36
Modeling terrestrial ecosystems: Biogeophysics & canopy processes NCAR is sponsored by the Na3onal Science Founda3on Gordon Bonan Na3onal Center for Atmospheric Research Boulder, Colorado, USA CLM Tutorial 2016 Na3onal Center for Atmospheric Research Boulder, Colorado 12 September 2016

Modeling terrestrial ecosystems: Biogeophysics & canopy

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Modeling terrestrial ecosystems: Biogeophysics & canopy

Modelingterrestrialecosystems:Biogeophysics&canopyprocesses

NCARissponsoredbytheNa3onalScienceFounda3on

GordonBonanNa3onalCenterforAtmosphericResearch

Boulder,Colorado,USA

CLMTutorial2016Na3onalCenterforAtmosphericResearchBoulder,Colorado12September2016

Page 2: Modeling terrestrial ecosystems: Biogeophysics & canopy

2

RoleoflandsurfaceinEarthsystemmodels

•  Providesthebiogeophysicalboundarycondi3onsattheland-atmosphereinterface–  e.g.albedo,longwaveradia3on,turbulentfluxes(momentum,sensibleheat,latent

heat,watervapor)•  Par33onsavailableenergy(netradia3on)atthesurfaceintosensibleandlatentheatflux,

soilheatstorage,andsnowmelt

•  Par33onsrainfallintorunoff,evapotranspira3on,andsoilmoisture–  Evapotranspira3onprovidessurface-atmospheremoistureflux–  Riverrunoffprovidesfreshwaterinputtotheoceans

•  Providesthecarbonfluxesatthesurface(photosynthesis,respira3on,fire,landuse)•  Updatesstatevariableswhichaffectsurfacefluxes

–  e.g.snowcover,soilmoisture,soiltemperature,vegeta3oncover,leafareaindex,vegeta3onandsoilcarbonandnitrogenpools

•  Otherchemicalfluxes(CH4,Nr,BVOCs,dust,wildfire,drydeposi3on)•  Landsurfacemodelcostisactuallynotthathigh(~10%offullycoupledmodel)

Page 3: Modeling terrestrial ecosystems: Biogeophysics & canopy

3

Thelandsurfacemodelsolves(ateach3mestep)Surfaceenergybalance(andotherenergybalances,e.g.incanopy,snow,soil)

S�+L�=S�+L�+�E+H+G§  S�,S�aredown(up)wellingsolarradia3on§  L�,L�aredown(up)wellinglongwaveradia3on§  �islatentheatofvaporiza3on,Eisevapotranspira3on§  Hissensibleheatflux§  Gisgroundheatflux

Surfacewaterbalance(andotherwaterbalancessuchassnowandsoilwater)

P=(ES+ET+EC)+(RSurf+RSub-Surf)+∆SM/∆t§  Pisrainfall§  ESissoilevapora3on,ETistranspira3on,ECiscanopyevapora3on§  RSurfissurfacerunoff,RSub-Surfissub-surfacerunoff§  ∆SM/∆tisthechangeinsoilmoistureovera3mestep

Carbonbalance(andplantandsoilcarbonpools)

NPP=GPP–Ra=(∆Cf+∆Cs+∆Cr)/∆tNEP=NPP–RhNBP=NEP–Fire–LandUse§  NPPisnetprimaryproduc3on,GPPisgrossprimaryproduc3on§  Raisautotrophic(plant)respira3on,Rhisheterotrophic(soil)respira3on§  ∆Cf,∆Cs,∆Crarefoliage,stem,androotcarbonpools§  NEPisnetecosystemproduc3on,NBPisnetbiomeproduc3on

RoleoflandsurfaceinEarthsystemmodels

Page 4: Modeling terrestrial ecosystems: Biogeophysics & canopy

4

Couplingwiththeatmosphereeverymodel3mestepisafundamentalconstraint(<30minute3mestep)Soistheneedtorepresentthegloballandsurface,includingAntarc3ca,theTibetanPlateaualongwithforests,grassland,croplands,tundra,desertscrubvegeta3on,andci3es

Conserva3onofenergyandmassisrequired

Westrivetodevelopaprocess-levelunderstandingacrossmul3pleecosystemsandatmul3ple3mescales(instantaneous,seasonal,annual,decadal,centuries)

Modeldesignphilosophy

Top-down,empiricalmodeling

1016 12 30a

pL N TE I

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=

Thornthwaite:Monthlypoten3alevapotranspira3ondrivenbyairtemperature

np

RsEs

α γ λ=+

Priestley–Taylorequa3on:Dailypoten3alevapotranspira3ondrivenbyradia3on

1 2 3( ) ( ) ( )GPP S f T f f VPDε θ= ↓

Produc3onefficiencymodeldrivenbyradia3onandempiricalscalars

Penman-Monteithequa3onFvCBphotosynthesismodelBall-BerrystomatalconductancemodelFick’slawofdiffusionDarcy’slawandRichardsequa3on(soilwater)Fourier’slaw(heatconduc3on)

3000 ,1 exp(1.315 0.119 )

min 3000 1 exp( 0.000664 )T

NPP P⎡ ⎤⎢ ⎥⎣ ⎦

⎧ ⎫⎨ ⎬+ −⎩ ⎭

= − −

AnnualNPPdrivenbytemperatureandprecipita3on

Processmodeling

Page 5: Modeling terrestrial ecosystems: Biogeophysics & canopy

5

Lackofacommonlanguage

Fluxispropor3onaltothedrivingforce:Flux=propor3onalityconstant*gradientofdrivingpoten3alDescribesheatflowinsoil(Fourier’slaw),waterflowinsoil(Darcy’slaw),turbulentfluxes(Fick’slaw)

( )w s aE C u q qρ β= −

( )s a

a s

q qE

r rρ −

=+

( )ps a w

cE e e gλ

γ= −

( )s a wE q q g= −

Atmosphericmodels:

kgm–2s–1

Landsurfacemodels:

Dimensionlessdragcoefficient

ms–1 kgkg–1kgm–3

Dimensionlesssoilmoisturefactor

resistance(sm–1)

Biometeorology:

ms–1Pa

Plantphysiology:

molm–2s–1 molmol–1 molm–2s–1

Page 6: Modeling terrestrial ecosystems: Biogeophysics & canopy

6

Modelnamedependsondiscipline:Atmosphericscienceslandsurfacemodelsoil–vegeta3on–atmosphere–transfermodelHydrologyhydrologicmodel(SVATwithlateralfluxes)Ecologybiogeochemicalmodeldynamicglobalvegeta3onmodelecosystemdemographymodel

Modelname

Page 7: Modeling terrestrial ecosystems: Biogeophysics & canopy

7

TheCommunityLandModel

Olesonetal.(2013)NCAR/TN-503+STR(420pp)

Lawrenceetal.(2011)J.Adv.Mod.EarthSyst.,3,doi:10.1029/2011MS000045

Lawrenceetal.(2012)JClimate25:2240-2260

Surfaceenergyfluxes Hydrology Biogeochemistry

Landscapedynamics

Temporalscale§  30-minutecouplingwithatmosphere§  Seasonal-to-interannual(phenology)§  Decadal-to-century(disturbance,landuse,succession)

§  Paleoclimate(biogeography)

SpaSalscale1.25°longitude�0.9375°la3tude(288�192grid),~100km�100km

Fluxesofenergy,water,CO2,CH4,BVOCs,andNrandtheprocessesthatcontrolthesefluxesinachangingenvironment

Page 8: Modeling terrestrial ecosystems: Biogeophysics & canopy

8

Themodelsimulatesacolumnextendingfromthesoilthroughtheplantcanopytotheatmosphere.CLMrepresentsamodelgridcellasamosaicofupto5primarylandunits.Eachlandunitcanhavemul3plecolumns.Vegetatedlandisfurtherrepresentedaspatchesofindividualplantfunc3onaltypes

Glacier16.7%

Lake16.7%

Urban8.3%

Vegetated50%

Sub-gridlandcoverandplantfunc3onaltypes

Crop8.3%

1.25oinlongitude(~100km)

0.9375

o inla3tud

e(~100km

)

Landsurfaceheterogeneity

Page 9: Modeling terrestrial ecosystems: Biogeophysics & canopy

9

Surfaceenergybalanceandsurfacetemperature

Surfaceenergybalance:(S�-S�)+�L�–�σTs4–H[Ts]–�E[Ts]=soilheatstorage

Withatmosphericforcingandsurfaceproper3esspecified,solvefortemperatureTsthatbalancestheenergybudget

AtmosphericforcingS�-Solarradia3on(vis,nir;direct,diffuse)L�-Longwaveradia3onTa-airtemperatureqa-atmosphericwatervaporu-windspeedP-surfacepressure

SurfaceproperSesS�-reflectedsolarradia3on(albedo)�-emissivitygah-aerodynamicconductance(roughnesslength)gc-surfaceconductancek-thermalconduc3vitycv-soilheatcapacity

( )s a ahp T T gH c −=

( )*1 1

[ ]s a

ah c

q T qg g

Eλ λ − −

−+

=

Sensible heat

Ta

Ts

gah

Flux=Δconcentra3on*conductance

vT Tct z z

κ∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠

Soilheatstorage:

Page 10: Modeling terrestrial ecosystems: Biogeophysics & canopy

10

Turbulentfluxes–logarithmicprofiles

*

0

( ) ln ( )mu z du zk z

ψ ζ⎡ ⎤⎛ ⎞−= −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Logarithmicwindprofileinatmospherenearsurface

withz0roughnesslength,ddisplacementheight,andψ(ζ) corrects for atmospheric stability

*

0

*

0

( ) ln ( )

( ) ln ( )

s hh

s wh

z dzk z

q z dq z qk z

θθ θ ψ ζ

ψ ζ

⎡ ⎤⎛ ⎞−− = −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎡ ⎤⎛ ⎞−− = −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Bonan(2016)EcologicalClimatology,3rded(CambridgeUniv.Press)

Page 11: Modeling terrestrial ecosystems: Biogeophysics & canopy

11

Turbulentfluxes–logarithmicprofiles

*

0

( ) ln ( )mu z du zk z

ψ ζ⎡ ⎤⎛ ⎞−= −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

withz0roughnesslength,ddisplacementheight,andψ(ζ) corrects for atmospheric stability

*

0

*

0

( ) ln ( )

( ) ln ( )

s hh

s wh

z dzk z

q z dq z qk z

θθ θ ψ ζ

ψ ζ

⎡ ⎤⎛ ⎞−− = −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎡ ⎤⎛ ⎞−− = −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Bonan(2016)EcologicalClimatology,3rded(CambridgeUniv.Press)

Page 12: Modeling terrestrial ecosystems: Biogeophysics & canopy

12

Plantcanopies

Bonan(2016)EcologicalClimatology,3rded(CambridgeUniv.Press)

Page 13: Modeling terrestrial ecosystems: Biogeophysics & canopy

13

Sunlit ShadedTs

Ta

Tg

Tv

Trad

H,λE,E,τx,τyL↑,albedo

Deardorff(1978)JGR83C:1889-1903Dickinsonetal.(1986)NCAR/TN-275+STRDickinsonetal.(1993)NCAR/TN-387+STR

CLMperspecSveofthelandsurface

T2m“Big-leaf”canopywithoutver3calstructure

“Surface”isanimaginaryheight(wherewindspeedextrapolatestozero)

FluxtoatmosphereusesMOST

Page 14: Modeling terrestrial ecosystems: Biogeophysics & canopy

14

RadiaSvetransfer

Bonan(2016)EcologicalClimatology,3rded(CambridgeUniv.Press)

Page 15: Modeling terrestrial ecosystems: Biogeophysics & canopy

15

CLMusesthetwo-streamapproxima3on(Dickinson,Sellers)

Two-streamradiaSvetransfer

( ) 0 ,1 1 bK xd d b sky b

dI K I K I K I edx

β ω βω β ω↑

−↑ ↓ ↓= − − − −⎡ ⎤⎣ ⎦l l l

( ) ( )0 ,1 1 1 bK xd d b sky b

dI K I K I K I edx

β ω βω β ω↓

−↓ ↑ ↓= − − − + + −⎡ ⎤⎣ ⎦l l l

Page 16: Modeling terrestrial ecosystems: Biogeophysics & canopy

16

Howdowescalefromleaftocanopy?

Page 17: Modeling terrestrial ecosystems: Biogeophysics & canopy

17

Leaftemperatureandfluxes

Leafenergybalance:

Withatmosphericforcingandleafproper3esspecified,solvefortemperatureTℓthatbalancestheenergybudget

AtmosphericforcingQa-radia3veforcing(solarandlongwave)Ta-airtemperatureqa-watervapor(molefrac3on)u-windspeedP-surfacepressure

LeafproperSes�ℓ-emissivitygbh-leafboundarylayerresistancegℓ-leafresistancetowatervaporcL-heatcapacity

( ) ( )4*2 2L a p a bh a

Tc Q T c T T g q T q gt

ε σ λ∂ = − + − + −⎡ ⎤⎣ ⎦∂l

l l l l l

Page 18: Modeling terrestrial ecosystems: Biogeophysics & canopy

18

Leafboundarylayer

Bonan(2016)EcologicalClimatology,3rded(CambridgeUniv.Press)

Page 19: Modeling terrestrial ecosystems: Biogeophysics & canopy

19

Stomatalgasexchange

Photosynthetically Active Radiation

Guard Cell Guard Cell

CO2 H2O

Moist Air

CO2 + 2 H2O � CH2O + O2 + H2O light

Chloroplast Low CO2

Stomata Open: •  High Light Levels •  Moist Leaf •  Warm Temperature •  Moist Air •  Moderate CO2 •  High Leaf Nitrogen

Leaf Cuticle

Photosynthesis Transpiration

Bonan(2016)EcologicalClimatology,3rded(CambridgeUniv.Press)

Page 20: Modeling terrestrial ecosystems: Biogeophysics & canopy

20

Stomatalconductance

Scalebar50µm

0 1s n s sg g g A h c= +

Ball-Berrystomatalconductancemodel Stomataop3mizephotosynthe3ccarbon

gainperunittranspira3onwaterlosswhilepreven3ngleafdesicca3on

n s sA D gιΔ ≤ Δ minl lψ ψ>Williamsetal.(1996)PlantCellEnviron.19:911-927

andEmpiricalrela3onshipbetweenstomatalconductanceandphotosynthesisandisappliedseparatelytosunlitcanopyandshadedcanopy

Op3miza3ontheory

Bonanetal.(2014)Geosci.ModelDev.7:2193-2222

Page 21: Modeling terrestrial ecosystems: Biogeophysics & canopy

21

min( , )n c j dA A A R= −

RuBPregenera3on-limitedrateis

rubisco-limitedrateis

wcistherubisco-limitedrateofphotosynthesis,wjislight-limitedrateallowedbyRuBPregenera3on

Farquhar,vonCaemmerer,Berryphotosynthesismodel

Leafphotosynthesis

( )*4( 2 )*

i

ji

J cA c−Γ= + Γ

max( )*(1 / )

c i

ci c i o

V cA c K o K−Γ= + +

Bonan(2016)EcologicalClimatology,3rded(CambridgeUniv.Press)

Page 22: Modeling terrestrial ecosystems: Biogeophysics & canopy

22

Leafphysiologicalparameters

Page 23: Modeling terrestrial ecosystems: Biogeophysics & canopy

23

Canopyconductance–gradientsofPAR

Page 24: Modeling terrestrial ecosystems: Biogeophysics & canopy

24

Sunlitandshadedcanopy

SUNLIT

SHADEDDepthinCanop

y

Page 25: Modeling terrestrial ecosystems: Biogeophysics & canopy

25

Nitrogenprofile

DeclineinfoliageN(perunitarea)withdepthincanopyyieldsdeclineinphotosynthe3ccapacity(Vcmax,Jmax)

Bonanetal.(2011)JGR,doi:10.1029/2010JG001593

( ) bK xsunf x e−=

( ) ( )max25 max250

(sun)L

c c sunV V x f x dx= ∫

( ) ( )max25 max250

(sha) 1L

c c sunV V x f x dx= −⎡ ⎤⎣ ⎦∫

( ) ( )max25 max25 0 nK xc cV x V e−=

Note:CLM5hasamorecomplexcanopyop3miza3on

Page 26: Modeling terrestrial ecosystems: Biogeophysics & canopy

26

Plantcanopyasa“bigleaf”

Ts

Ta

2gb

ei=e*(Ts) gb gs

ea

es

ci gb/1.4 gs/1.6

ca

cs

Stomata Leaf

Boundary Layer

Ts

Tac Ta

2gb*L ga

ei=e*(Ts) gb*L ga gs*L

eac ea

es

ci ca

cs

Canopy Atmosphere

Surface Layer

Mostmodelsusetwo-leaves(sunlitandshaded)

gb/1.4 *L gs/1.6 *L

Page 27: Modeling terrestrial ecosystems: Biogeophysics & canopy

27

Bonanetal.(1997)JGR102D:29065-75

Model

Observa3ons

BorealEcosystemAtmosphereStudy(BOREAS)1990s:singlesitecomparison,shortintensiveobservingperiod

Fluxtowers&modelvalidaSon

Page 28: Modeling terrestrial ecosystems: Biogeophysics & canopy

Fluxtowers&modelvalidaSon28

Stöcklietal.(2008)JGR,113,doi:10.1029/2007JG000562

CLM3.0–drysoil,lowlatentheatflux,highsensibleheatfluxCLM3.5–we�ersoilandhigherlatentheatflux

MorganMonroeStateForest,Indiana

2000s:annualcycle,mul3-sitecomparison(borealtotropical)

Page 29: Modeling terrestrial ecosystems: Biogeophysics & canopy

29

FLUXNET-MTEdatafromMar3nJungandMarkusReichstein(MPI-BGC,Jena)

Radia3vetransfer

andphoto-synthesis

Control

CLM4overesSmatesGPP.ModelrevisionsimproveGPP.SimilarimprovementsareseeninevapotranspiraSon

Radia3vetransferforsunlitandshadedcanopy

117PgCyr-1 165PgCyr-1

130PgCyr-1

Bonanetal.(2011)JGR,doi:10.1029/2010JG001593

155PgCyr-1

Fluxtowers&modelvalidaSon

Page 30: Modeling terrestrial ecosystems: Biogeophysics & canopy

30

Improvedannuallatentheatflux

ModelimprovementsreduceETbiases,especiallyintropics,andimprovemonthlyfluxes

Bonanetal.(2011)JGR,doi:10.1029/2010JG001593

65x103km3yr-1 68x103km3yr-1

65x103km3yr-1

Page 31: Modeling terrestrial ecosystems: Biogeophysics & canopy

31

MorganMonroeStateForest

Stöcklietal.(2008)JGR,113,doi:10.1029/2007JG000562

drysoil,lowlatentheatfluxCLM3

CLM3.5

Waterstorage(m

m)

GRACECLM3CLM4

D.Lawrenceetal.(2012)JClimate25:2240-2260

Tower

Mississippibasin

Modelingacrossscales

Global

Bonanetal.(2011)JGR,doi:10.1029/2010JG001593

Largebasin

Annuallatentheatflux

Page 32: Modeling terrestrial ecosystems: Biogeophysics & canopy

32

Researchareas

SurfacefluxesRoughnesssublayer,mul3layercanopiesRadiaSvetransfer3Dstructure,canopygapsPhotosynthesisTemperatureacclima3on,CO2response,product-limitedrate,C4plantsStomatalconductanceSoilmoisturestress,WUEop3miza3on,CO2responseCanopyscalingOp3maldistribu3onofnitrogen

Page 33: Modeling terrestrial ecosystems: Biogeophysics & canopy

33

Canopyturbulenceandtheroughnesssublayer

CLM(andmostothermodels)useMOST,whichfailsaboveandwithinplantcanopies

Harman&Finnigan(2007)Boundary-LayerMeteorol.123:339-363Harman&Finnigan(2008)Boundary-LayerMeteorol.129:323-351

MOST

Obs

ProfilesfromtheCSIROfluxsta3onnearTumbarumba

RSL MOST

RSL

Page 34: Modeling terrestrial ecosystems: Biogeophysics & canopy

34

Twowaystomodelplantcanopies

PhotographsofMorganMonroeStateForesttowersiteillustratetwodifferentrepresenta3onsofaplantcanopy:asa“bigleaf”(below)orwithver3calstructure(right)

SUNLIT

SHADEDDepthinCanop

y

SUNLIT

SHADEDDepthinCanop

yBig-leafcanopy§  Two“big-leaves”(sunlit,shaded)

§  Radia3vetransferintegratedoverLAI(two-streamapproxima3on)

§  Photosynthesiscalculatedforsunlitandshadedbig-leaves

MulSlayercanopy§  Explicitlyresolvessunlitandshadedleavesateachlayerinthecanopy

§  Light,temperature,humidity,windspeed,H,E,An,gs,ψL

§  Newopportuni3estomodelstomatalconductancefromplanthydraulics(gs,ψL)

Page 35: Modeling terrestrial ecosystems: Biogeophysics & canopy

35

US-Ha1,July2001 US-Var,March2006

Mid-dayMid-day

Model

CLM4.5

CLMml

FricSonvelocity(momentumflux)

Obs

Page 36: Modeling terrestrial ecosystems: Biogeophysics & canopy

36

US-Ha1,July2001(DBF)CLM4.5

CLMml

ObsModel