54
Modeling framework for estimation of regional CO2 fluxes using concentration measurements from a ring of towers Marek Uliasz and Scott Denning Department of Atmospheric Science Colorado State University Ninth Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface - 2005 AMS Annual Meeting 9-13 January, 2005, San Diego, California

Modeling framework for estimation of regional CO2 fluxes using concentration measurements from a ring of towers Modeling framework for estimation of regional

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Modeling framework for estimation of regional CO2 fluxes using

concentration measurements from a ring of towers

Modeling framework for estimation of regional CO2 fluxes using

concentration measurements from a ring of towers

Marek Uliasz and Scott DenningDepartment of Atmospheric Science

Colorado State University

Marek Uliasz and Scott DenningDepartment of Atmospheric Science

Colorado State University

Ninth Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface - 2005 AMS Annual Meeting9-13 January, 2005, San Diego, California

Over the past 420,000 years atmospheric CO2 has varied between 180 and 280 parts per million, with concomitant swings of 10° C in the Earth’s climate.

Since the Industrial Revolution, CO2 has risen dramatically, with an observed warming of 0.5° C in the past 100 years.

150

200

250

300

350

-400000 -300000 -200000 -100000 0

year

CO2 (ppm)

370 ppm

250

275

300

325

350

375

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Vostok (400k yr) Ice Core data (Petit et al, 1999)

Law Dome ice core Etheridge et al (1999)

South Pole Flask Data NOAA/CMDL (2001)

Atmospheric CO2Atmospheric CO2

Atmospheric CO2 data

Modeling framework for regional inversions

The ring of towers campaign

Example of CO2 flux estimation using pseudo-data

Modeling approach to CO2 analysis Cold front passage Lake signature

Atmospheric CO2 data

Modeling framework for regional inversions

The ring of towers campaign

Example of CO2 flux estimation using pseudo-data

Modeling approach to CO2 analysis Cold front passage Lake signature

OUTLINE OUTLINE

Atmospheric CO2 Observations ~2000Atmospheric CO2 Observations ~2000

Atmospheric CO2 Observations ~2007Atmospheric CO2 Observations ~2007

Orbiting Carbon Observatory(Planned August 2007 launch)Orbiting Carbon Observatory(Planned August 2007 launch)

• Estimated accuracy for single column ~1.6 ppmv

• 1 x 1.5 km IFOV• 10 pixel wide swath• 105 minute polar

orbit• 26º spacing in

longitude between swaths

• 16-day return time

Atmospheric CO2 Observations ~2000Atmospheric CO2 Observations ~2000

= LI-820 sampling from 75m above ground oncommunication towers.

= 40m Sylvania flux towerwith high-quality standardgases.

= 447m WLEF tower. LI-820, CMDLin situ and flaskmeasurements.

The Ring of Towers

The Ring of Towers

data provided by

Ken Davis, Scott J. Richardson and Natasha Miles, The Pennsylvania State University

data provided by

Ken Davis, Scott J. Richardson and Natasha Miles, The Pennsylvania State University

CSU RAMSCSU RAMS

LPD modelLPD model

influence functionsinfluence functions

Bayesian inversionBayesian inversion

modeling frameworkmodeling framework

regional meteorology

atmospheric transport

source-receptor matrixdata analysis

estimation of regional CO2 fluxes

global transportinflow fluxes

SiBSiB

CSU RAMSCSU RAMS

LPD modelLPD model

influence functionsinfluence functions

Bayesian inversionBayesian inversion

modeling frameworkmodeling framework

regional meteorology

atmospheric transport

source-receptor matrixdata analysis

estimation of regional CO2 fluxes

SiBSiB

Ensemble Data AssimilationEnsemble Data Assimilation

Maximum Likelihood Ensemble FilterMaximum Likelihood Ensemble Filter

CSU RAMSCSU RAMS

LPD modelLPD model

influence functionsinfluence functions

Bayesian inversionBayesian inversion

modeling frameworkmodeling framework

regional meteorology

atmospheric transport

source-receptor matrixdata analysis

estimation of regional CO2 fluxes

Parameterized Chemical Transport Model (PCTM)

Parameterized Chemical Transport Model (PCTM)

global transportinflow fluxes

SiBSiB

Ensemble Data AssimilationEnsemble Data Assimilation

Maximum Likelihood Ensemble FilterMaximum Likelihood Ensemble Filter

200 400 600 800 1000

x [km]

200

400

600

800

1000

y [km]

WLEF tower - single level (76m)

200 400 600 800 1000

x [km]

200

400

600

800

1000

WLEF tower - all levels

Climatology of influence functions for August 2000

influence functions derived from RAMS/LPD model simulations passive tracer different configurations of concentration samples - time series from - a single level of WLEF tower - all levels of WLEF tower - WLEF tower + six 76m towers

200 400 600 800 1000

x [km]

200

400

600

800

1000

all towers

0.010.020.050.10.20.51251020

[ppm/umol]

0 300 600 900 1200

0

300

600

900

1200 N

E

S

W

Configuration of source areaswith WLEF tower in the centerof polar coordinates

Example of estimation of NEE averaged for August 2000 Bayesian inversion technique using influence function derived from CSU RAMS and Lagrangian particle model flux estimation for source areas in polar coordinates within 400 km from WLEF tower (better coverage by atmospheric transport) NEE decomposed into respiration and assimilation fluxes: R=R0, A=A0 f(short wave radiation, vegetation class) inversion calculations for increasing number of concentration data (time series from towers) NEE uncertainty presented in terms of standard deviation derived from posteriori covariance matrix inflow CO2 flux is assumed to be known from a large scale transport model in further work, concentration data from additional tower will be used to improve the inflow flux given by a large scale model

0

1

2

3

4

0

1

2

3

4

a-priori NEE uncertainty

0

1

2

3

4

NEE estimation uncertainty [mol/s/m

2] distance [km]

0-100100-200200-300300-400

WLEF 76m(single level) WLEF all levels WLEF all levels

+ 6 additional towers

N N NE S W E S W E S W

DIRECTIONAL SECTOR

Cold front passage across the ringCold front passage across the ring

modeling approach to CO2 data analysismodeling approach to CO2 data analysis

1200 UTC

CO2 from 5 sites, April 29, 2004CO2 from 5 sites, April 29, 2004

Ken Davis, Scott J. Richardson and Natasha Miles The Pennsylvania State

University

Ken Davis, Scott J. Richardson and Natasha Miles The Pennsylvania State

University

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 0000

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 0100

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

sunsetsunset

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 0200

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 0400

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 0500

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 0600

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 0700

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 0800

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 0900

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1000

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1100

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1200

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

sunrisesunrise

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1300

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1300

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1500

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1600

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1700

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1800

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 1900

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 2000

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 2100

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 2200

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

-500 -400 -300 -200 -100 0 100 200 300 400 500

X [km ]

-500

-400

-300

-200

-100

0

100

200

300

400

500

Y [km]

day 120 UTC 2300

1

5

10

50

100

500

1000

[10-10 x sm-3 ]

1 2 3 4 5 6 7 8 9 10 11 12m onths

-1

0

1

NEE [umol m-2 s-1]

19962003

seasonal cycleseasonal cycle

of CO2 flux at WLEF towerof CO2 flux at WLEF tower

1 2 3 4 5 6 7 8 9 10 11 12m onths

-1

0

1

NEE [umol m-2 s-1]

19962003

0 3 6 9 12 15 18 21 24hours

-12

-8

-4

0

4

8

CO2 flux [umol m-2 s-1]

1996Ju ly-AugustSeptem ber-OctoberNovem ber-Decem ber

seasonal cycleseasonal cycle diurnal cyclediurnal cycle

of CO2 flux at WLEF towerof CO2 flux at WLEF tower

Lake signature in CO2 dataLake signature in CO2 data

modeling approach to CO2 data analysismodeling approach to CO2 data analysis

200 300 400 500 600 700 800 900 1000 1100

X [km]

200

300

400

500

600

700

800

900

1000

1100

Y [km]

0

0.001

0.005

0.01

0.05

0.1

0.5

1

influence function: August 2003

influence function: August 2003

entire domainentire domain

200 300 400 500 600 700 800 900 1000 1100

X [km]

200

300

400

500

600

700

800

900

1000

1100

Y [km]

0

0.001

0.005

0.01

0.05

0.1

0.5

1

influence function: August 2003

influence function: August 2003

200 300 400 500 600 700 800 900 1000 1100

X [km]

200

300

400

500

600

700

800

900

1000

1100

Y [km]

0

0.001

0.005

0.01

0.05

0.1

0.5

1

landland

entire domainentire domain

200 300 400 500 600 700 800 900 1000 1100

X [km]

200

300

400

500

600

700

800

900

1000

1100

Y [km]

0

0.001

0.005

0.01

0.05

0.1

0.5

1

influence function: August 2003

influence function: August 2003

200 300 400 500 600 700 800 900 1000 1100

X [km]

200

300

400

500

600

700

800

900

1000

1100

Y [km]

0

0.001

0.005

0.01

0.05

0.1

0.5

1

200 300 400 500 600 700 800 900 1000 1100

X [km]

200

300

400

500

600

700

800

900

1000

1100

Y [km]

0

0.001

0.005

0.01

0.05

0.1

0.5

1

landland waterwater

entire domainentire domain

Relative contribution of differentsource areas to tracer concentrations at 400m WLEF tower

May-November 2003

land 85.4%Lake Superior 9.5%Lake Michigan 1.8%other waters 3.1%

0

0.2

0.4

0.6

0.8

1

LA ND

Relative contribution of differentsource areas to tracer concentrations at 400m WLEF tower

May-November 2003

land 85.4%Lake Superior 9.5%Lake Michigan 1.8%other waters 3.1%

0

0.2

0.4

0.6

0.8

1

LA ND

0

0.2

0.4

0.6

0.8

1

LAK E SUPER IOR

Relative contribution of differentsource areas to tracer concentrations at 400m WLEF tower

May-November 2003

land 85.4%Lake Superior 9.5%Lake Michigan 1.8%other waters 3.1%

0

0.2

0.4

0.6

0.8

1

LA ND

0

0.2

0.4

0.6

0.8

1

LAK E SUPER IOR

0 1000 2000 3000 4000 5000tim e [hours]

0

0.2

0.4

0.6

0.8

1

LA KE M ICH IGAN

Relative contribution of differentsource areas to tracer concentrations at 400m WLEF tower

May-November 2003

land 85.4%Lake Superior 9.5%Lake Michigan 1.8%other waters 3.1%

0

0.2

0.4

0.6

0.8

1

LA ND

0

0.2

0.4

0.6

0.8

1

LAK E SUPER IOR

0 1000 2000 3000 4000 5000tim e [hours]

0

0.2

0.4

0.6

0.8

1

LA KE M ICH IGAN

0 1000 2000 3000 4000 5000tim e [hours]

0

0.2

0.4

0.6

0.8

1OTHER W A TERS

Relative contribution of differentsource areas to tracer concentrations at 400m WLEF tower

May-November 2003

land 85.4%Lake Superior 9.5%Lake Michigan 1.8%other waters 3.1%

Difference in observed CO2 at 400m WLEF towerbetween transport from Lake Superior and transport from land

with 95% confidence intervals

Difference in observed CO2 at 400m WLEF towerbetween transport from Lake Superior and transport from land

with 95% confidence intervals

5 6 7 8 9 10 11m onths

-8

-6

-4

-2

0

2

4

6

!CO2 [ppm]

5 6 7 8 9 10 11m onths

-8

-6

-4

-2

0

2

4

6

!CO2 [ppm]

19961996 20032003

Difference in observed CO2 at 400m WLEF towerbetween transport from Lake Superior and transport from land

with 95% confidence intervals

Difference in observed CO2 at 400m WLEF towerbetween transport from Lake Superior and transport from land

with 95% confidence intervals

5 6 7 8 9 10 11m onths

-8

-6

-4

-2

0

2

4

6

!CO2 [ppm]

5 6 7 8 9 10 11m onths

-8

-6

-4

-2

0

2

4

6

!CO2 [ppm]

19961996 20032003

5 6 7 8 9 10 11m onths

-8

-6

-4

-2

0

2

4

6

!CO2 [ppm]

5 6 7 8 9 10 11m onths

-8

-6

-4

-2

0

2

4

6

!CO2 [ppm]

data analysis in wind sectors without modeling

0 12 24 36 48 60

tim e [hours]

0

0.02

0.04

0.06

0.08

0.1

0.12

frequency [-]

2003 travel tim eM ayJuneJulyAugustSeptemberO ctoberNovember

Travel time between Lake Superior and WLEF towerTravel time between Lake Superior and WLEF tower

two transport patterns in September

Further workFurther workData analysis using influence functions: Exploring vertical transport Influence functions integrated with CO2 fluxes SiB-RAMS simulation

Data analysis using influence functions: Exploring vertical transport Influence functions integrated with CO2 fluxes SiB-RAMS simulation

Estimations of Regional CO2 Fluxes PCTM >> RAMS >> LPDM pseudo-data inversions inversions using the data from the ring of towers

Estimations of Regional CO2 Fluxes PCTM >> RAMS >> LPDM pseudo-data inversions inversions using the data from the ring of towers