46
Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

Embed Size (px)

Citation preview

Page 1: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

Modeling and Simulation for Power Electronics and

Electrical Drives

dr. ir. P.J. van Duijsen Simulation Research

Haus der Technik, München, 2003

Page 2: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 2

Contents

• I - Introduction• II - Components• III - Models• IV - Simulation• V - Special models• VI - Tools• VII - Examples• VIII - Conclusions

Page 3: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 3

I - Introduction

• Identify the components• Models• Parameters

Page 4: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 4

Identify the components

• Different components require different models• First identify these components

Page 5: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 5

Models

• What can we model– Complexity of the model

– Availability of parameter

Page 6: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 6

Parameters

• What is a model– Reflection of the users imagination, how a design

should work

Page 7: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 7

II - Components

• Power Electronics• Electrical machine• Mechanical load• Main• Control

PowerElectronics

MechanicalLoadMain

Control

ElectricalMachine

Page 8: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 8

III - Models

• Multilevel Modeling– Circuit model

– Block Diagram

– Modeling language

Page 9: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 9

IV - Simulation

• What is simulation• Mathematical methods• Programs

Page 10: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 10

What is Simulation

• Simulation is a prediction of what might happen

Page 11: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 11

What can we simulate

• Large simulations take a lot of time• Large simulations increase complexity and clarity

Page 12: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 12

Methods and Programs

• Mathematical methods– State Space

– DAE

– MNA

• Various programs– Spice

– Matlab/Simulink

– Saber

– Caspoc

Page 13: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 13

Mathematical Methods

• ODE (State Space)– Causal time varying

systems

• MNA– Circuit models

• DAE– Equations

• Mathematics

Page 14: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 14

Various programs

• Spice– Electronics (General)

• Matlab/Simulink– Systems described by a Block Diagram (General)

• Saber– Systems described by equations (General)

• Caspoc– Systems and Circuits (PE & ED)

Page 15: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 15

V - Special models

• Power Electronics– Semiconductor models

– Heat sink

– Parasistics

– Analog / digital control

– Embedded control

• Electrical Machines– Machine models

– Mechanical load

Page 16: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 16

Semiconductor models

• Mosfet / IGBT– Gate charge

– Cgd non-linear behavior

– Temperature dependent On-resistance Rds

• Diode– Reverse recovery

Detailed Behavioral/Circuit Model

Component stress isequal in each period

Ideal Model

Circuit design

Ideal Model

Control Design Circuitlayout

Detailed Behavioral/Circuit Model

Single periodcomponent stressanalysis

Number of simulated periods

Mod

el C

ompl

exity

Behavioral Model

Predict losses andtransient behavior

Simulation takesto much time andproduces to muchdata

Page 17: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 17

Mosfet / IGBT Dynamics

• Non linear gate-drain capacitance Cgd

Page 18: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 18

Temperature dependence Mosfet

• At T=125 Celcius, the drain-source resistance is doubled from Ron

to 2*Ron

Page 19: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 19

Spice diode model

• Reverse recovery is modeled by a non-linear capacitor

Page 20: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 20

Reverse recovery modeling

• Model based on measurement

Page 21: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 21

Reverse recovery

• Reverse recovery is dependent on IF and di/dt

Page 22: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 22

Heat sink models

• Parameters from data sheet

• Parameters from known structures

• Parameters from FEM analysis

Page 23: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 23

Parameters from a data sheet

• Thermal resistance and thermal capacitance are from the manufacturers data sheet

• Zth is modeled using parallel RC models• Calculate losses in the mosfet and diode• Calculate temperature and feed back into the

semiconductors

Page 24: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 24

Parameters from know structures

• Calculate Rth & Cth from geometry

Page 25: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 25

Parameters from FEM analysis

• Calculate Zth in FEM analysis and use it in the simulation

Page 26: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 26

Parasitic inductance

• Model parasitic inductance for simulating high turn-off voltages Vds

Page 27: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 27

Analog / Digital control

• Analog control as– Electric circuit using Opamp models

– Block diagram (more efficient)

• Digital control– Logical components

– Modeling language (more efficient)

Page 28: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 28

Block diagram vs Circuit model

• Block diagram model for a PI control• 4 blocks• Calculation effort ~ 4

Page 29: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 29

Block diagram vs Circuit model

• Circuit model for the PI control

• No. of nodes = 17 - 4• Calculation effort ~

(4/3) * (13)^3

Page 30: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 30

Using C/Pascal to create models

• Replace blocks by C/Pascal code

• Model complex control systems

• Use the debugger to debug these models

Page 31: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 31

Embedded Control

• Embedded Control models

Page 32: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 32

Machine models

• Connections– Electrical properties

– Mechanical properties

• Model– State Space equations

– Lumped circuit model

– Reduced Order Model from FEM analysis

Page 33: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 33

VI - Tools

• Integrated Modeling and Simulation– Modeling Electrical machines

• Connection to FEM tools

– Modeling Power Electronics• Connection to Packaging analyzers

– Modeling Control• Creating Embedded C code

– Control design• Small signal modeling

• Connection to design tools

Page 34: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 34

VII - Example

• Synchronous generator• PWM induction machine drive• Switched Reluctance Machine• Variable structure system in Caspoc and

Simulink

Page 35: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 35

Example - Synchronous machine

Page 36: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 36

Example - PWM induction machine drive

Page 37: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 37

Example - Switched Reluctance machine

• Electric connections:– u,I

• Mechanical connect.:– T,angular speed

Page 38: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 38

Example - Variable structure system in Caspoc and Simulink

• Caspoc:– Inverter

– Machine

– Load

Page 39: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 39

Example - Variable structure system in Caspoc and Simulink

• Simulink:– VSS Control

• Comparison switched Caspoc model with averaged model in Simulink

Page 40: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 40

Example Switched Reluctance Machine (SRM)

• Design of the SRM in Tesla

• FEM analysis of the SRM in ANSYS

• Reduced order model from ANSYS in Caspoc

• Design of the power electronics and control in Caspoc

• Export of the control algorithm to Embedded C-code for the microprocessor

Page 41: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 41

Geometric design in Tesla

Page 42: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 42

FEM analysis in ANSYS

Page 43: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 43

Complete model and simulation in Caspoc

Page 44: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 44

Embedded C-code for the control

Page 45: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 45

Conclusions - SRM

• Export of C code from Block diagram• Including the exported code in the simulation• Debugging during simulation

Page 46: Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003

9.12.2003 (c) 2003 Simulation Research 46

VIII - Conclusions

• A model is a reflection of the users imagination, how a design should work!

• Simulation is a prediction of what might happen!