13
Institute of Biomedical Engineering Universität Karlsruhe (TH) Research University • founded 1825 Modeling of Anatomy, Electrophysiology and Tension Development in the Human Heart Dr.-Ing. Gunnar Seemann European Functional Cardiac Modeling Meeting Institute of Biomedical Engineering Universität Karlsruhe (TH) Research University founded 1825 G. Seemann EFCM Meeting 2005 Overview Anatomy Electro- physiology Tension development 2

Modeling of Anatomy, Electrophysiology and Tension Development in

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

Modeling of Anatomy, Electrophysiology and Tension Development

in the Human Heart

Dr.-Ing. Gunnar Seemann

European Functional Cardiac Modeling Meeting

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Overview

Anatomy

Electro-physiology

Tensiondevelopment

2

Page 2: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Classification

Anatomical Modeling

Visible Human ProjectNational Library of Medicine

Thin section photos

˜ 1800 (male) and 5000 (female) cross-

sectional digital images1 mm (male) and 0.33 mm (female) distance

between images1280 x 2048 pixels per image

0.33 mm x 0.33 mm x 3 colors x 8 bit per pixel

Anatomical Models

Cubic voxel representation

1 mm x 1 mm x 1 mm (male) and0.33 mm x 0.33 mm x 0.33 mm

(female) per voxel

70 tissue classesOrientation of muscle fibers

3

Filtering

Segmentation

Preprocessing

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005 4

Page 3: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Visible Female Heart

CT

PM

right appendage

sinoatrial node

left appendage

PV

Visible Female Heart Additionally segmentedatrial tissue classes

CT: Crista TerminalisPM: Pectinate musclePV: Pulmonary veins

Seemann et al. 2005 Phil. Trans. Roy. Soc. in press

5

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Individual MR Data and Model

6

Page 4: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Fiber Orientation in Cardiac Tissue

Rat – left ventricle

Young et al., 1998, J. Micros. 192: 139-150

Model

7

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Atrial Cell Models

8

Sinoatrial Node

Atrial Cells

Courtemanche et al., 1998, Am. J. Physiol. 275(44): H3301-H321

dVm

dt= −

1

Cm

(∑Ix − Iinter

)

Page 5: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Ventricular Cell Models

9

Priebe & Beuckelmann 1998 Circ Res. 82:1206-1223

G.-R. Li et al. 1998 Am. J. Physiol. 275: H369-H377

Mid EpiEndo

Seemann et al. 2003 J CardiovascElectrophysiol. 14(S10):S219-S228

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Heterogeneous Ventricle Model

Transmural ECG

APDEndo APDMid APDEpi VRest

Experiment 263±17 ms 376±31 ms 271±14 ms -81±3 mVSimulation 272 ms 343 ms 265 ms -80 mV

Shimizu et al. 2000 Circ. 102:706-712

Seemann et al 2003 J CardiovascElectrophysiol. 14(10):S219-S228

Measurement Simulation

10

Page 6: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Electromechanical Coupling

11

http://www.sci.sdsu.edu/movies/actin_myosin.html

Myosin Actin

Bers 2002 Nature 415:198-205

Calcium binds to troponin C

Shifting of tropomyosin opens

Interaction of actin and myosin

Contraction of myofilaments

myosin binding site of actin

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Tension Model

12

A•MF

A~M•ATP

A•MF•ADP M

M•ATP

M•ADP·Pi

A~M•ADP·Pi

A•M•ADP·Pi

A•MF*•ADP

M•ADP

ATP

ATP

v

v

v

v

λ,v,F

v

v

TMon

TMoff

T TCaTM

Ca

λ, XB

A Actin M MyosinTM TropomyosinT TroponinATP AdenosintriphospateADP AdenosindiphosphatePi Phosphate Stressv Velocity˜ ! Weak Binding• ! Strong Binding

λ

Peterson et al. 1991 AJP260:H1013-H1024

Measurement Simulation

Page 7: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Conduction: Bidomain Model

13

∇ · (σi∇Φi) = βIm

∇ · (σe∇Φe) = −βIm

Vm = Φi − Φe

dVm

dt= −

1

Cm

(∑Ix − Iinter

)

∇ · ((σe + σi)∇Φe) = −∇ · (σi∇Vm)

∇ · (σi∇Vm) + ∇ · (σi∇Φe) = −β

(Cm

dVm

dt+

∑Ix

)

Vm Transmembrane voltage Intracellular potential Extracellular potential Intracellular conductivity Extracellular conductivityCm Membrane capacitanceIX Ion current of type XIinter Intercellular current Surface/Volume

Φi

Φe

σe

σi

β

Elliptical PDE

Parabolical PDE

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Schematic Right Atrium

conduction velocity (m/s) measured simulatedatrium 0,68 – 1,03 0,6

Crista Terminalis (CT) 1 – 1,2 1,18 – 1,2Pectinate muscle (PM) 1,5 – 2 1,54 – 1,58

SAN

CT PM

Atrium

single cell simulation

14

Page 8: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Atrial Simulation

Activation times (ms) measured simulatedBachmann 23 26right atrium 81 83left atrium 80 79

complete atrium 120 103 Seemann et al. 2005 Phil. Trans. Roy. Soc. in press

Feng et al.1998 Circ Res. 83:541-551

Measurement

Simulation

15

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Simulation in the ventricular wall

16

Page 9: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Ventricular Electromechanics

17

Transmembrane voltage Tension development

Seemann et al. 2005 LNCS FIMH:312-319

Electrophysiological heterogeneity is one mechanismto homogenize the mechanical process

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Deformation with Spring Mass System

18

Page 10: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Pathological Modeling: Overview

Atrial Flutter

Atrial Fibrillation

Atrial Electrophysiological Remodeling

Ventricular Tachycardia

Ventricular Fibrillation

MutationsFamilial Atrial FibrillationLong QT SyndromesShort QT SyndromeIKs MutationsIK1 Mutation

...

19

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Ventricular Fibrillation

20

Seemann et al. 2003 Biomedizinische Technik 48-1:226-227

Section of the Left Ventricle

Page 11: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Mutation: Long QT Syndrome

21

LQT1 LQT2 LQT3

Reduction of IKs

Defect in gene KCNQ1Reduction of IKr

Defect in gene KCNH2Late inactivation of INa

Defect in gene SCN5A

Shimizu et al.1998 Circ. 98: 2314–2322 Shimizu et al.1997 Circ. 96: 2038–2047

Seemann et al. 2003 IEEE Computers in Cardiology 30:287-290

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005 22

End

o A

P

Epi

AP

Mid

AP

IK1 Mutation in ten Tusscher Model

Page 12: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005 23

Mutation: IK1

Transmural ECG in heterogeneous ten Tusscher et al. Model

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005 24

Other Research Activities

Forward and inverse problemOptical mapping of electrical activity+ tension and deformation mapping

Cellular Automaton forclinical studies

Multi-channel ECG analysis

Page 13: Modeling of Anatomy, Electrophysiology and Tension Development in

Institute of Biomedical EngineeringUniversität Karlsruhe (TH)Research University • founded 1825

G. Seemann EFCM Meeting 2005

Perspectives

25

Further heterogeneities (apico-basal)

Further Pathologies esp. arrhythmia

Individual complete heart geometry

Forward calculation on body model

Detailed mechanics and blood flow

Support of drug development

Therapeutical applications