ψ ∼ µ∇((1 + εζ)∇ψ) + O(µ2) (shallow water expansion) Symbolic analysis and shallow water expansions are not compatibleJustification OK away from wave breaking and shoreline

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 28 / 30

  • Asymptotic expansions Nondimensionalized equations

    Justification

    One needs to prove that the solution exists on a time interval [0,T/ε]with T independent of µ

    One needs bounds on the solution on this time scale

    The previous proof does not work!

    G [ζ]ψ ∼ |D|ψ + order 0 (symbolic analysis)G [ζ]ψ ∼ µ∇((1 + εζ)∇ψ) + O(µ2) (shallow water expansion)

    Symbolic analysis and shallow water expansions are not compatible

    Justification OK away from wave breaking and shoreline

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 28 / 30

  • Open problems in coastal oceanography

    Numerically, we can handle

    Shoreline

    Wavebreaking

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 29 / 30

  • Open problems in coastal oceanography

    David Lannes (IMB) Modélisation mathématique des vagues Valenciennes, 10/09/2015 30 / 30

    Where do waves come from?How are they created?What is their speed?

    Closer to the shoreAnother formula!What happens?

    Modern mathematical approachesNotationsThe free surface Euler equationsThe free surface Bernoulli equationsWorking with a fix domain

    Local well posednessLinearized equations around the rest state

    Asymptotic expansionsNondimensionalizationNondimensionalized equations

    Open problems in coastal oceanography

    0.0: 0.1: 0.2: 0.3: 0.4: 0.5: 0.6: 0.7: 0.8: 0.9: 0.10: 0.11: 0.12: 0.13: 0.14: 0.15: 0.16: 0.17: 0.18: 0.19: 0.20: 0.21: 0.22: 0.23: 0.24: anm0: 1.0: 1.1: 1.2: 1.3: 1.4: 1.5: 1.6: 1.7: 1.8: 1.9: 1.10: 1.11: 1.12: 1.13: 1.14: 1.15: 1.16: 1.17: 1.18: 1.19: 1.20: 1.21: 1.22: 1.23: 1.24: anm1: fd@rm@0: