1
University of Wisconsin Engine Research Center Modeling Combustion in Spark-Ignition Engines Using G-equation Model with Detailed Chemistry Long Liang & Prof. Rolf D. Reitz Acknowledgement: Ford Motor Company C O O xidation,H 2 -O 2 reactions P ollutant form ation G -equation description ofcom bustion Lam inar and turbulent flam e speeds P rim ary heat release “Low tem perature chem istry Location /Intensity tracking W allquenching Lean/rich m ixture stratification O bjective: D evelop an accurate,robust,versatile G -equation com bustion m odelfor P FI/D I S Iengine sim ulations by incorporating detailed chem istry. P latform : K IVA 3V-G C ode + D etailed C hem istry S olver. G eneralA pproach G eneralA pproach Turbulent Flam e P ropagation P ost-flam e C hem istry K nocking C om bustion Flam e Q uenching End-gas Flame P ost-flam e Zone Front Zone Φ Φ End-gas Flame P ost-flam e Zone Front Zone Transport equations of Favre m eans ofscalar G and its variance Turbulent flam e speed considering kernel flam e evolution Typicalflam e structures observed in S I engines. The flam e front is num erically tracked by G (x,t)= 0 iso-surface. R educed P R F m echanism used in engine sim ulations (Tanaka et al.,C om bust.Flam e,133,2003) The low -tem perature chem istry in the end-gas and the post-flam e chem istry are m odeled using detailed chem icalkinetics The prim ary heat release and species conversion are based on the assum ption that the burnt m ixture w ithin the turbulent flam e brush tends to local and instantaneous chem icalequilibrium . 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 0.0 1 0.1 1 10 100 Ig nition D elay T im e (m s) 1000(K ) /T 0 100% nC 7H 16 V b V u M ean Flam e Front Burnt U nburnt C alculated ignition delay tim e ofP R F fuel M ercury M arine tw o-stroke gasoline D Iengine M odeling a Tw o-Stroke G D I Engine In-cylinder species distributions at C A = 755 A TD C Flam e propagation and tem perature contours. S tart ofinjection = 635 A TD C S park tim ing = 679 A TD C Fuel O 2 OH CO NO Ford D IS Iengine M odeling a Ford D IS I Engine Injection Ignition Flam e propagation P ressure and heat release rate End ofinjection = -72 A TD C S park tim ing = -20,-24,-28,-32 A TD C -80 -60 -40 -20 0 20 40 60 80 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 P ressure (M Pa) C A ( O ATDC) H eatR elease R ate (J/D eg) -20 O ATDC -80-60 -40 -20 0 20 40 60 80 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 P re ssure (M Pa) C A ( O ATDC) -24 O ATDC H eatR elease R ate (J/D eg) -80 -60 -40 -20 0 20 40 60 80 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 -28 O ATDC P ressu re (M Pa) C A ( O ATDC) H eatR elease R ate (J/D eg) -80 -60 -40-20 0 20 40 60 80 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 P re ssu re (M Pa) C A ( O ATDC) -32 O ATDC H eatR elease R ate (J/D eg) K nock onset due to end-gas auto-ignition (The dark interface is the deflagrating flam e front) K nocking C om bustion M odeling In-cylinder pressure fluctuation -6 0 -50 -40 -3 0 -2 0 -10 0 10 20 0 2 4 6 8 10 12 P ressu re (M Pa) C A (A TD C ) B oosted stoichiom etric com bustion ( m anifold pressure = 150 kPa ) N um ericaltransducers PFI/D I-SIEngine •C O O xidation,H 2 -O 2 reactions •Pollutantform ation •G -equation description ofcom bustion •Lam inar and turbulentflam e speeds •Prim ary heatrelease •“Low ” tem perature chem istry •Location /Intensity tracking •Wallquenching •Lean/rich m ixture stratification O bjective: D evelop an accurate,robust,versatile G -equation com bustion m odelfor PFI/D ISIengine sim ulations by incorporating detailed chem istry. Platform : K IVA 3V-G C ode + D etailed C hem istry Solver. G eneralA pproach G eneralA pproach TurbulentFlam e Propagation Post-flam e C hem istry K nocking C om bustion Flam e Q uenching G -equation M odel G -equation M odel 0 ( ) | | | | u f vertex T t G v v G S G D G t 2 2 2 2 2 ( ) ( )2 ( ) u f vertex t t s G v v G D G D G c G t k 1/2 1/2 2 2 2 2 4 3 4 3 4 3 0 4 1 1 1 1 exp 2 2 ign T L m F F lF t t ab ab S l l ul ab S I C b l b l Sl Prem ixed Flam e Partially Prem ixed Flam e CO 2 , H 2 O, NO… End-gas Flame Post-flam e Zone Front Zone A uto Ignition n G > 0 G < 0 G(x,t) = 0 Φ ≈const Φ≈1 Φ > 1 Φ < 1 CO 2 , H 2 O , C O , N O O 2 , O , N O FuelD roplets D iffusion D iffusion End-gas Flame Post-flam e Zone Front Zone CH 4 , C O , H , H 2 Transportequations of Favre m eans ofscalarG and its variance Turbulentflam e speed considering kernel flam e evolution Typicalflam e structures observed in SIengines. The flam e frontis num erically tracked by G (x,t)=0 iso-surface. Reduced PRF m echanism used in engine sim ulations (Tanaka etal.,C om bust.Flam e,133,2003) C hem icalProcesses C hem icalProcesses The low -tem perature chem istry in the end-gas and the post-flam e chem istry are m odeled using detailed chem icalkinetics The prim ary heatrelease and species conversion are based on the assum ption thatthe burntm ixture w ithin the turbulentflam e brush tends to local and instantaneous chem icalequilibrium . 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 0.01 0.1 1 10 100 Ig n ition D ela y T im e (m s) 1000(K ) /T 0 100% iC 8H18 90% iC 8H 18 /10% nC 7H 16 80% iC 8H 18 /20% nC 7H 16 60% iC 8H 18 /40% nC 7H 16 100% nC 7H 16 V b V u M ean Flam e Front Burnt U nburnt C alculated ignition delay tim e ofPRF fuel M ercury M arine tw o-stroke gasoline D Iengine M odeling a Tw o-Stroke G D IEngine M odeling a Tw o-Stroke G D IEngine In-cylinder species distributions atC A = 755 A TD C Flam e propagation and tem perature contours. Startofinjection = 635 A TD C Spark tim ing = 679 A TD C Fuel O 2 OH CO NO Ford D ISIengine M odeling a Ford D ISIEngine M odeling a Ford D ISIEngine Injection Ignition Flam e propagation Pressure and heatrelease rate End ofinjection = -72 A TD C Spark tim ing = -20,-24,-28,-32 A TD C -80 -60 -40-20 0 20 40 60 80 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 P ressure (M Pa) C A ( O ATDC) EXPT SIM U H eatR elease R ate (J/D eg) -20 O ATDC -80 -60-40 -20 0 20 40 60 80 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 P ressure (M Pa) C A ( O ATDC) EXPT SIM U -24 O ATDC H eatR elease R ate (J/D eg) -8 0 -60 -40 -20 0 20 40 60 80 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 -28 O ATDC P ressure (M Pa) C A ( O ATDC) EXPT SIM U H eatR elease R ate (J/D eg) -80 -60-40 -20 0 20 40 60 80 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 P ressure (M Pa) C A ( O ATDC) EXPT SIM U -32 O ATDC H eatR elease R ate (J/D eg) K nock onsetdue to end-gas auto-ignition (The dark interface is the deflagrating flam e front) K nocking C om bustion M odeling K nocking C om bustion M odeling In-cylinder pressure fluctuation -60 -50 -4 0 -3 0 -2 0 -1 0 0 10 20 0 2 4 6 8 10 12 P ressu re (M Pa) C A (A TD C ) A ve ra g e P osition1 P osition2 P osition3 B oosted stoichiom etric com bustion (m anifold pressure = 150 kPa ) 1 2 3 N um ericaltransducers

Modeling Combustion in Spark-Ignition Engines Using G-equation Model with Detailed Chemistry

  • Upload
    kylia

  • View
    40

  • Download
    5

Embed Size (px)

DESCRIPTION

Modeling Combustion in Spark-Ignition Engines Using G-equation Model with Detailed Chemistry. Long Liang & Prof. Rolf D. Reitz. Acknowledgement: Ford Motor Company. - PowerPoint PPT Presentation

Citation preview

Page 1: Modeling Combustion in Spark-Ignition Engines Using  G-equation Model with Detailed Chemistry

University of Wisconsin Engine Research Center

Modeling Combustion in Spark-Ignition Engines Using

G-equation Model with Detailed ChemistryLong Liang & Prof. Rolf D. Reitz

Acknowledgement: Ford Motor Company

PFI/DI-SI Engine

• CO Oxidation, H2-O2 reactions

• Pollutant formation

• G-equation description of combustion

• Laminar and turbulent flame speeds

• Primary heat release

• “Low” temperature chemistry

• Location / Intensity tracking

• Wall quenching

• Lean/rich mixture stratification

Objective: Develop an accurate, robust, versatile G-equation combustion model for PFI/DI SI engine simulations by incorporating detailed chemistry.

Platform: KIVA3V-G Code + Detailed Chemistry Solver.

General ApproachGeneral Approach

Turbulent Flame Propagation

Post-flame Chemistry

Knocking Combustion

Flame Quenching

G-equation ModelG-equation Model

0( ) | | | |uf ve r te x T t

Gv v G S G D G

t

22 2 2 2( ) ( ) 2 ( )u

f vertex t t s

Gv v G D G D G c G

t k

1/ 21/ 2 22 224 3 4 3

4 30 4 1 1

1 1 exp2 2

ignT

L m F F l F

t t a b a bS l l u la b

S I C b l b l S l

Premixed Flame Partially Premixed Flame

CO2, H2O,NO…

End-gas Flame Post-flameZone Front Zone

AutoIgnition

n

G > 0G < 0

G(x,t) = 0

Φ ≈ const

Φ ≈ 1

Φ > 1

Φ < 1

CO2, H2O, CO, NO…

O2, O, NO …

Fuel Droplets

Diffusion

Diffusion

End-gas Flame Post-flameZone Front Zone

CH4, CO, H, H2 …

Transport equations of Favre means of scalar G

and its variance

Turbulent flame speedconsidering kernel

flame evolution

Typical flame structuresobserved in SI engines.

The flame front is numerically tracked by G(x,t)=0 iso-surface.

Reduced PRF mechanism used in engine simulations(Tanaka et al., Combust. Flame, 133, 2003)

Chemical ProcessesChemical Processes

The low-temperature chemistry in the end-gas and the post-flame chemistry

are modeled using detailed chemical kinetics

The primary heat release and species conversion are based on the assumption that the burnt mixture within the turbulent flame brush tends to local and instantaneous chemical equilibrium.

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.50.01

0.1

1

10

100

Igni

tion

Del

ay T

ime

(m

s)

1000(K) / T0

100% iC8H18 90% iC8H18 / 10% nC7H16 80% iC8H18 / 20% nC7H16 60% iC8H18 / 40% nC7H16 100% nC7H16

Vb

Vu

Mean Flame Front

Burnt

Unburnt

Calculated ignition delay time of PRF fuel

Mercury Marine two-stroke gasoline DI engine

Modeling a Two-Stroke GDI EngineModeling a Two-Stroke GDI Engine

In-cylinder species distributions at CA = 755 ATDC

Flame propagation and temperature contours.Start of injection = 635 ATDC

Spark timing = 679 ATDC

Fuel O2 OH CO NO

Ford DISI engine

Modeling a Ford DISI EngineModeling a Ford DISI Engine

Injection Ignition Flame propagation

Pressure and heat release rateEnd of injection = -72 ATDC

Spark timing = -20, -24, -28, -32 ATDC

-80-60 -40-20 0 20 40 60 80-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

5

10

15

20

25

Pre

ssur

e (M

Pa)

CA (OATDC)

EXPT SIMU

Hea

t Rel

ease

Rat

e (J

/Deg

)-20 O ATDC

-80-60 -40 -20 0 20 40 60 80-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

5

10

15

20

25

Pre

ssur

e (M

Pa)

CA (OATDC)

EXPT SIMU

-24 O ATDC

Hea

t Rel

ease

Rat

e (J

/Deg

)

-80 -60 -40 -20 0 20 40 60 80-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

5

10

15

20

25

-28 O ATDC

Pre

ssur

e (M

Pa)

CA (OATDC)

EXPT SIMU

Hea

t Rel

ease

Rat

e (J

/Deg

)

-80 -60 -40 -20 0 20 40 60 80-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

5

10

15

20

25

Pre

ssur

e (M

Pa)

CA (OATDC)

EXPT SIMU

-32 O ATDC

Hea

t Rel

ease

Rat

e (J

/Deg

) Knock onset due to end-gas auto-ignition(The dark interface is the deflagrating flame front)

Knocking Combustion ModelingKnocking Combustion Modeling

In-cylinder pressure fluctuation

-60 -50 -40 -30 -20 -10 0 10 200

2

4

6

8

10

12

Pre

ssu

re (

MP

a)

CA (ATDC)

Average Position1 Position2 Position3

Boosted stoichiometric combustion ( manifold pressure = 150 kPa )

1

2

3

Numerical transducers

PFI/DI-SI Engine

•CO Oxidation, H2-O2 reactions

•Pollutant formation

•G-equation description of combustion

•Laminar and turbulent flame speeds

•Primary heat release

•“Low” temperature chemistry

•Location / Intensity tracking

•Wall quenching

•Lean/rich mixture stratification

Objective: Develop an accurate, robust, versatile G-equation combustion model for PFI/DI SI engine simulations by incorporating detailedchemistry.

Platform: KIVA3V-G Code + Detailed Chemistry Solver.

General ApproachGeneral Approach

Turbulent Flame Propagation

Post-flame Chemistry

Knocking Combustion

Flame Quenching

G-equation ModelG-equation Model

0( ) | | | |uf vertex T t

Gv v G S G D G

t

22 2 2 2( ) ( ) 2 ( )u

f vertex t t s

Gv v G D G D G c G

t k

1/ 21/ 2 22 224 3 4 3

4 30 4 1 1

1 1 exp2 2

ignT

L m F F l F

t t a b a bS l l u la b

S I C b l b l S l

Premixed Flame Partially Premixed Flame

CO2, H2O,NO…

End-gas Flame Post-flameZone Front Zone

AutoIgnition

n

G > 0G < 0

G(x,t) = 0

Φ≈const

Φ≈1

Φ> 1

Φ< 1

CO2, H2O, CO, NO…

O2, O, NO …

Fuel Droplets

Diffusion

Diffusion

End-gas Flame Post-flameZone Front Zone

CH4, CO, H, H2…

Transport equations of Favre means of scalar G

and its variance

Turbulent flame speedconsidering kernel

flame evolution

Typical flame structuresobserved in SI engines.

The flame front is numerically tracked by G(x,t)=0 iso-surface.

Reduced PRF mechanism used in engine simulations(Tanaka et al., Combust. Flame, 133, 2003)

Chemical ProcessesChemical Processes

The low-temperature chemistry in the end-gas and the post-flame chemistry

are modeled using detailed chemical kinetics

The primary heat release and species conversion are based on the assumption that the burnt mixture within the turbulent flame brush tends to local and instantaneous chemical equilibrium.

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.50.01

0.1

1

10

100

Igni

tion

Del

ay T

ime

(ms)

1000(K) / T0

100% iC8H18 90% iC8H18 / 10% nC7H16 80% iC8H18 / 20% nC7H16 60% iC8H18 / 40% nC7H16 100% nC7H16

Vb

Vu

Mean Flame Front

Burnt

Unburnt

Calculated ignition delay time of PRF fuel

Mercury Marine two-stroke gasoline DI engine

Modeling a Two-Stroke GDI EngineModeling a Two-Stroke GDI Engine

In-cylinder species distributions at CA = 755 ATDC

Flame propagation and temperature contours.Start of injection = 635 ATDC

Spark timing = 679 ATDC

Fuel O2 OH CO NO

Ford DISI engine

Modeling a Ford DISI EngineModeling a Ford DISI Engine

Injection Ignition Flame propagation

Pressure and heat release rateEnd of injection = -72 ATDC

Spark timing = -20, -24, -28, -32 ATDC

-80 -60 -40 -20 0 20 40 60 80-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

5

10

15

20

25

Pre

ssur

e (M

Pa)

CA (OATDC)

EXPT SIMU

Hea

t Rel

ease

Rat

e (J

/Deg

)-20 O ATDC

-80 -60 -40 -20 0 20 40 60 80-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

5

10

15

20

25

Pre

ssur

e (M

Pa)

CA (OATDC)

EXPT SIMU

-24 O ATDC

Hea

t Rel

ease

Rat

e (J

/Deg

)

-80 -60 -40 -20 0 20 40 60 80-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

5

10

15

20

25

-28 O ATDC

Pre

ssur

e (M

Pa)

CA (OATDC)

EXPT SIMU

Hea

t Rel

ease

Rat

e (J

/Deg

)

-80 -60 -40 -20 0 20 40 60 80-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

5

10

15

20

25

Pre

ssur

e (M

Pa)

CA (OATDC)

EXPT SIMU

-32 O ATDC

Hea

t Rel

ease

Rat

e (J

/Deg

)

Knock onset due to end-gas auto-ignition(The dark interface is the deflagrating flame front)

Knocking Combustion ModelingKnocking Combustion Modeling

In-cylinder pressure fluctuation

-60 -50 -40 -30 -20 -10 0 10 200

2

4

6

8

10

12

Pre

ssur

e (M

Pa)

CA (ATDC)

Average Position1 Position2 Position3

Boosted stoichiometric combustion ( manifold pressure = 150 kPa )

1

2

3

Numerical transducers