Module (05) High-Voltage A.C.pdf

  • Upload
    kopi143

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    1/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page1of35

    Module

    05High-Voltage A.C

    Circuit Breakers

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    2/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page2of35

    5.1 INTRODUCTION

    In this chapter, the constructional aspectsof circuit breakers have been briefly discussed. The

    theoreticalaspectsregardingtransientvariationofcurrentandvoltage,arcextinctionprocessand

    thevarious typesofcircuitbreakershavebeendescribed indetail inotherchapters.Thecircuitbreakersareautomaticswitcheswhichcaninterruptfaultcurrents.Insomeapplicationslikesingle

    phase traction system, single pole circuit breakers are used. The part of the circuit breakers

    connected inonephase iscalled the 'pole'.Acircuitbreakersuitable for threephasesystem is

    calleda'triplepolecircuitbreaker'.

    Each pole of the circuit breaker comprises one or more 'interrupter' or 'arcextinguishing

    chambers'.Theinterruptersaremountedonsupportinsulators.Theinterrupterenclosesasetof

    'fixedandmovingcontacts'.Themovingcontactscanbedrawnapartbymeansoftheoperating

    linksoftheoperatingmedium.Theoperatingmechanismofthecircuitbreakergivesthenecessary

    energyforopeningandclosingofcontactsofthecircuitbreakers.

    The arc produced by the separation of current carrying contacts is interrupted by a suitable

    medium and by adopting suitable techniques for arc extinction. The circuit breaker can be

    classifiedonthebasisofthearcextinctionmedium.

    5.2THE

    FAULT

    CLEARING

    PROCESS

    During thenormaloperatingcondition thecircuitbreakercanbeopenedorclosedbyastation

    operatorforthepurposeofswitchingandmaintenance.Duringtheabnormalorfaultyconditions

    the relays sense the faultandclose the tripcircuitof thecircuitbreaker.Thereafter thecircuit

    breakeropens.Thecircuitbreakerhastwoworkingpositions,openandclosed.Thesecorrespond

    toopencircuitbreakercontactsandclosedcircuitbreakercontactsrespectively.Theoperationof

    automaticopeningandclosingthecontact isachievedbymeansoftheoperatingmechanismof

    the circuit breaker. As the relay contacts close, the triple circuit is closed and the operating

    mechanismofthecircuitbreakerstartstheopeningoperation.

    The contacts of the circuit breaker open and an arc is drawn between them. The arc is

    extinguished at some natural current zero of a.c. wave. The process of current interruption is

    completedwhenthearcisextinguishedandthecurrentreachesfinalzerovalue.Thefaultissaid

    tobecleared.Theprocessoffaultclearinghasthefollowingsequence:

    FaultOccurs:As the faultoccurs, the fault impedancebeing low, thecurrents increaseand therelaygetsactuated.Therelaytakessometimetocloseitscontacts.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    3/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page3of35

    Relay contacts close the trip circuitof the circuitbreaker closes and trip coil is energized. The

    operating mechanism starts operating for the opening operation. The circuit breaker contacts

    separate.

    Arc is drawn between the breaker contacts. The arc is extinguished in the circuit breaker by

    suitabletechniques.Thecurrentreachesfinalzeroasthearcisextinguishedanddoesnotrestrike

    again.

    5.3 TRIPCIRCUIT

    The basic connection of the circuitbreaker control, for the opening operation, is illustrated in

    Figure5.1.

    Figure(5.1)SimplifiedDiagramofCircuitBreakerControlforOpeningOperation

    Theprotectedcircuit is shownbydashed line.Whena faultoccurs in theprotectedcircuit, the

    relayconnectedtotheCTandPTactuatesandclosesitscontacts.Currentflowsfromthebattery

    (source) in the trip circuit.As the trip coilof the circuitbreaker (C.B.) is energized, the circuit

    breaker operating mechanism is actuated and it operates for the opening operation. Auxiliary

    switchisanimportantiteminthecircuit.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    4/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page4of35

    5.4 HISTORICALREVIEW

    Long ago, before 1875, the problem of the circuit breaking was relatively simple. The power

    systemswerebelow15kVandfaultMVA1wasoftheorderof250.Mercuryswitchesandknife

    switcheswereused forswitching.Fusesgaveshortcircuitprotection.Today thepowersystemshavebecomecomplexandhuge.Thevoltagesusedfortransmissionareoftheorderof220kV,

    400kV,500kVand750kV.Thecapacityof thecircuitbreakersonEHV lines isof theorderof

    35,000MVA.Today'scircuitbreakersarefaster(2cycles,2.5cycles).

    Theoilcircuitbreakerwasdevelopedaround1885.Intheoilcircuitbreakers,dielectricoilisused,

    forinsulatonandforarcextncton.Later(1900),arcextnctondeviceswereintroduced.Thearc

    extinctiondevicesaresemiclosedchambersofdielectricmaterial,whicharefixedtothecontacts

    forassistingthearcextinctioninoilcircuitbreakers.Minimumoilcircuitbreakersweredeveloped

    toreplacethebulkoilcircuitbreakers.Today theminimumoilcircuitbreakersarebeingwidely

    used.

    The firstshortcircuit testingplantwasbuilt in1916 inEurope.Theairblastcircuitbreakerwas

    developed in 1930's. In air blast circuit breakers, high pressure air is forced on the arc at the

    instantofthecontactseparationandarcgetsextinguishedbytheblasteffect.Theairblastcircuit

    breakershaveseveraladvantagessuchasfastoperation,highrupturingcapacityetc.TheAirBlast

    CircuitBreakerbecamequitepopularby1950.

    The inventon of SF6 circuit breakers is a very important development in the circuit breaker

    technology. SF6 (sulphurhexafluoride) gas has good dielectric and arc quenching properties.

    DoublepressuretypeoutdoorSF6circuitbreakersweredevelopedbyWestnghouse,USAduring

    1950's. This was followed by development of single pressure puffer type SF6 circuit breakers

    (1970).TodaySF6circuitbreakersandSF6 insulatedmetalenclosed switchgearareverywidely

    usedforvoltagesfrom72.5kVto760kV.

    Vacuumwasknowntobeagooddielectricmedium.Buttocreatevacuumandmaintainvacuum

    wasaproblem.Vacuum interruptershavebeendevelopedduring1960'sandarebeingusedfor

    applicatonsbelow36kV.

    Otherinterestingdevelopmentsforlowandmediumvoltageapplicationsincludeminiaturecircuit

    breakers,mouldedcasecircuitbreakers,contactors,solidstateswitchingdevices.Miniaturecircuit

    breakersandmouldedcasecircuitbreakershavecertainadvantagesoverconventionalHRCfuses.

    1 Fault MVA =610

    3 IV whereV is the service voltage in volts and I is the fault current in amperes

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    5/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page5of35

    Contactorshavebeendeveloped forawide rangeofa.c.andd.c. ratings.Solid state switching

    devicesarebeingincreasinglyusedinindustrialcontrols.

    5.5CLASSIFICATION

    BASED

    ON

    ARC

    QUENCHING

    MEDIUM

    Thecircuitbreakerscanbeclassifiedonthebasisofratedvoltages:Circuitbreakersbelowrated

    voltageof1000Varecalledlowvoltagecircuitbreakersandabove1000Varecalledhighvoltage

    circuitbreakers.

    Thetypeofthecircuitbreakerisusuallyidentifiedaccordingtothemediumofarcextinction.The

    classificationofthecircuitbreakersbasedonthemediumofarcextinctionisasfollows:

    AirBreakCircuitBreaker.

    MiniatureCircuitBreaker.

    OilCircuitBreaker(TankTypeorBulkOil).

    MinimumOilCircuitBreaker.

    AirBlastCircuitBreaker.

    SulphurHexafluorideCircuitBreaker

    (SinglePressureorDoublePressure).

    Vacuumcircuitbreaker.

    Eachcircuitbreakerwillbestudiedthoroughlyinthesubsequentsections.Thesecircuitbreakers

    employvarioustechniquestoextinguishthearcresultingfromseparationofthecurrentcarrying

    contacts. The mode of arc extinction is either 'high resistance interruption' or 'zeropoint

    interruption'.

    HighResistanceInterruption:Inthisprocesstheresistanceofthearc is increasedbylengthening

    andcoolingittosuchanextentthatthesystemvoltageisnolongerabletomaintainthearcand

    thearcgetsextinguished.Thistechniqueisemployedinairbreakcircuitbreakersandd.c.circuit

    breakers.

    LowResistanceor ZeroPoint Interruption: In thisprocess, the arc getsextinguished atnatural

    currentzeroofthealternatingcurrentwaveandispreventedfromrestrikingagainbyrapidbuild

    upofdielectric strengthof thecontact space.Theprocess isemployed inalmostalla.c.circuit

    breakers.

    Each leadingmanufacturerofcircuitbreakerdevelops twoormore typesofcircuitbreakers for

    everyvoltageclass.Theconstructionofthecircuitbreakerdependsupon itstype(arcquenching

    medium),voltageratingandstructuralform.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    6/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page6of35

    Airbreak circuitbreakers:Utilizeair at atmosphericpressure forarcextinction.Airblast circuit

    breakers:Utilizehighpressurecompressedairforarcextinction.Theyneedcompressedairplant.

    BulkoilandMinimumoilcircuitbreakers:UtilizeDielectricoil(Transformeroil)forarcextinction.

    InBulkoilcircuitbreakers,thecontactsareseparatedinsideasteeltankfilledwithdielectricoil.Inminimumoil circuitbreakers the contracts are separated in an insulating housing (interrupter)

    filledwithdielectricoil.

    SF6circuitbreakers:SulphurHexaFluoridegasisusedforarcextinction.Therearetwotypes:

    SinglepressurepuffertypeSF6circuitbreakers,inwhichtheentrecircuitbreakerisfilledwithSF6

    gasat singlepressure (4 to6kg/cm2).Thepressureandgasflow required forarcextncton is

    obtainedbypistonaction.

    DoublepressuretypeSF6circuitbreaker inwhichthegasfromhighpressuresystem isreleased

    into low pressure system over the arc during the arc quenching process. This type has been

    supersededbyputtertype.

    Vacuum circuit breakers: In vacuum circuit breaker the fixed and moving contacts are housed

    inside a permanently sealed vacuum interrupter. The arc is quenched as the contacts are

    separatedinhighvacuum.

    AbriefcomparisonbetweenthedifferenttypesofcircuitbreakersisgiveninTable5.1.

    5.6 TECHNICALPARTICULARSOFACIRCUITBREAKER

    Acircuitbreakerisidentifiedbythefollowingparticulars:Typeofmediumforarcextinction.

    Ratedvoltage.Thiscorrespondstohighestpowerfrequencyvoltagebetweenphasetophase,e.g.

    3.6kV,7.2kV,12kV,36kV,72.5kV,145kV,245kV.

    Ratedbreakingcurrent.

    Otherratedcharacteristics.

    Typeofconstruction.

    Indoormetalcladtype

    Outdoortype

    MetalcladSF6gasinsulatedtype.

    Typeofoperatingmechanism.

    Totalbreaktme,e.g.2cycle,3cycle,5cycle.

    Structuralform:

    LivetanktypeDeadtanktype.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    7/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page7of35

    Table(5.1)ComparisonofCircuitbreakers

    Type Medium Voltage, breaking capacity Design Features Remarks

    1. Air-break

    circuit-

    breaker

    Air at atmospheric

    pressure

    430-600 V, 5-15-35 MVA

    recently 3.6-12 kV, 500

    MVA

    Incorporates: Arc

    runners, arc

    splitters, magnetic

    coils

    Used for

    medium/low

    voltage, A.C.,

    D.C., Industrial

    circuit-breakers.

    Have current

    limiting features.

    Miniature

    C.B.

    Air at atmospheric

    pressure

    430-600 V small size, current

    limiting feature

    Used for low and

    medium voltages.

    2. Tank type

    oil circuit-

    breaker

    Dielectric oil 12-36 kV One tank up to 36

    kV, 3 tanks above

    36 kV, fitted with

    arc control

    devices

    Getting obsolete,

    used up to 12 kV,

    500 MVA

    3. Minimum-

    oil circuit-

    breaker

    Dielectric oil 3.6-245 kV The circuit

    breaking chamber

    is separate from

    supporting

    chamber. Small

    size, arc control

    device used

    Used for metal

    enclosed

    switchgear up to

    36 kV. Outdoor

    type between 36

    and 245 kV

    4. Air-blast

    circuit-

    breaker

    Compressed air

    (20-30 kgf/cm2)

    245 kV, 35,000 MVA up

    to1100 kV, 50,000 MVA,

    also 36 kV, 500 MVA

    Unit type

    construction,

    several units per

    pole, auxiliary

    compressed air

    system required

    Suitable for all

    EHV applications,

    fast opening-

    closing. Also for

    arc furnace duty

    5. SF6

    circuit-

    breaker-

    Single-

    pressurepuffer type

    SF6 gas

    (5 kgf/cm2)

    145 kV, 7500 MVA

    245 kV, 10,000 MVA

    12 kV, 1000 MVA

    36 kV, 2000 MVA

    Live tank/Dead

    tank design,

    single pressure

    type preferred

    Suitable for SF6

    switchgear, and

    medium voltage

    switchgear. EHV

    circuit breaker.Maintenance free

    6. Vacuum

    circuit-

    breaker

    Vacuum Preferred for indoor

    switchgear rated up to 36

    kV, 750 MVA

    Variety of

    designs, long life,

    modest

    maintenance

    Suitable for a

    variety of

    applications from

    3.6 kV up to 36 kV

    7. H.V.D.C.

    circuit-

    breaker

    Vacuum or SF6 +500 kV DC, 15 kA/20 kA Artificial current

    zero by switching

    in capacitors

    Recently

    developed, used

    in HVDC systems.

    Installed in USA

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    8/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page8of35

    5.7 ASSEMBLYOFOUTDOORCIRCUITBREAKERS

    Thedesignfeaturesofanindividualcircuitbreakerdependuponitsvoltage,otherratingsandthe

    type.Thecircuitbreakersmanufacturedbydifferentcompaniesmayhavequitedifferentdesign

    patterns. However, a general description of an EHV circuit breaker can be given to cover thevarious types. The low voltage circuit breakers have different design features as the voltage,

    capacityandfrequencyofoperationisdifferentfromthatoftheEHVcircuitbreakers.

    Figure5.2 shows three identcalpolesofa circuitbreakerassembledonacommon frame.The

    distancebetween thepoles isdeterminedby the voltagebetween their conductingparts. The

    currentcarryingpartsaresupportedbydielectricmaterials.Thecurrent is interrupted inclosed

    chamberknownasarcextnctonchamber(item3)orinterrupter.Thecontacts(10)aregenerally

    inpairsoffixedcontactandmovingcontact.

    Circuitbreakerpole

    Operatingmechanism

    Interrupter

    Supportporcelain

    Conductor

    Terminals

    Operatingrod

    Insulatingoperatingrod

    Frame

    Contacts

    Transfer contacts between

    movingcontactsandterminal

    Linkages

    Figure(5.2)DiagramIllustratingtheAssemblyofanOutdoorCircuitBreaker

    Themovingcontact ismovedmechanically.Toachievethisoperationofclosingandopening,an

    OperatingMechanismisnecessary.Thefunctionofoperatingmechanismistoopenandclosethe

    contactswhendesired. Theoperatingmechanismmaybecommonforthethreepolesormaybeseparateoneforeachpole.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    9/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page9of35

    Inadditiontotheoperatingmechanism,there isa 'ControlCabinet'orwhat isknownas 'Switch

    Cabinet'.Thevariouscontrol,interlocking,indicatingconnectionsarethroughthiscontrolcabinet

    placednear thebreaker.Thus a complete threephase circuitbreaker consistsof the following

    subassemblies:

    ThreePoles

    OperatingMechanism

    ControlCabinet

    Auxiliaries

    5.8 STRUCTURALFORMOFCIRCUITBREAKERS

    Thestructuralformofacircuitbreakerdependsonitstype,ratedvoltage,typeofdesign,typeof

    operatingmechanismetc.Inindoor,metalcladswitchgear,thethreepolesofthecircuitbreaker

    aremountedonawithdrawaltruck.Suchconfigurationiscommonlyusedforratedvoltagesupto

    36kV.

    For36kVandabove,outdoorcircuitbreakersarepreferred.Thestructuralformofoutdoorcircuit

    breakers depends on rated voltage, number of interrupters per pole and type of operating

    mechanism.Circuitbreakersofratedvoltagesuptoand145kVgenerallyhaveasingleinterrupter

    per pole. In such a structural form, the interrupter porcelain and support porcelain should

    withstandthepowerfrequencyandimpulsetestvoltagesinternallyandexternally.245kVcircuit

    breakers have two or more identical interrupter units (elements) per pole. The number of

    interruptersperpoledependsupon the ratedvoltageand ratedbreaking currentof the circuit

    breaker.Suchcircuitbreakerpolecomprises identicaltwininterrupterunitsmountedonasingle

    support porcelain column in T or Y formation. Such a structural form is preferred in outdoor

    minimum oil circuit breakers, airblast circuit breakers and live tank type outdoor SF6 circuit

    breakers. The configuration with modular construction has advantages with reference to the

    shortcircuit testing and the interchangeability of interrupter modules. The single twin

    interruptermodulecanbetestedforshortcircuitduties insteadoftestingafullpolecomprising

    severaltwininterruptermodules.Thisiscalled'UnitTesting'or"ElementTesting'.

    Inmultibreak typeconstruction,voltagegradingcapacitor isconnectedacrosseach interrupter

    for equalizing the voltage shared by the interrupter during interruption process. Preclosing

    resistors are also connected in parallel whenever necessary. The preinsertion resistors (Pre

    closing resistors) are necessary to limit overvoltages occurring during closing unloaded

    transmissionlines.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    10/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page10of35

    Circuitbreakersforratedvoltageabove145kVgenerallyhave independentpoleoperaton.The

    operatingmechanismofeachpoleisindependentandeachpolecanbetrippedindependentlyby

    aseparaterelay.Independentpoleoperationisdesirableforimprovingthestabilityofthepower

    system. Structural form of EHV metalclad SF6 insulated switchgear is quite different thanconventionalequipmentdiscussedabove.

    5.9 ELECTRICALCONTACTSINCIRCUITBREAKERS

    Thepowercurrentpassesthroughtheconductngmaterialintheinterruptngchamber(Fig.5.3).

    Variouspartsthatarejoinedtogetherformtheconductingmaterial.Thedifferentjunctionsform

    theelectricalcontacts.Electricalcontactisobtainedbyplacingtwoconductingobjectsinphysical

    contact.Thiscanbedoneinseveralways.Eventhoughthereisawiderangeofcontactdesignsin

    interruptingchambers,theymaybegroupedinfourmajorcategories:

    Makebreakcontacts whichmaymakeorbreakunderload;

    Slidingcontacts whichmaintaincontactduringrelativemovement;

    Fixedcontacts whichmaybeclampedtogetherpermanentlyforyearsandneveropened.

    Demountablecontacts whichmakeorbreakoffload.Usuallyseeninmetalcladmedium

    voltageswitchgear.

    Figure(5.3)FlowofCurrentthroughConductingMaterialinInterruptingChamber

    Figure5.4 isasymbolicschematcofatypicalcontactarchitectureandclearlyshowsthecurrent

    flow through three of the main types of contacts during the sequence of events of an open

    operation.Inallthreetypes,thecontactismadebythetouchingsurfacesofeachcomponent.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    11/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page11of35

    Figure(5.4)Schematicdiagramoftypicalcontactarchitecture

    5.9.1 MAKEBREAKCONTACTS

    The typesofmakebreak contacts canbe subdividedbypower rating, startingwith the

    highest:

    Highcurrent,highvoltagecircuitbreakercontacts,whichdisconnectlargeelectricalloads,

    andproduce arcs, are containedwithin special arcing chambers.Thesemaybe in air at

    normal pressure or in a blast of air, in Sulfur Hexafluoride (SF6), in oil or another arc

    extinguishingmedium,includingavacuum.

    It includes a moving contact and a stationary contact. Usually one of them is a ring of

    sprungcoppercontactfingers(insertontype,Fig.5.5orbu type),ortheother isasolid

    rodofcopper.Thecontactsmaybetippedwithanarcresistantmaterialtoresisterosion

    from the highpower arc, and the surfaces may be plated (e.g. with silver) to improve

    conductivity. Themechanicalpropertiesof copper combinedwith itsexcellentelectrical

    conductivity and good arcing endurance in oilhavemade it thepreferred metal in this

    application.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    12/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page12of35

    Figure(5.5)InsertionTypeContact

    In vacuum circuitbreakers, the contactsare also generally copper,mixedwith tungsten

    andspeciallyshaped toensureproperdistributionof theelectric fieldandmovementof

    thearcroot.Smallerairbreakcircuitbreakers(mediumvoltage),usecopperinallinternal

    conducting parts, but the contacts are often faced with a silver based alloy to resist

    welding.Suchcircuitbreakers,beingprotectivedevices,rarelyopenorclose.

    5.9.2 SLIDINGCONTACTS(FIG.5.6)

    Thesecanbeofverydifferentnature.High speed,heavycurrent types, theyareusually

    found inpower interrupterchambers.Thesecontactsmusthaveaveryhighresistanceto

    mechanicalwear,astheirrelatvespeedmayreach10meterspersecondormore.

    5.9.3 FIXEDCONTACTS

    These include awide rangeofbolted and crimped contacts.A clampedjoint avoids the

    reduction in cross section caused by drilling to insert bolts, and gives a more uniform

    distribution of the contact force, making the contact more efficient and hence running

    cooler.Boltingisusedbecauseitischeapandconvenient.

    Figure(5.6)SlidingTypeContact

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    13/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page13of35

    Crimpedjointsemploytheultimateextremeforceofcontactmaking,causingthemetalto

    flowandmakeapermanentconnection.The troublefreenatureofthesejoints,andthe

    simplicityandrapidityofthecrimpingoperationmakesthistypeofjointveryattractivefor

    permanentconnections.Boltedorcrimpedcontactsareused in interruptingchamberstosecureandtomaintaintheintegrityoftheelectricalcomponent.

    5.9.4 DEMOUNTABLECONTACTS

    Found in medium voltage metal clad breakers. It helps in taking the breaker off the

    networkbyeasilyslidingitoffthebusbarsformaintenancepurposes.Thishastobedone

    offload.

    Figure(5.7)Demountabletypecontact

    These contacts, like the makebreak contacts, may be carrying high currents at high

    voltages(e.g.highvoltageisolatorsorhighormediumvoltagefusecontacts).Theyhaveto

    carrycurrentreliablyfor longperiods,withoutoverheatingor lossofcontact,butdonot

    makeorbreakcurrent.Theyarenotsubjectedtothestressofarcing;hencetheydonot

    get the inherentcleaningactionassociatedwith it.Theyarefrequentlydesignedtohave

    somefrictionalactiononclosingtoremovesuperficialoxideorcorrosionfilmswhichmight

    impedecontact,andcopperand itsalloysarethemostfrequentlyusedmaterialsforthe

    bulkofdemountablecontacts.

    The characteristicof these contacts is that theyhaveahigh contact force,muchhigher

    thanforcircuitbreakersofsimilarcurrentrating,butnotsohighasthecontactforceina

    boltedcontact,becauseof theexcessivemechanicalwearwhichwouldbecausedwhen

    separatingthecontacts.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    14/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page14of35

    5.9.5 CONTACTRESISTANCE

    Aswe said, thecontactoccurswhen two surfaces touch.For theelectriccurrent, if it is

    conductivematerial, itmeans apath for it to flow. Observation on a microscopic scale

    shows that the contact surface is actually rough even though it seems smooth to theunaided eye. In fact, as the microscope shows, the real contact between two surfaces

    happens through a number of small surfaces, called micro contacts (Fig. 5.8), spread

    randomly insidethe limitsofthevisiblecontactarea. It isthesumoftheareasofallthe

    microcontactsthatconstitutestheeffectivecontactarea.

    Figure(5.8)SchematicDiagramofMicroContactAreas

    Since theresistanceofanelectricalcontact is inverselyproportional to thecontactarea,

    thesmallertheeffectveareathegreatertheresistance(Fig.5.9).

    Figure(5.9)SchematicDiagramoftheEffectiveAreainaContact

    5.9.6 EFFECTOFCONTACTRESISTANCE

    WhenacurrentIpassthroughanareaAthathasaresistanceR,theEnergyEabsorbedbyA

    is:

    E=RI2t

    wheretisthetimedurationofI.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    15/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page15of35

    WeknowthattemperatureTisdirectlyrelatedtoEbythefollowingequation:

    E= T

    where isafunctionoftheheatdissipationrate.

    ForaconstantcurrentIo,ifRincreases,Ethenincreases,leadingtoincreasingtemperature

    of thecontact. IfTcontinues to increase thematerialof thecontactcanreach itsmelting

    point,leadingtoitsdestructon(Fig.5.10).

    Figure(5.10) Contactdestruction

    5.9.7 ELEMENTSAFFECTINGTHECONTACTRESISTANCE

    5.9.7.1 OXIDATION

    Athinlayerofinsulatingoxidecoveringtheareaofasinglemicrocontactwouldhavelittle

    effectontheconductivityofthecontactasawhole.Assoonastheoxidelayerextendstoa

    significant number of microcontacts, the currentbearing area would reduce, thus

    increasing its resistance. Increased resistance will increase the contact temperature,

    leadingtoitsdestruction.

    Allambientatmospheresthatcontainsgasescapabletoreactwiththecontact'smaterial,

    suchasO2,SO2,H2O,H2S,etc.,wouldbefavorabletoproducingoxidelayerseventhough

    thecontact isclosed.Withtime, thegaswouldsucceed inpenetratingandreactingwith

    thecontactsurfacetodegradeitscharacteristicsandtoincreaseitsresistance.

    Figure5.11showstheresistancevalueincreasingwith tme.Aswecansee,theresistance

    changeisnotsignificantuntilacertainpointintimewherethedegradationincreasesfast.

    Similarresultsareobtainedforcoppercontactsinoil.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    16/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page16of35

    These results show interesting behavior and indicate the urgency of a maintenance

    interventionwhenacontact'sresistancestartstoincrease.

    5.9.7.2CONTACT

    WEAR

    Mechanically, itcanbeduetothemovementandfrictionofthecontactsandelectrically

    due to thearceffect (mainly themakebreak contact).Contactweardirectlyaffects the

    contact resistanceandmakes it increasedramatically if thewear is inanadvancedstate

    (Fig.5.12).

    Figure(5.11)ChangeofContactResistancewithTime

    Figure(5.12)AdvancedWearinaContact

    5.9.7.3 FRETTING

    A formof acceleratedoxidation ispossible, if the contact surfaces experience a cycling

    movementrelativelytoeachother.Forexample,thecontactswouldnotcloseatthesameareaeach tme(Fig.5.13).

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    17/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page17of35

    Figure(5.13)Changeincontactarea

    Thisphenomenonwasnoticed longagobut itsmagnitudewas recognizedonly recently.

    When a contact moves from its previous position, a part is exposed to the ambientatmosphere.Anoxidationlayerthenforms.Whenthecontactgoesbacktothisposition,it

    breaksthethin layerandpushes itaside.Thisphenomenonrepeatsmanytimesuntilthe

    oxidation layerbecomesofasignificant thickness,enough to increase its resistance.The

    resistanceincreasesrapidlyrightaferitstartstochange.Figure5.14showssimilarcaseto

    figure5.11,butaccelerated.

    Figure(5.14)Changeofcontactresistancewithtimeincaseoffrettingphenomenon

    5.9.7.4CONTACT

    FORCE

    Asknown,theresistanceRisfunctionofthecontactmaterial'sresistivity andareaS,(R=

    /S).

    Sisthesumofallcontactpointsareas.Thecontactpointsareasarefunctionoftheapplied

    forceFandthematerialhardnessH,(kisaconstant).

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    18/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page18of35

    IfFdecreases,SdecreasesaswellandR then increases.Fcandecreasedue todifferent

    factors,forexample:

    Excessivewearofcontactsurface;

    Fatigueofcontactspringsovertime;Chemicalreactionofspringmaterialwithambientatmosphere;

    Looseormisalignedcontact,etc.

    Springmaterialsare thusan importantelement to take intoconsideration.By the same

    logic,animportantprecautiontotakeistoavoidlettingthespringbeacurrentpath,asthe

    increaseinitstemperaturewouldcauseaweaknessoftheresultantforceF.

    5.9.7.5TEMPERATURE

    ForanincreasingtemperatureTofthecontacts,thematerialofthecontactsmaysoftento

    thepointwhereitwillreducethecontactforce,leadingtoaquickincreaseofthecontact

    resistance.

    5.10 OPERATINGMECHANISMS

    5.10.1 GENERAL

    Circuitbreakershavetwoworkingpositionsopenandclose.Duringtheclosingoperation,

    thecircuitbreakercontactscloseagainstopposing forces.During theopeningoperation,

    theclosedcontactsareseparatedasearlyaspossible.Operatingmechanismsareprovided

    to achieve the opening and closing operations. The main requirement of the operating

    mechanismistoopenandclosethecontactsofthecircuitbreakerwithinaspecifiedtime.

    Theoperatingmechanismshallprovidethefollowingconsecutivefunctions:

    Chargingandstoringofenergy

    Releaseofenergy

    Transmissionofenergy

    Operationofthecontacts

    In addition, an operating mechanism shall provide control and signaling interface to a

    networks control and protection system. Operating mechanisms are also necessary for

    isolators.Figure5.15andFigure5.16showthelocatonoftheoperatngmechanism.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    19/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page19of35

    Figure5.15

    Threepole operated circuit breaker with one

    interrupterperpole.

    Figure5.16

    One pole of a singlepole operated circuit breaker with

    twointerruptersperpole.

    1.Breakingunit 5.Tripmechanism 9.Gradingcapacitor(ifrequired)

    2.Supportinsulator 6.Gassupervision(onoppositeside) 10.Preinsertionresistor(PIR)(ifrequired)

    3.Supportstructure 7.Pullrodwithprotectivetube 11.Primaryterminals

    4.Operatngmechanism 8.Positonindicator

    Thecircuitbreakeroperatingmechanismsmustbecapableofdealingwith large forces,athigh

    speeds, with complete reliability even if the circuit breaker has remained idle for a prolonged

    duration.Theopeningshouldbefast, inordertoreducecircuitbreakertime.Theoperatingtimebetween

    instantofreceivingtripsignalandfinalcontactseparaton isoftheorderof0.03second, i.e.1.5

    cyclesinmodernEHVcircuitbreakers.Inslowcircuitbreakersusedindistributionsystemtimecan

    beabout3cycles.

    Whileclosing,thecontactclosureshouldbefast,sure,withouthesitation,withadequatecontact

    pressureat theendofcontact travel. If theseconditionsarenot satisfied, contactwelding can

    result.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    20/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page20of35

    Theoperatingmechanismsshouldbecapableofgivingthespecifieddutyofthebreaker(sequence

    ofopeningandclosingas specified instandard specifications).A requirementcommon tomost

    circuitbreakers, regardlessof the typeofoperatingmechanisms, is tocarryoutanopenclose

    open (O 0.3s CO)sequencewithnoexternalpowersupplytotheoperatingmechanism.Thecircuit breaker shall, after a closing operation, always be able to trip immediately without

    intentionaltimedelay.Forcircuitbreakers intendedforrapidautoreclosing,theoperatingduty

    cycleinaccordancewithIEC62271100is:

    O 0.3s CO 3min CO

    The tmeof3ministhe tmeneededfortheoperatngmechanismtorestoreitspoweraferaO

    0.3s CO.Modernspringandhydraulicoperatngmechanismsdonotneed3mintorestoretheir

    power,asanalternative IECspecifies that the tmevalues15s.or1min.canalsobeused.The

    dead tmeof0.3 s isbasedon the recovery tmeof the air surrounding anexternal arc in the

    system(i.e.ashortcircuit).SometimestheoperatingsequenceCO 15s COisspecified.

    Thebreakershouldalsopasstheoperationaltestswhichascertainthecapabilityoftheoperating

    mechanisms.The interlocksareprovidedbetweenbreaker isolatorandearthingswitch,soasto

    avoid wrong operation and to assure operation in a correct sequence. The functions of the

    operatingmechanismscanbesummarizedasfollows:

    Toprovidemeanswherebythecircuitbreakercanbeclosedrapidly,withouthesitationat

    allcurrentsfromzerotoratedmakingcurrentcapacity.

    Toholdthecircuitbreakerinclosedpositionbytogglesorlatchestillthetrippingsignalis

    received.

    Toallowthecircuitbreakertoopenwithoutdelayimmediatelyonreceivingtrippingsignal.

    Toperformtheautoreclosurecycle.

    Toperformtherelatedfunctionssuchasindication,control.

    5.10.2 CLOSINGOPERATION(C)

    Normally,closingthecircuitbreakercontactsduringnormalloadconditionsdoesnotcause

    any difficulty. The operating mechanism has to overcome friction and accelerate the

    moving masses. However, when the circuit breaker has to close against a short circuit,

    additionalthermalstressesandelectromagneticstressesareinvolved.

    InEHVcircuitbreakers,thearcisestablishedpriortofinalcontacttouch.Thisisknownas

    prearcing.Prearcingcauseshighertemperaturestresses.Thecontactsshouldclosewithsufficientspeedtominimizetheprearcing.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    21/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page21of35

    Assoonas thecontactscloseonanexistingshortcircuit,breaker issubjected tomaking

    current. The electromagnetic forces, setup by the making current, tend to repel the

    contacts. The circuit breaker should have rated making capacity, i.e. the highest peak

    current against which the circuit breaker canbe closed at a given voltage. The makingcapacityofthecircuitbreakerdependsupon the forceandspeedwithwhich theclosing

    operationiscarriedout.

    Whileclosingthecircuitbreaker,theoperatingmechanismshouldhaveenoughpowerto

    overcometheopposingforcesandacceleratethemovingcontactassemblyrapidlywithin

    specifiedshorttime.

    Theopposing

    forces

    during

    closing

    operation:

    Electromagnetic forces between contacts: When the contacts touch during the closing

    operation,electromagneticforcesappearatthe instantofcontacttouch,theirmagnitude

    being proportional to square of the current and the direction being opposite to the

    directionclosing.These forcesare large if thebreaker isclosingonexistingshortcircuit.

    Breakershouldbecapableofclosingonshortcircuit.

    Actionofoperatingspring:Themovingcontactsofcircuitbreakersareopenedbyspring

    pressure.Whileclosing,thesespringsopposetheclosure.Inertiaofmovablesubassembly:

    The movable subassembly contacts, their holders, tension rods, operating links of

    operatingmechanisms,etc.Themassof thesubassemblies isquite large inEHVcircuit

    breakers. And their inertia tries to oppose rapid acceleration. In modern EHV circuit

    breakers,thesepartsaremadeaslightaspossible.

    Opposing forcesdue tomedium such asoil, SF6 gas:Themovable subassemblyhas to

    moveindielectricmediumwhichis,insomecases,compressedoratarehighpressureand

    density.Thetotalforcesoftheoperatingmechanismshouldbemorethanthesumofthe

    abovementionedopposingforces.Friction:Staticanddynamic.

    5.10.3 OPENINGOPERATION(O)

    The opening operation is significant in the faultclearing process. As the trip coil is

    energized, the opening operation is initiated. The energy required for the opening

    operationisobtainedfromoneofthefollowingmethods:

    Openingspringschargedduringtheclosingoperation Highpressurehydraulicoilstoredinaccumulators

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    22/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page22of35

    Highpressurecompressedairstoredinauxiliaryairreceivers.

    Thefunctionalrequirementsoftheopeningmechanismareasfollows:

    Toacceleratethemovingmassesincludingcontactsandlinkagesrapidlytoachieve

    desiredopeningcharacteristic.

    Toachievedesiredspeedofcontactatcontactseparationandduringtheopening

    stroke(3to7m/s).

    Todampthespeedattheendofthetravelbydampers.

    Theforcesandenergyshouldbeadequatetocaterofthefollowing:

    Opposingforcesduringopeningoperating

    Electromagneticforcesduetocontactgrip:Thefingercontactsarespringloadedandtheir

    grip opposes the movement of moving contract. During the shortcircuit condition, the

    electromagneticforcestendtoincreasethegripofthefingercontactassembly.Theforce

    ofcontactgrip increases inproportiontosquareofcurrent.Hence it issignificantduring

    highershortcircuitcurrents.

    Friction:Thevariousoperating links,bearingsurfaces,matingsurfacesbetweenmovable

    and fixed parts, etc. offer static friction. The frictional component depends upon the

    coefficientof friction, smoothnessofmating surfaces,configurationofmovingpartsetc.

    Highfrictioncanreducetheinitialspeedofmovingcontactwhichmayresultindisastrous

    consequenceoffailureofthecircuit breakertoquenchthearc.

    Inertiaofmovableparts:Energyintheoperatingmechanismisutilizedinacceleratingthe

    movablesubassembliestorequiredspeed.Opposingforcesduetoquenchingmedium:The

    quenching medium (compressed air, dielectric oil, SF6 gas) itself may offer substantal

    opposingforcestothemovement.

    Theoperatingmechanisms shouldbe capableofovercoming theseopposing forcesend

    shouldachievedesiredopening characteristicofcontact travelduringnormaland short

    circuitopeningoperations.

    5.10.4 CLOSINGFOLLOWEDBYOPENINGOPERATING(CO)

    The rated operating sequence of the circuit breaker demands the operation 'CO'. The

    operating mechanism should have enough stored energy and capability to perform COoperationandratedoperatingsequenceundershortcircuitcondition.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    23/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page23of35

    5.10.5TYPESOFMECHANISMS

    Theoperatingmechanisms in circuitbreakersareeither 'dependable'or 'storedenergy'

    type.Dependentoperatingmechanismsdependoncontinuityofpowersupplyormanual

    forcesduringclosing.Theyareaccordinglycalledas:

    Dependablemanualoperatingmechanisms

    Dependablepowermechanisms

    The stored energy type operating mechanisms are called independent operating

    mechanisms as they are independent of continuity of power supply or the skill of the

    operator.Insuchmechanisms,theenergyrequiredforclosingisstoredinachargedspring

    orincompressedgas/hydraulicoil.

    SpringOperatedMechanism:

    In the spring mechanism, the energy for open and closeoperation is stored in springs.

    When themechanisms control system receives anopenor close command, theenergy

    stored inthespringwillbereleasedandtransmittedthroughasystemof leversand links

    andthecontactswillmovetotheopenorclosedposition.

    Inmostdesigns theclosing springhas two tasks: toclose thecontacts,andat the same

    timetochargetheopeningspring(orsprings).Thusthecriteriastatedabovearefulfilled;

    thecircuitbreakerinclosedpositionisalwaysreadytotrip.

    AftertheO 0.3s COoperation,theclosingspringwillberechargedbyanelectricmotor,

    aprocedurethatlasts1020seconds.ThecircuitbreakerwillthenbereadyforanotherCO

    operation.

    OneexampleofaspringmechanismisshowninFigure5.17.Thistypeofmechanismhasa

    setofparallelhelicalwound springswith linearmotion. The electricmotor charges the

    springsviaanendlesschain.Whentheclosing latch isreleased, theenergystored inthe

    springsistransmittedviaarotatingcamdiscandasystemofleversandlinkstothecircuit

    breaker pole or poles. The trip spring is in this case located outside the operating

    mechanism. Insteadofhelical springs, clock springsmaybe applied.The function is the

    same as for thehelical springsdescribed above. Figure 5.18 shows a systemwith clock

    springforclosingoperation.Theadvantageofthespringoperatedmechanism isthatthe

    systemispurelymechanical;thereisnoriskofleakageofoilorgas,whichcouldjeopardize

    thereliability.Awellbalancedlatchingsystemprovidesstableoperatingtimes.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    24/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page24of35

    Furthermore, the spring system is less sensitive to variations in temperature than

    pneumatic or hydraulic mechanisms are. This ensures stability even at extreme

    temperatures.Thespringmechanismhasfewercomponentsthanhydraulicandpneumatic

    mechanisms,whichimprovesitsreliability.

    MotorDrive:

    Oneof themost recentlydevelopedoperatingmechanisms is the electricalmotordrive

    (Fig.5.19).Themotordriveusesaservomotortoperformasmoothandsilentoperatonof

    the circuitbreaker. The operation is actively controlled by a sensor which continuously

    readsthepositionofthemotorandadjuststhemotorcurrenttoobtainanoptimaltravel

    curve.Theenergyisstoredinacapacitorbankandcanbedeliveredinstantaneouslytothe

    converter,whichtransformsdcfromthecapacitorsandfeedsthemotorwithregulatedac.

    Figure5.17

    Springoperatingmechanismwithhelicalwound

    springs.Tripandclosespringsinchargedposition.

    ABBtypeBLG.

    Figure5.18

    Springoperatingmechanismwithclock

    spring.ABBtypeBLK.

    1.Linkgear 5.Closingdamper 1.Tripspring 5.Closinglatchwith

    coil

    2.Tripspring 6.Trippinglatchwithcoil 2.Linkgear 6.Motor

    3.Closinglatchwith

    coil

    7.Openingdamper 3.Closespring 7.Openingdamper

    4.Motor 8.Closesprings 4.Trippinglatchwith

    coil

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    25/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page25of35

    Figure(5.19)BlockdiagramshowingfunctionoftheMotorDrive

    1. Charger unit that converts supply voltage and feeds the capacitors and internal

    electronics.

    2. Capacitorunitstorestheenergyforoperation.

    3. Theconverterunittransformsdcfromthecapacitorstoacforthemotor.

    4. Servomotor thatdelivers the force tomove the contacts, integratedposition sensor

    givesinformationtothecontrolunit.

    5. The I/O unit takes care of signaling between the station control system and the

    operatingmechanism.

    6. Control unit that controls and regulates the motion of the contacts. The interlock

    functionsarealsohandledbythismodule.

    7. Linkgearthattransformsrotarymovementtolinearmovement.

    The major advantage of the motor drive is the minimized mechanical system, which

    reduces theserviceneed toaminimumandmakes the technology ideal forapplicationswithfrequentoperation.

    PneumaticOperatedMechanism:

    The pneumaticoperated mechanism uses compressed air as energy storage, and

    pneumatic cylinders for operation. Solenoid valves allow the compressed air into the

    actuatingcylinderforclosingorforopening.Thecompressedairtank isreplenishedbya

    compressorunit.Theuseofpneumaticoperatingmechanisms isdecreasing.Due to the

    high operating pressure, there is always a risk of leakage of air, particularly at lowtemperatures.Thereisalsoariskofcorrosionduetohumidityinthecompressedair.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    26/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page26of35

    HydraulicOperatedMechanism:

    Thehydraulicmechanismusuallyhasoneoperatingcylinderwithadifferentialpiston.The

    oil is pressurized by a gas cushion in an accumulator, and the operating cylinder is

    controlledbyamainvalve.

    The hydraulic mechanism has the advantages of high energy and silent operation.

    However,therearealsosomedisadvantages.Thereareseveralcriticalcomponentswhich

    require specialized production facilities. The risk of leakage cannot be neglected as the

    operatngpressure is intherangeof3040MPa(300400bar). It isnecessarynotonlyto

    checkthepressureassuchbutalsotosupervisetheoillevelintheaccumulatoror,inother

    words,thevolumeofthegascushion.Largevariationsintemperatureleadtovariationsin

    operatingtime.

    Untl recently several manufacturers used hydraulic mechanisms for their SF6 circuit

    breakers.However,withtheintroductionofselfblastcircuitbreakers,therequirementof

    highenergyforoperationisdecreasingandthehydraulicmechanismsarelosinggroundto

    springoperatedmechanisms.

    HydraulicSpringOperatedMechanism:

    Thehydraulicspringoperatedmechanismisanoperatingmechanismcombininghydraulics

    andsprings.Energy isstored inaspringset that is tensionedhydraulically.Adifferential

    piston,poweredbyoil that ispressurizedby the springpackage, isused tooperate the

    circuit breaker during opening and closing. Figure 5.20 gives an example of such

    mechanism.

    Figure(5.20)HydraulicspringOoperatedMechanism.ABBtypeHMB

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    27/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page27of35

    OtherTypesofOperatingMechanisms:

    In addition to the types of operating mechanisms mentioned above, there are other

    variants, e.g. a design which basically applies the same technology as the pneumatic

    mechanisms but with SF6 gas instead of air. Another design is the magnetic actuatormechanism,whichisappliedonlyforcertainmediumvoltagecircuitbreakers.

    5.11 INTERLOCKS,INDICATIONANDAUXILIARYSWITCH

    Interlockingdevicesarethosewhichmaketheoperationoftheswitchingdevicedependentupon

    thepositionoroperationofotherequipment.Interlocksareprovidedasasafetymeasureagainst

    erroneousoperationof a switchingdevice.The interlocks areof the following forms: Electrical

    interlock, Mechanical Interlock. Electrical interlock can be used between remote equipment.

    Mechanicalinterlockcanbeprovidedwheretheoperatingmechanismsofthetwoequipmentsare

    inneighborhood.Theelectrical interlockcomprisescoilandbolt.Whenthecoil isenergized,the

    bolt is drawn by magnetic attraction and the interlocking is achieved. Interlocks are provided

    betweencircuitbreaker,isolatorandearthingswitchtoensurethefollowingsequence:

    Whileopening:

    Firsttoopen:Circuitbreaker

    Nexttoopen:Isolato

    Thentheearthingswitch(ifany)toclose

    Whileclosing:

    Openearthingswitch

    Close:Isolator

    Thenclosecircuitbreaker.

    Thissequencemustbefollowedbecauseisolatorsarenoloaddisconnectingdevices.Theydonot

    havebreakingcapacity,nordotheyhavemakingcapacity.Hencebreakerperformstheopeningandclosingduty.

    Indicator or indicating device indicates whether the switching device is in 'open' or 'closed'

    position.Suchindicationisavailableontheglasswindowonthecontrolcabinetnearthebreaker,

    in formofa flagmarkedopen/close.Onbreakerpanel, the indication isobtainedbymeansof

    lamps.Thus, from thecontrolroom, theoperatorcanknow thepositionofcircuitbreakersand

    isolators.(BreakerPanelisinstalledincontrolroom.)

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    28/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page28of35

    Auxiliaryswitcheshavestandardnumberofpairsofcontracts(6,8,and12).Auxiliaryswitchhas

    two positions 'open' and 'close' corresponding to the position of the circuit breaker. In each

    position, some auxiliary circuits are opened and some are closed. The auxiliary circuits serve

    severalpurposessuchas:

    Indication:Breakeropenorclosedbylamps,nearcircuitbreakerandataremoteplace.Electrical

    Interlocks:Thebreaker is interlockedelectricallywith isolators.Theconnections to solenoids in

    operatingmechanismaremade through theauxiliary switch.Connections for relaying,auxiliary

    circuitsofoperatingmechanisms.Thevariousterminalsareconnectedinaterminalblocksinthe

    operatingcubical.

    5.12AUTO

    RECLOSURE

    Manyfaultsonoverheadtransmissionlinesaretransientinnature.Statisticalevidenceshowsthat

    about90%offaultsonoverheadtransmissionlinesarecausedbylightningorbypassingofobjects

    nearorthroughlines(birds,vines,treebranchesetc.).Theseconditionsresultingarcingfaultsand

    the arc in the fault can be extinguished by deenergizing the line by simultaneous opening of

    circuitbreakersonbothendsof the lineorononeendof the line.Since thecauseof transient

    faultsmentionedabovedisappearsafterashorttimethecircuitbreakerscanbereclosedassoon

    as the arc in fault has been extinguished and the path has regained its dielectric strength.

    Reclosing of lines restores the supply. Continuity of service is the major advantage of

    autoreclosure.Ifthefaultistransientonethenormalconditionisrestoredbyautoreclosure.

    Figure(5.21)SequenceofAutoreclosureforEHV,bulk

    PowerTransmissionLines,SingleShotScheme

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    29/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page29of35

    Highspeedtrippingandhighspeedreclosing improvesthestabilityofpowersystem.Hencethe

    circuitbreakersandrelayingonEHVlinesareprovidedwithautoreclosingfeature.Testsonhigh

    voltage systems have shown that a reclosure in 12 cycles (0.24 sec) is practcal, the period

    dependinguponthetimenecessarytodissipatetheionizedairofarcpath.TheAutoreclosingofEHVlinesisofhighspeedandsingleshot,i.e.onlyonereclosingisaempted(Fig.5.21).

    5.13 AUTORECLOSUREOFEHVCIRCUITBREAKERSFORTRANSMISSION

    [Voltages36to245kV,Breakingcapacites:25to40kA]

    Experienceshowsthatgenerallyminimum tmeof0.2secondmustbeallowedtoelapsetoenable

    thefaultzonetobecomedeionizedcompletely,henceadead tmeof0.3secondhasbeenchosen

    asasafereclosure tme.Figure5.22illustratesatypicalcircuitbreakercontacttravelcharacteristc

    andalsogivesascheduleoftypicaloperatingtimesoftheabovecircuitbreaker.Incaseofsome

    otherrelayingthecyclemaydiffer.

    Figure(5.22)FaultClearingandReclosingTimeSequence, ContactTravel.

    LookinginFig.5.22,thefollowingsequencecanbeobserved:

    Sequence

    No.

    Time in

    1/100sec. Operation Remarks

    1 0 Faultoccurs

    Circuitbreaker closed. Protective gear

    startsoperating

    2 04 Relaytime Fastrelaying

    3 4 Tripcircuitclosed Operatingmechanismstartstoopen

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    30/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page30of35

    4 49 Openingtimeofbreaker

    5 912 Totalbreaktime Breakerisof4cycles

    6 1236 Deadtime 12cycles,fordeionization.CBremainsopen

    7 27 Contactsstartclosing8 36 Contacttouchforreclose

    9 40 Circuitbreakerreclosed

    Will be opened again if fault persists and

    willlockopen

    10 Singleshot iscomplete,thecircuitbreakerwillremainclosed iffaulthasvanished.

    CBwillopenagainiffaultpersistsandwillremainlockedopen

    Several aspects need careful consideration while selecting autoreclosure schemes of EHV

    transmissionlines.Someoftheseaspectsarediscussedhereinbrief.

    Thefaultlevelsonsuchlinesarehigh(ascomparedwiththoseondistributionlines).Switchingof

    suchlinesresultsinovervoltagetransientswhichareharmfultoinsulationandshould,therefore,

    avoidedasfaraspossible.Thesynchronismbetweentwosidesofthecircuitbreakershouldnotbe

    lost.Asregardsthesystemconsiderations,thestabilityofthesystem(conditionofsynchronism)

    shouldnotbelostbythetimeofreclosing.Duetotheseaspects,theautoreclosureofEHVlineis

    generallySINGLESHOTAUTORECLOSURE.Thebreakersused for suchautoreclosureare fast in

    opening,closing. Further, the circuit breakers at both ends of the line should reclose almost

    simultaneously.

    ThetimingofEHVautoreclosureisbasedonthefollowingrequirements:

    itshouldbeless,intheordertoavoidlossofsynchronismbetweeneithersidesoftheC.Bs

    thearcinC.B.andthatinthefaultshoulddeionizedbeforeallowingreclosure

    theoperatingmechanismsofC.B.toopenandtocloseshouldbecapableofachievingthedesired

    timeschedule

    C.Bsatbothendsofthelineshouldreclosesimultaneously.

    Deionization time for arc space in fault on overhead linedepends on several aspects such as

    magnitudeof faultcurrent,servicevoltage, lengthof linewindcondition,spacingofconductors

    etc.Generallythetimeallowedisbasedonratedvoltageoflineandisasfollows:

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    31/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page31of35

    VoltageofTransmission line,

    (kV)

    RatedVoltageofC.B.,

    (kV)

    MinimumDeionizationtime

    necessary,Hz

    66 72.5 5

    132 145 9

    220 245 14

    400 420 18

    Thecircuitbreakersshouldbecapableofwithstandingtheelectrodynamicstressincasetheyare

    reclosingonanexistingshortcircuit.Thepressureinthereservoirgenerallyreducesafterthefirst

    opening;therebythereisareductioninbreakingcapacityforthesubsequentopening.Thisaspect

    shouldbetakencareofwhiledesigningthecircuitbreakerssuitableforautoreclosure.

    5.14 AUTORECLOSUREFORDISTRIBUTIONLINES

    Inruraldistribution,overhead linesareused.Thespacingbetweenconductors isrelativelyclose.

    The disturbances on such lines are generally transient, as described earlier. Autoreclosure is

    therefore, suitable in improving the continuity of service. The usual procedure was to reclose

    circuit breaker three tmes between 15 to 120 seconds. If the breaker trips afer the third

    reclosure, itopensandremainsopen.Theattendant therebyknows that thefault ispermanent

    and sends electricians to locate and correct the fault. The autoreclosure cycle is illustrated in

    Fig.5.23,but thesequencemayvary inothercases.Thispractce isnomore favored inmodern

    distributionsystems.

    Figure5.23Autoreclosurecycleofa12kVC.B.forruraldistributon

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    32/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page32of35

    5.15 TRIPFREEFEATURE

    Suppose the breaker has been instructed to close by manual instruction by pushing of push

    button.Theoperatingmechanismwillstartoperatingforclosingoperation.Meanwhileafaulthas

    takenplaceandarelayclosesthetripcircuitofthebreaker.TheTripFreemechanismpermitsthecircuitbreakertobetrippedbytheprotectiverelayevenifitisundertheprocessofclosing.This

    feature is called Trip Free feature. Another feature of operating mechanisms is to prevent

    Pumping,i.e.alternatetrippingandclosingiftheclosingbuttonisheldclosedduringafault.Inoil

    circuitbreakersandpuffertypeSF6circuitbreakers,thecontactsmaybeallowedtotouchduring

    theendoftheclosingstroke,beforethestartoftheopeningoperation.

    5.16 MATERIALSANDSOMEDESIGNASPECTS

    Thematerialsareimportantinswitchgearmanufacturing.Normallyalltheincomingmaterialsare

    tested in the factorybeforeacceptance.Themanufacturermaintainswithhimall thenecessary

    standardsofmaterialspecifications.Thesestandardsgivethespecificationsofchemical,electrical,

    metallurgical and mechanical properties of the corresponding materials. The heat treatment,

    surface treatment is equally important in the manufacturing process. The materials used in

    switchgearsingeneralandcircuitbreakerinparticularcanbeclassifiedinausualway:

    Conductingmaterials

    Dielectricorinsulatingmaterials

    Othermaterialsformanufacturing

    Circuitbreakerdesignisgenerallybackedbythevastdesigndata,theexperienceandtheresearch

    results.Beforedetaildesignoffunctionalsubassemblies,thestructuralformofthecircuitbreaker

    isdecided.Thedimensiondrawingsaremadethis isfollowedbydetaildesignofsubassemblies

    and components. Each subassembly and component isdesigned on the basisof its functional

    requirementsandtheinformationalreadyavailablewiththedesigners.Aftercompletionofdesign

    theprototypes aremanufactured.Theprototypes are subjected to rigorousdevelopment tests

    andfullseriesofTypeTests.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    33/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page33of35

    Table(5.2)MaterialsusedinCircuitBreakers

    Material Applications Remarks

    Porcelain Enclosures for Interruptersupport, support for busbars

    insulating tubes solid rods,

    etc.

    Compressionstrength6000kgf/cm2.Tensilestrength 3000 kgf/cm2. Ceramic material

    madeby firingclay,glazingand firingagain.

    Suitableforoutdooruse.

    EpoxyResin Support insulators for indoor

    applications, enclosures cover

    encapsulation,etc.

    Used insolidform.Obtainedbymixingwith

    suitable hardener and curing a suitable

    temperature, suitable fillers used. Not

    suitableforoutdooruse.

    Glass fibre reinforced

    syntheticresin

    Insulating drive rods,

    insulating tubes for

    interrupters

    High tensile strength, withstand pressure,

    dielectricstrength.

    Polytetra fluroethelene

    PTFE

    Nozzles for SF6 Breakers,

    bearings,Pistonrings,etc.

    Low friction; arc resistant; can be

    moulded/machined. Pure PTFE is insulating

    usedwithvariousfillers.

    Electrolytic Copper

    (99.9%purity)

    Busbars, main contacts

    conductingparts,terminals

    Electrical grade

    aluminum

    Busbars, conducting parts,

    casting, terminals, enclosures

    ofSF6GIS,enclosuresofbus

    bars,enclosuresofbusducts

    TungstenCopper Arcingcontacts 80% Tungsten, 20% copper, sintered

    material

    StainlessSteel Enclosures of SF6 GIS pars

    enclosedcircuits

    Copperbismuth

    CopperChromium

    Copperberrylium

    Main contacts of Vacuum

    interrupters,contactors

    Highconductivity,lowweldingtendency

    CURRENTSCARRYINGPARTS:

    These includecontacts,contactstems,flanges,busbarsbushingconductors,connectorsetc.The

    designofconductingpartsisbasedonthefollowingrequirements:

    Temperature rise during normal continuous currenttemperature stresses during shorttime

    current(rateddurationofshortcircuits.

    Mechanicalstressduringopeningandclosingoperation.Mechanicalstressesduetoelectromagneticforcesundershortcircuitconditions.

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    34/35

    LV,MV&HVSwitchgear

    Module(05)HighVoltageA.CCircuitBreakers Page34of35

    INSULATINGPARTS:

    These include interrupterenclosures insulating supports for interrupters, insulating supports to

    busbars, insulating pullrods, connecting the operating mechanism to the moving contracts,

    insulatingtubesenclosingthearccontroldevicesetc. Insulatingpartsaresubjectedtodielectricstressesandmechanicalstresses.

    5.17 DESIGNANDDEVELOPMENT

    Circuit breaker design and development is relatively longer and costlier process as it involves

    shortcircuit type testsandhighvoltage type tests.Circuitbreakersaredevelopmentbyvarious

    leadingmanufacturers.Presently theresearchanddevelopment is focusedonSF6switchgear in

    EHV range and vacuum switchgear in medium voltage range. Besides product development,

    research is also in progress regarding system studies, testing procedures, reliability studies,

    materials etc. Details about design and development are beyond the scope of this manual;

    howeverthegeneralapproachismentionedinvariouschapters.Thedevelopmentofanewcircuit

    breakercomprisesthefollowingmajoractivities:

    Research: The research on arc quenching techniques, various thermal, electrical, mechanical

    stressesundervariousswitchingconditions,designprincipleforarcquenchingetc.This iscarried

    outinresearchlaboratories.

    Design and development of Prototypes: The structural configuration is decided first. Then the

    various subassemblies are designed and finally the complete breaker is designed. Full scale

    prototypes aremanufactured.DevelopmentTesting:Variousdevelopment testsare carriedout

    subassemblies,poles,mechanismandcompletebreaker.

    TypeTests forCertifications: These areexhaustive tests asper standards.Actual Installation in

    systemforobservingperformance.

    5.18 SUMMARY

    The circuit breaker assembly consists of switch cubicle, operating mechanism, poles, current

    carryingparts,dielectricpartsandotherpartsoftheassembly.

    The types of a.c. circuit breakers include (1) Airbreak circuit breaker, (2) Tank type oil circuit

    breaker, (3)Minimumoilcircuitbreaker, (4)Airblastcircuitbreaker, (5)SF6circuitbreaker, (6)

    Vacuuminterrupter.Thesearewidevarietiesofdesignsineachtype.

    Airbreakcircuitbreakersemployairatatmosphericpressureforarcextinction.Theyincorporate

  • 7/29/2019 Module (05) High-Voltage A.C.pdf

    35/35

    LV,MV&HVSwitchgear

    arcrunnersandblowoutsforlengtheningthearc.Theyarewidelyusedforlow/mediumvoltages

    andalsoforvoltagesupto12kV.Miniaturecircuitbreakersareusedfordomesticandcommercial

    applications.Theyare finding increasinguse inmotorprotection, railway applications and low

    voltage switchgear. Minimum oil circuit breaker has been developed for wide range of ratingbetween3.6to245kV.ABCBandSF6CBarepreferredforEHVapplicatons.Vacuuminterrupters

    andcircuitbreakersarefinding increasinguseforawiderangeofapplicationsforratedvoltages

    upto36kV.

    SF6circuitbreakershavetwotypesofdesigns (1)doublepressuretype, (2)singlepressure type

    (PufferType).

    The operating mechanisms play an important role in the operation of circuit breakers and

    isolators. The operating mechanisms are either 'dependent' or 'stored energy' type. Manual,

    springloadedmanual,motorwoundspringtype,pneumatic,hydraulic,etc.arethevarioustypes

    ofoperatingmechanism.Theoperatingmechanisms forEHVcircuitbreakersshouldbesuitable

    forrapidautoreclosing.

    Thematerialsused inswitchgear includeconductingmaterial likeelectrolyticcopper,aluminum;

    insulatingmaterial likeporcelain, epoxy resins.Arcing contactsof circuitbreakers aremadeof

    coppertungstenalloy.Themaincontactsaremadeofelectrolyticcopper.