15
Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain email: [email protected] URL :http://imtiazhussainkalwar.weebly.com/ 1

Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

Embed Size (px)

DESCRIPTION

PID Unit (PID 150Y) In this lab we will use a PID controller to control the speed and angular position of the motor. The purpose of the PID150Y unit is to serve as a controller in the experiment, taking the error signal ‘e’ and producing a command voltage V com. 3

Citation preview

Page 1: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

1

Modern Control SystemsLab#04

PIDPosition and speed control of D.C Motor

Dr. Imtiaz Hussainemail: [email protected]

URL :http://imtiazhussainkalwar.weebly.com/

Page 2: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

2

Outline

• Introduction to PID Unit• Lab Part-I (Position Control via PID)– Proportional Control– Proportional Integral Control– PID control

• Lab Part-II (Speed Control Via PID)– Proportional Control– Proportional Integral Control– PID control

Page 3: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

3

PID Unit (PID 150Y)• In this lab we will use a PID controller to control the speed and

angular position of the motor.

• The purpose of the PID150Y unit is to serve as a controller in the experiment, taking the error signal ‘e’ and producing a command voltage Vcom.

)(dtdeTsedt

TsesKV dd

iipcom 1

Page 4: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

4

PID Unit (PID 150Y)

Page 5: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

5

PID Unit (PID 150Y)• There are three dials on the PID unit that allow you

to adjust parameters K, Ti, and Td. The range of values you can set are outlined in following table.

Component Switch X 1 Switch X 10Proportional Gain, K 0.1 to 1 1 to 10Integral Action Time, Ti 0.1s to 1s 1s to 10sDerivative Action Time, Td 1ms to 22ms 10ms to 220ms

Page 6: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

6

Part-I: Position Control

Page 7: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

7

Part-I: Position Control (Proportional Control)• Connect the output of the op-amp to the input of the PID unit, and connect

the output of the PID unit to the appropriate input of the servo-amp. • Turn the integrator and differentiator both off (switches in the “out"

position). • Set the gain on the proportional dial to 1. Turn on the power. See what

happens.

Page 8: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

8

Part-I: Position Control (Proportional Control)• Set the dial of the input potentiometer to 90o (abruptly). This is the

way we will create our step inputs.

• Apply few more step inputs and observe the performance.

• Simply by observing the dial of the output potentiometer as it goes back and forth between 0o and 90o, estimate the amount of overshoot in the closed loop system.

• Also, measure the steady state error. Rather than try to read the difference in the input and output potentiometer dial angles, perhaps the best way to measure the error is to simply measure the voltage at the output of the op-amp (the output of the comparator). This is the error that the controller actually sees.

Page 9: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

9

Part-I: Position Control (PI Control)• Now, turn on (“in") the integral part of the PID module,

and set the dial so that Ti = 1 sec. • Do not modify the proportional part of the control signal. • Perform several 90o step inputs and observe how the

overshoot and steady state error are affected by the integral action.

• Again, you should be able to observe the overshoot by sight.

• However, to observe the error, you should measure the error signal voltage at the output of the op-amp. Furthermore, to see the integrator work, you may wish to observe the commanded signal at the output of the PID unit.

Page 10: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

10

Part-I: Position Control (PID Control)• To include the derivative action, you need to connect

ports labelled “input error" and “input" as shown in following figure.

Page 11: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

11

Part-I: Position Control (PID Control)• Flip the derivative switch to “in," and set the derivative

time scale to Td = 0.2 ms.

• Do not modify the proportional or integral components of the signal.

• Perform several 90o step inputs. Observe how the overshoot and steady state error are affected by the derivative action.

Page 12: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

12

Part-II: Speed Control

Page 13: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

13

Part-II: Speed Control (Proportional Control)

• Repeat the same procedure as we did in Part-I.

Page 14: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

14

Submission

• Comprehensive Conclusion (Not Traditional)• Last Date 26th September 2014

Page 15: Modern Control Systems Lab#04 PID Position and speed control of D.C Motor Dr. Imtiaz Hussain

15

END OF LAB-4

To download this lecture visithttp://imtiazhussainkalwar.weebly.com/