35
Matthias Kratzer, MP TI CS SIM 2000-12-18 Modeling and Simulation of SEERS R. P. Brinkmann and Th. Mussenbrock Lehrstuhl für Theoretische Elektrotechnik Ruhr-Universität Bochum

Modeling and Simulation of SEERS · Analogy: Pendulum Lumped model: Only a simple oscillation pattern possible 5 10 15 20 25-0.4-0.2 0.2 0.4 5 10 15 20 25-0.4-0.2 0.2 0.4 Velocity

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Matthias Kratzer, MP TI CS SIM2000-12-18

Modeling and Simulation of SEERS

R. P. Brinkmann and Th. MussenbrockLehrstuhl für Theoretische Elektrotechnik

Ruhr-Universität Bochum

Matthias Kratzer, MP TI CS SIM2000-12-18

Overview

Plasma Modeling and SimulationPerspectives on SEERSLumped Circuit ModelsA General Mathematical ModelA Simplified Toy ModelOutlook

Th. Mussenbrock/R.P. Brinkmann: The SEERS-Diagnostic Method in

in High-Density Plasmas

Matthias Kratzer, MP TI CS SIM2000-12-18

Plasma Modeling and Simulation

Matthias Kratzer, MP TI CS SIM2000-12-18

Plasma reactors

Typical regime:• 1 kW RF power• 1 Pa gas pressure• 10-2 m3 volume• 1017 m-3 density

Source: Sentech

Matthias Kratzer, MP TI CS SIM2000-12-18

Plasma regimes

You are here

Matthias Kratzer, MP TI CS SIM2000-12-18

Plasma modeling

Plasma modeling: Multiple scales, multiple physics!!!

Molecular Dynamics Model

Feature Model

Sheath Model

Surfacereaction rates

Angular andenergy distribution

ei+ n

Transport andsurface chemistry

Plasma

Plasma Model

[nm]

[µm]

[mm]

[m]

Matthias Kratzer, MP TI CS SIM2000-12-18

Perspectives on SEERS

Matthias Kratzer, MP TI CS SIM2000-12-18

Practitioners view on SEERS

Typical points of investigation:• How are the parameters related to the process result?• Which of the parameters is the most sensitive? • How does SEERS compare with other diagnostics?

Matthias Kratzer, MP TI CS SIM2000-12-18

Our view on SEERS

Our points of investigation:• What is the physical background of the resonance?

• What exactly do the SEERS parameter mean?• Is there more information in the SEERS signal?

Matthias Kratzer, MP TI CS SIM2000-12-18

Nature of the resonance

Bulk is “inductive”:

Sheath is capacitive

Matthias Kratzer, MP TI CS SIM2000-12-18

Equivalent circuit

Matthias Kratzer, MP TI CS SIM2000-12-18

Lumped Circuit Models

Matthias Kratzer, MP TI CS SIM2000-12-18

Lumped circuit model

• Linear bulk model to represent effective impedance• One or two instances of a non-linear sheath model• Solved either analytically of numerically

TRF

TSEERS

t

Matthias Kratzer, MP TI CS SIM2000-12-18

Parameter study: RF-voltage

Amplitude of the oscillation increases with excitation.

VRF = 50 V

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2Phase [norm.]

RF

curr

ent [

a.u.

]

VRF = 20 V

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2Phase [norm.]

RF

curre

nt [a

.u.]

VRF = 100 V

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2Phase [norm.]

RF

curre

nt [a

.u.]

VRF = 200 V

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2Phase [norm.]

RF

curr

ent [

a.u.

]

Matthias Kratzer, MP TI CS SIM2000-12-18

Parameter study: Pressure

Damping increases with neutral gas pressure.

p = 20 mTorr

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2Phase [norm.]

RF

curr

ent [

a.u.

]

p = 50 mTorr

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2Phase [norm.]

RF

curr

ent [

a.u.

]

p = 100 mTorr

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2Phase [norm.]

RF

curr

ent [

a.u.

]

p = 200 mTorr

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2Phase [norm.]

RF

curre

nt [a

.u.]

Matthias Kratzer, MP TI CS SIM2000-12-18

Comparing with reality

Simulation SEERS Sensor-Data

• Good “qualitative” correspondence (form, trends).• No quantitative agreement, no “fine structures”

The real signal is obviously much more complex! WHY?

-20

-10

0

10

20

30

40

0 0.5 1 1.5 2

-20

-10

0

10

20

30

40

0 0.5 1 1.5 2

Matthias Kratzer, MP TI CS SIM2000-12-18

A General Mathematical Model

Matthias Kratzer, MP TI CS SIM2000-12-18

Analogy: Pendulum

Lumped model: Only a simple oscillation pattern possible

5 10 15 20 25

-0.4

-0.2

0.2

0.4

5 10 15 20 25

-0.4

-0.2

0.2

0.4 Velocity

Position

Matthias Kratzer, MP TI CS SIM2000-12-18

Analogy: Chain

2.5 5 7.5 10 12.5 15

-3

-2

-1

1

2

3Position

Distributed model: Complex oscillation patterns possible

2.5 5 7.5 10 12.5 15

-3

-2

-1

1

2

3

Velocity

Matthias Kratzer, MP TI CS SIM2000-12-18

Analogy: Chain

Eigenmode analysis: Superposition of oscillation modes

Matthias Kratzer, MP TI CS SIM2000-12-18

General reactor model

Arbitrary geometry, arbitrary number of applied voltages ...

Plasma Bulk

Plasma Boundary Sheath

v1

v2

Full Electromagnetics

Matthias Kratzer, MP TI CS SIM2000-12-18

General model: Equations

Definition of a state space:

Dynamical equations:

Electron equation of motion

Magnetic induction law

Sheath charging

Boundary conditions:

Matthias Kratzer, MP TI CS SIM2000-12-18

General model: Analysis

The state space Z can be interpreted as a Hilbert space, with an inner product motivated by an energy functional• The concept of orthogonality applies• The tools of functional analysis can be used

Abstract formulation of the dynamics:

Conservative part: pure oscillation

Dissipative part: damping

Nonlinear harmonics generation

External excitation

Matthias Kratzer, MP TI CS SIM2000-12-18

General model: Solution

The equation can be solved by a triple series expansion(power series, Fourier series, eigenmode expansion)

The series coefficients can be found by recursion:

Algebra in the solution space of the linear problem:

Numerically tractable even for complicated situations

Matthias Kratzer, MP TI CS SIM2000-12-18

General model: Example

• Numerical scheme with consistent discretization

• Any 2D-geometry, any electron density distribution

• Tested with analytical solutions for special cases

Matthias Kratzer, MP TI CS SIM2000-12-18

A Simplified Toy Model

Matthias Kratzer, MP TI CS SIM2000-12-18

Toy model: Set-Up

Bulk

Vrf

Boundary

Sheath

Simplifications to facilitate an analytical treatment:• Simple axi-symmetric cylinder geometry• Constant bulk and sheath parameters

Matthias Kratzer, MP TI CS SIM2000-12-18

First eigenmode

The eigenmode shape depends on the plasma density

Matthias Kratzer, MP TI CS SIM2000-12-18

Toy model: Results I

SEERS signal for a small amplitude of the RF excitation

Matthias Kratzer, MP TI CS SIM2000-12-18

Toy model: Results II

SEERS signal for a medium amplitude of the RF excitation

Matthias Kratzer, MP TI CS SIM2000-12-18

Toy model: Results III

SEERS signal for a large amplitude of the RF excitation

Matthias Kratzer, MP TI CS SIM2000-12-18

Toy model: Comparing with reality

Simulation SEERS Sensor-Data

• Good “qualitative” correspondence (form, trends).• No quantitative agreement yet, but “fine structures”

For a quantitative agreement: Go beyond the toy model!

-20

-10

0

10

20

30

40

0 0.5 1 1.5 2

-20

-10

0

10

20

30

40

0 0.5 1 1.5 2

Matthias Kratzer, MP TI CS SIM2000-12-18

Perspective

Matthias Kratzer, MP TI CS SIM2000-12-18

Perspective

What have we learned?

• Consistent framework for modeling of the SEERS effect, without any restriction on geometry or homogeneity.

• The nonlinear problem can be solved by “doing algebra”with the linear solutions. (In practice, few modes suffice).

Work in progress towards a full implementation:

• Essential elements already in place (nonlinear boundarysheath model, consistent numerical discretization ...).

• Current projects aim to include more physical effects (static magnetic fields, stochastic dissipation ...).

• Implementation into a full reactor simulator planned.

• Comparison with careful experiments is underway.

Matthias Kratzer, MP TI CS SIM2000-12-18

Thank you!