34
Theory Observations Modified Gravity A brief tour Miguel Zumalac´ arregui Instituto de F´ ısicaTe´oricaIFT-UAM-CSIC IFT-UAM Cosmology meeting IFT, February 2013, Madrid Miguel Zumalac´ arregui Modified Gravity

Modified Gravity - a brief tour

Embed Size (px)

DESCRIPTION

very brief overview of alternative theories of gravity and the means to test them

Citation preview

Page 1: Modified Gravity - a brief tour

TheoryObservations

Modified GravityA brief tour

Miguel Zumalacarregui

Instituto de Fısica Teorica IFT-UAM-CSIC

IFT-UAM Cosmology meeting

IFT, February 2013, Madrid

Miguel Zumalacarregui Modified Gravity

Page 2: Modified Gravity - a brief tour

TheoryObservations

Outline

1 TheoryIntroductionModified Gravities

2 ObservationsSolar SystemCosmology

3) Conclusions

Miguel Zumalacarregui Modified Gravity

Page 3: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Introduction

? Why Modified Gravity?

Mystery: Λ and CDM problems

Observational Outliers

(LSS bulk motions, halo profiles, satellite galaxies...)

Testing General Relativity

⇒ Model independence of cosmological probes

Main Points

Many different scenarios for modified gravity

Need to analyze in a (sufficiently) self consistent way

Miguel Zumalacarregui Modified Gravity

Page 4: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Introduction

? Why Modified Gravity?

Mystery: Λ and CDM problems

Observational Outliers

(LSS bulk motions, halo profiles, satellite galaxies...)

Testing General Relativity

⇒ Model independence of cosmological probes

Main Points

Many different scenarios for modified gravity

Need to analyze in a (sufficiently) self consistent way

Miguel Zumalacarregui Modified Gravity

Page 5: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Einstein’s Theory

Lovelock’s Theorem (1971)

gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs∗

√−g 1

16πG(R− 2Λ)

∗ Theories with higher time derivatives unstable: E → −∞(Ostrogradski’s Theorem)

Acceptable modifications (Clifton et al. 1106.2476):

Higher derivatives

Additional fields

Extra dimensions

Weird stuff: Lorentz violation, non-local, non-metric...

Miguel Zumalacarregui Modified Gravity

Page 6: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Einstein’s Theory

Lovelock’s Theorem (1971)

gµν + Local + 4-D + Lorentz Theory with 2nd order Eqs∗

√−g 1

16πG(R− 2Λ)

∗ Theories with higher time derivatives unstable: E → −∞(Ostrogradski’s Theorem)

Acceptable modifications (Clifton et al. 1106.2476):

Higher derivatives

Additional fields

Extra dimensions

Weird stuff: Lorentz violation, non-local, non-metric...

Miguel Zumalacarregui Modified Gravity

Page 7: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Beyond Einstein’s Theory: Examples

? Higher derivatives: f(R) gravity −→ Equivalent to h(φ)R+ · · ·

? Additional fields:�� ��Scalar: φ

- Vector: Aµ, e.g. TeVeS (alternative to DM)

- Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

? Extra dimensions:

- DGP → φ = brane location in extra dim.

- Kaluza-Klein → φ ∝ volume of compact dim.

? Weird stuff: Non-local ⊃ R e−�/M2∗

� R

- Lorentz violation: Horava-Lifschitz gravity �ξ → −ξ + ~∇4ξ

Miguel Zumalacarregui Modified Gravity

Page 8: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Beyond Einstein’s Theory: Examples

? Higher derivatives: f(R) gravity −→ Equivalent to h(φ)R+ · · ·

? Additional fields:�� ��Scalar: φ

- Vector: Aµ, e.g. TeVeS (alternative to DM)

- Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

? Extra dimensions:

- DGP → φ = brane location in extra dim.

- Kaluza-Klein → φ ∝ volume of compact dim.

? Weird stuff: Non-local ⊃ R e−�/M2∗

� R

- Lorentz violation: Horava-Lifschitz gravity �ξ → −ξ + ~∇4ξ

Miguel Zumalacarregui Modified Gravity

Page 9: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Beyond Einstein’s Theory: Examples

? Higher derivatives: f(R) gravity −→ Equivalent to h(φ)R+ · · ·

? Additional fields:�� ��Scalar: φ

- Vector: Aµ, e.g. TeVeS (alternative to DM)

- Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

? Extra dimensions:

- DGP → φ = brane location in extra dim.

- Kaluza-Klein → φ ∝ volume of compact dim.

? Weird stuff: Non-local ⊃ R e−�/M2∗

� R

- Lorentz violation: Horava-Lifschitz gravity �ξ → −ξ + ~∇4ξ

Miguel Zumalacarregui Modified Gravity

Page 10: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Beyond Einstein’s Theory: Examples

? Higher derivatives: f(R) gravity −→ Equivalent to h(φ)R+ · · ·

? Additional fields:�� ��Scalar: φ

- Vector: Aµ, e.g. TeVeS (alternative to DM)

- Tensor: hµν Massive gravity −→ scalar φ in decoupling limit

? Extra dimensions:

- DGP → φ = brane location in extra dim.

- Kaluza-Klein → φ ∝ volume of compact dim.

? Weird stuff: Non-local ⊃ R e−�/M2∗

� R

- Lorentz violation: Horava-Lifschitz gravity �ξ → −ξ + ~∇4ξ

Miguel Zumalacarregui Modified Gravity

Page 11: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Scalar-Tensor Theories

? Scalar fields arise in many contexts:

geometry of extra dimensions

f(R), decoupling limit of massive gravity, etc...

? Isotropy friendly → no prefered directions

? Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2:

L2 = K[φ, (∂φ)2]→ no φ↔ Rµν interaction (dark energy)

L3,L4,L5 explicit couplings φ↔ Rµν (modified gravity)

? Also interacing DM: scalar couples only to DM

Miguel Zumalacarregui Modified Gravity

Page 12: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Scalar-Tensor Theories

? Scalar fields arise in many contexts:

geometry of extra dimensions

f(R), decoupling limit of massive gravity, etc...

? Isotropy friendly → no prefered directions

? Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2:

L2 = K[φ, (∂φ)2]→ no φ↔ Rµν interaction (dark energy)

L3,L4,L5 explicit couplings φ↔ Rµν (modified gravity)

? Also interacing DM: scalar couples only to DM

Miguel Zumalacarregui Modified Gravity

Page 13: Modified Gravity - a brief tour

TheoryObservations

IntroductionModified Gravities

Scalar-Tensor Theories

? Scalar fields arise in many contexts:

geometry of extra dimensions

f(R), decoupling limit of massive gravity, etc...

? Isotropy friendly → no prefered directions

? Most general: Horndenski’s Theory → 4 functions of φ, (∂φ)2:

L2 = K[φ, (∂φ)2]→ no φ↔ Rµν interaction (dark energy)

L3,L4,L5 explicit couplings φ↔ Rµν (modified gravity)

? Also interacing DM: scalar couples only to DM

Miguel Zumalacarregui Modified Gravity

Page 14: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Local Gravity Tests

Transform to Einstein-frame: L =√−gR

16πG+ Lm (gµν [φ])︸ ︷︷ ︸

matter metric

+Lφ

Matter follows geodesic of gµν rather than gµν

⇒ φ mediates an additional force ~F ∝ ~∇φ

Constrained by laboratory and Solar System tests:

Perihelion precession, Lunar laser ranging... → massive bodies

Gravitational light bending, time delay... → light geodesics

e.g. http://relativity.livingreviews.org/Articles/lrr-2001-4/

Miguel Zumalacarregui Modified Gravity

Page 15: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Local Gravity Tests

Transform to Einstein-frame: L =√−gR

16πG+ Lm (gµν [φ])︸ ︷︷ ︸

matter metric

+Lφ

Matter follows geodesic of gµν rather than gµν

⇒ φ mediates an additional force ~F ∝ ~∇φ

Constrained by laboratory and Solar System tests:

Perihelion precession, Lunar laser ranging... → massive bodies

Gravitational light bending, time delay... → light geodesics

e.g. http://relativity.livingreviews.org/Articles/lrr-2001-4/

Miguel Zumalacarregui Modified Gravity

Page 16: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Screening Mechanisms�� ��Non-linear interactions → Hide φ around massive bodies

Screening from V (φ)

Chameleon: ρ dependent field range: φ ∝ e−mφr

r

Symmetron: ρ dependent coupling to matter

Only surface contribution from screened objects: Qφ � QG.

Screening from ∇∇φ

Vainshtein: interaction suppressed for r � rV =(rsm2∗

) 13

significant scalar force for r > rV : Qφ ≈ QGDisformal: field evolution independent of ρ (if ρ� m4

∗)

(Lam Hui’s lectures: www.slideshare.net/CosmoAIMS/hui-modified-gravity)

Miguel Zumalacarregui Modified Gravity

Page 17: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Screening Mechanisms�� ��Non-linear interactions → Hide φ around massive bodies

Screening from V (φ)

Chameleon: ρ dependent field range: φ ∝ e−mφr

r

Symmetron: ρ dependent coupling to matter

Only surface contribution from screened objects: Qφ � QG.

Screening from ∇∇φ

Vainshtein: interaction suppressed for r � rV =(rsm2∗

) 13

significant scalar force for r > rV : Qφ ≈ QGDisformal: field evolution independent of ρ (if ρ� m4

∗)

(Lam Hui’s lectures: www.slideshare.net/CosmoAIMS/hui-modified-gravity)

Miguel Zumalacarregui Modified Gravity

Page 18: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Cosmology

? Scalars can source cosmic acceleration:

Effective Cosmological Constant: Λ→ V (φ) + 12(∂φ)2

Self-acceleration: H ≈ constant is solution.

Einstein frame: Energy transfer

∇µTµνm = −∇µTµνφ = −Qφ,ν

? Geometric measurements (DL, DA) can’t distinguish

dark energy (Q = 0) from modified gravity (Q 6= 0)

? Perturbations: Additional force if Q 6= 0

Miguel Zumalacarregui Modified Gravity

Page 19: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Cosmology

? Scalars can source cosmic acceleration:

Effective Cosmological Constant: Λ→ V (φ) + 12(∂φ)2

Self-acceleration: H ≈ constant is solution.

Einstein frame: Energy transfer

∇µTµνm = −∇µTµνφ = −Qφ,ν

? Geometric measurements (DL, DA) can’t distinguish

dark energy (Q = 0) from modified gravity (Q 6= 0)

? Perturbations: Additional force if Q 6= 0

Miguel Zumalacarregui Modified Gravity

Page 20: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Linear Perturbations

Quasi-static approximation on sub-horizon scales

Neglect time derivatives, keep terms ∝ k2

a2 , δ ≡ δρρ

δ + 2Hδ ≈ 4π Geff(k, t) ρmδ (effective gravitational constant)

Φ = − η(k, t) Ψ (anisotropic parameter)

f(R) gravity:Geff

G=

1

f ′1 + 4(f ′′/f ′)(k/a)2

1 + 3(f ′′/f ′)(k/a)2, η =

1 + 2(f ′′/f ′)(k/a)2

1 + 4(f ′′/f ′)(k/a)2

43

enhancement on small scales (De Felice et al. 1108.4242).

Parameterized Post-Friedmann framework (PPF)

General treatment of linear perturbations → O(20) free functions(e.g. Baker et al. 1209.2117).

Miguel Zumalacarregui Modified Gravity

Page 21: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Linear Perturbations

Quasi-static approximation on sub-horizon scales

Neglect time derivatives, keep terms ∝ k2

a2 , δ ≡ δρρ

δ + 2Hδ ≈ 4π Geff(k, t) ρmδ (effective gravitational constant)

Φ = − η(k, t) Ψ (anisotropic parameter)

f(R) gravity:Geff

G=

1

f ′1 + 4(f ′′/f ′)(k/a)2

1 + 3(f ′′/f ′)(k/a)2, η =

1 + 2(f ′′/f ′)(k/a)2

1 + 4(f ′′/f ′)(k/a)2

43

enhancement on small scales (De Felice et al. 1108.4242).

Parameterized Post-Friedmann framework (PPF)

General treatment of linear perturbations → O(20) free functions(e.g. Baker et al. 1209.2117).

Miguel Zumalacarregui Modified Gravity

Page 22: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Linear Perturbations

Quasi-static approximation on sub-horizon scales

Neglect time derivatives, keep terms ∝ k2

a2 , δ ≡ δρρ

δ + 2Hδ ≈ 4π Geff(k, t) ρmδ (effective gravitational constant)

Φ = − η(k, t) Ψ (anisotropic parameter)

f(R) gravity:Geff

G=

1

f ′1 + 4(f ′′/f ′)(k/a)2

1 + 3(f ′′/f ′)(k/a)2, η =

1 + 2(f ′′/f ′)(k/a)2

1 + 4(f ′′/f ′)(k/a)2

43

enhancement on small scales (De Felice et al. 1108.4242).

Parameterized Post-Friedmann framework (PPF)

General treatment of linear perturbations → O(20) free functions(e.g. Baker et al. 1209.2117).

Miguel Zumalacarregui Modified Gravity

Page 23: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Non-Linear Perturbations

- Higher order PT very hard, especially beyond GR

fromM. Baldi

1109.5695

- N-body simulations computationally expensive:

Non-linear equation for φ(~x, t): Solve on a grid.

Usually assume quasi-static field evolution φ, φ ∼ 0

yet necessary to access small scales!

Miguel Zumalacarregui Modified Gravity

Page 24: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 25: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 26: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 27: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 28: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Dynamical Observables: Matter and Light

? Large Scale Structure:

P (k) → linear & non-linear, limited by bias

Peculiar velocities/RSD → f = d log(δ)d log(a) (linear)

Bispectrum → non-linear

Cluster abundances & profiles → non-linear scales!

Voids → test low ρ environments

? Cosmic Microwave Background

Integrated Sachs Wolfe → measures Φ− Ψ, small statistics

? Weak gravitational lensing:

Shear → measures Φ + Ψ, complementary to P (k),non-linear scales, systematics

Miguel Zumalacarregui Modified Gravity

Page 29: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Theory vs Observations

No pure test of gravity: probes sensitive to several effects(expansion, neutrinos, primordial non-Gaussianity...)

⇒ Complementarity is essential

Ideally: self consistent analysis → assume MG on all stepsor at least keep track of assumptions:

Poisson eq. Φ 6= 4πk2GρkMatter geodesics xi 6= −∇iΦGalaxy biasCalibration with simulations

· · ·

Miguel Zumalacarregui Modified Gravity

Page 30: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Theory vs Observations

No pure test of gravity: probes sensitive to several effects(expansion, neutrinos, primordial non-Gaussianity...)

⇒ Complementarity is essential

Ideally: self consistent analysis → assume MG on all stepsor at least keep track of assumptions:

Poisson eq. Φ 6= 4πk2GρkMatter geodesics xi 6= −∇iΦGalaxy biasCalibration with simulations

· · ·

Miguel Zumalacarregui Modified Gravity

Page 31: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Conclusions

Many possible modifications of gravity (not only f(R)!)

Scalar-tensor encompass many of them in some limit

Screening mechanisms to pass local gravity tests

Cosmology: need dynamical data to distinguish DE from MG(LSS, CMB, lensing...)

Theory vs Data: exploit complementarity and bearassumptions in mind

Doubts? check the Bible of modified gravity:

- Clifton et al. 2011 ”Modified Gravity and Cosmology” 1106.2476

Miguel Zumalacarregui Modified Gravity

Page 32: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Backup Slides

Miguel Zumalacarregui Modified Gravity

Page 33: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

The Frontiers of Gravity

What is the most general possible theory of gravity?

Ostrogradski’s Theorem (1850)

Theories with L ⊃ ∂nq

∂tn, n ≥ 2 are unstable∗

q(t), L(q, q, q)→ ∂L

∂q− d

dt

∂L

∂q+

d2

dt2∂L

∂q= 0

q, q, q,...q → Q1, Q2, P1, P2

(P1,2 ≡ ∂L/∂Q1,2

)H = P1Q2 + terms independent of P1

∗ If no...q ,

....q in the Equations ⇒ Loophole

Miguel Zumalacarregui Modified Gravity

Page 34: Modified Gravity - a brief tour

TheoryObservations

Solar SystemCosmology

Most General Scalar-Tensor theory

Horndenski’s Theory (1974)

gµν +�� ��φ + Local + 4-D + Lorentz Theory with 2nd order Eqs.

⇒ ∃ 4 free functions of φ, X ≡ −12φ,µφ

L2 = G2(X,φ) −→ No φ↔ gµν interaction

L3 = −G3�φ −→ eqs ⊃ G3,XRµνφ,µφ,ν

L4 = G4R +G4,X

[(�φ)2 − φ;µνφ

;µν]

L5 = G5Gµνφ;µν

− 16G5,X

[(�φ)3 − 3(�φ)φ;µνφ

;µν + 2φ ;ν;µ φ ;λ

;ν φ ;µ;λ

]Miguel Zumalacarregui Modified Gravity