48
Module Content : Module Reading, Problems, and Demo: MAE 2310 Str. of Materials © E. J. Berger, 2010 20- 1 Module 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses and represent the “worst case” stresses in the structure. 2. The principal (normal) stress and the maximum shear stress can be plotted on a special coordinate plane which graphically illustrates the state of stress. Reading: Sec. 9.1-9.3 Problems: 9-9 (plus principal stresses), 9-15 Demo: stress visualizer (?) Technology: http://pages.shanti.virginia.edu/som2010

Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

Module Content:

Module Reading, Problems, and Demo:

MAE 2310 Str. of Materials © E. J. Berger, 2010 20- 1

Module 20: Mohr’s Circle TransformationsApril 16, 2010

1. The transformed stresses are called principal stresses and represent the “worst case” stresses in the structure.2. The principal (normal) stress and the maximum shear stress can be plotted on a special coordinate plane which graphically illustrates the state of stress.

Reading: Sec. 9.1-9.3Problems: 9-9 (plus principal stresses), 9-15Demo: stress visualizer (?)Technology: http://pages.shanti.virginia.edu/som2010

Page 2: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, II• the mathematics follow an equilibrium calculation

• consider this example in the x’-direction:

• from here we use lots of trig identities:

2

!Fx

! =

Page 3: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, II• the mathematics follow an equilibrium calculation

• consider this example in the x’-direction:

• from here we use lots of trig identities:

2

!Fx

! = !x!!A

Page 4: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, II• the mathematics follow an equilibrium calculation

• consider this example in the x’-direction:

• from here we use lots of trig identities:

2

!Fx

! = !x!!A!(!x!A cos ") cos "

Page 5: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, II• the mathematics follow an equilibrium calculation

• consider this example in the x’-direction:

• from here we use lots of trig identities:

2

!Fx

! = !x!!A!(!x!A cos ") cos "

!(!xy!A cos ") sin "

Page 6: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, II• the mathematics follow an equilibrium calculation

• consider this example in the x’-direction:

• from here we use lots of trig identities:

2

!Fx

! = !x!!A!(!x!A cos ") cos "

!(!xy!A cos ") sin "!(!xy!A sin ") cos "

Page 7: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, II• the mathematics follow an equilibrium calculation

• consider this example in the x’-direction:

• from here we use lots of trig identities:

2

!Fx

! = !x!!A!(!x!A cos ") cos "

!(!xy!A cos ") sin "!(!xy!A sin ") cos "

!(!y!A sin ") sin "

Page 8: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, II• the mathematics follow an equilibrium calculation

• consider this example in the x’-direction:

• from here we use lots of trig identities:

2

!Fx

! = !x!!A!(!x!A cos ") cos "

!(!xy!A cos ") sin "!(!xy!A sin ") cos "

!(!y!A sin ") sin " = 0

Page 9: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, II• the mathematics follow an equilibrium calculation

• consider this example in the x’-direction:

• from here we use lots of trig identities:

2

!Fx

! = !x!!A!(!x!A cos ") cos "

!(!xy!A cos ") sin "!(!xy!A sin ") cos "

!(!y!A sin ") sin " = 0

Page 10: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, II• the mathematics follow an equilibrium calculation

• consider this example in the x’-direction:

• from here we use lots of trig identities:

2

!Fx

! = !x!!A!(!x!A cos ") cos "

!(!xy!A cos ") sin "!(!xy!A sin ") cos "

!(!y!A sin ") sin " = 0

sin2! =

1

2(1 ! cos 2!) cos2 ! =

1

2(1 + cos 2!)

sin 2! = 2 sin ! cos !

Page 11: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transformation, III• the results:

3

!x! =!x + !y

2+

!x ! !y

2cos 2" + #xy sin 2"

!y! =!x + !y

2!

!x ! !y

2cos 2" ! #xy sin 2"

!x!y! = !

"x ! "y

2sin 2# + !xy cos 2#

Page 12: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transform, IV• now what?

• we look for the angle which maximizes the transformed stresses...

4

Page 13: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transform, IV• now what?

• we look for the angle which maximizes the transformed stresses...

4

Page 14: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transform, IV• now what?

• we look for the angle which maximizes the transformed stresses...

4

Page 15: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Transform, IV• now what?

• we look for the angle which maximizes the transformed stresses...

4

Page 16: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Aside: Shear Stress Signs• when using the stress transformation equations, we must carefully consider the sign of the shear stress

• here is our convention: if the shear stress on the positive x-face points in the positive y-direction, then the shear stress is defined as positive

5

x

y

Page 17: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Aside: Shear Stress Signs• when using the stress transformation equations, we must carefully consider the sign of the shear stress

• here is our convention: if the shear stress on the positive x-face points in the positive y-direction, then the shear stress is defined as positive

5

positive shear stress (Prob. 9-1)

x

y

Page 18: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Aside: Shear Stress Signs• when using the stress transformation equations, we must carefully consider the sign of the shear stress

• here is our convention: if the shear stress on the positive x-face points in the positive y-direction, then the shear stress is defined as positive

5

positive shear stress (Prob. 9-1)

x

y

Page 19: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Aside: Shear Stress Signs• when using the stress transformation equations, we must carefully consider the sign of the shear stress

• here is our convention: if the shear stress on the positive x-face points in the positive y-direction, then the shear stress is defined as positive

5

positive shear stress (Prob. 9-1)

x

y

Page 20: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Aside: Shear Stress Signs• when using the stress transformation equations, we must carefully consider the sign of the shear stress

• here is our convention: if the shear stress on the positive x-face points in the positive y-direction, then the shear stress is defined as positive

5

positive shear stress (Prob. 9-1)

x

y

negative shear stress (Prob. 9-14)

Page 21: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Aside: Shear Stress Signs• when using the stress transformation equations, we must carefully consider the sign of the shear stress

• here is our convention: if the shear stress on the positive x-face points in the positive y-direction, then the shear stress is defined as positive

5

positive shear stress (Prob. 9-1)

x

y

negative shear stress (Prob. 9-14)

Page 22: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Aside: Shear Stress Signs• when using the stress transformation equations, we must carefully consider the sign of the shear stress

• here is our convention: if the shear stress on the positive x-face points in the positive y-direction, then the shear stress is defined as positive

5

positive shear stress (Prob. 9-1)

x

y

negative shear stress (Prob. 9-14)

Page 23: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Example: Prob. 9-9• determine the stress on the plane of section A-B

6

Page 24: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Example: Prob. 9-9• determine the stress on the plane of section A-B

6

x

y

Page 25: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Example: Prob. 9-9• determine the stress on the plane of section A-B

6

30o

x

y

! = 30o! 2! = 60

o

Page 26: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Example: Prob. 9-9• determine the stress on the plane of section A-B

6

30o

x

y

! = 30o! 2! = 60

o

Page 27: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Example: Prob. 9-9• determine the stress on the plane of section A-B

6

30o

x

y

! = 30o! 2! = 60

o

!x = 90 MPa

Page 28: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Example: Prob. 9-9• determine the stress on the plane of section A-B

6

30o

x

y

! = 30o! 2! = 60

o

!x = 90 MPa

!y = 50 MPa

Page 29: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Example: Prob. 9-9• determine the stress on the plane of section A-B

6

30o

x

y

! = 30o! 2! = 60

o

!x = 90 MPa

!y = 50 MPa

!xy = !35 MPa

Page 30: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Example: Prob. 9-9• determine the stress on the plane of section A-B

6

30o

x

y

! = 30o! 2! = 60

o

!x = 90 MPa

!y = 50 MPa

!xy = !35 MPa

!x! =

90 + 50

2+

90 ! 50

2cos 60 + (!35) sin 60 = 49.7 MPa

Page 31: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

An Example: Prob. 9-9• determine the stress on the plane of section A-B

6

30o

x

y

! = 30o! 2! = 60

o

!x = 90 MPa

!y = 50 MPa

!xy = !35 MPa

!x! =

90 + 50

2+

90 ! 50

2cos 60 + (!35) sin 60 = 49.7 MPa

!x!y! = !

90 ! 50

2sin 60 + (!35) cos 60 = !34.8 MPa

Page 32: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximizing Stresses--θp

• how do we maximize the normal stress? differentiate wrt θ and set equal to zero

7

Page 33: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximizing Stresses--θp

• how do we maximize the normal stress? differentiate wrt θ and set equal to zero

7

d!x!

d"= !

!x ! !y

2(2 sin 2") + 2#xy cos 2" = 0

Page 34: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximizing Stresses--θp

• how do we maximize the normal stress? differentiate wrt θ and set equal to zero

7

d!x!

d"= !

!x ! !y

2(2 sin 2") + 2#xy cos 2" = 0

tan 2!p ="xy

(#x ! #y)/2

Page 35: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximizing Stresses--θp

• how do we maximize the normal stress? differentiate wrt θ and set equal to zero

7

d!x!

d"= !

!x ! !y

2(2 sin 2") + 2#xy cos 2" = 0

tan 2!p ="xy

(#x ! #y)/2

Page 36: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximizing Stresses--θp

• how do we maximize the normal stress? differentiate wrt θ and set equal to zero

7

d!x!

d"= !

!x ! !y

2(2 sin 2") + 2#xy cos 2" = 0

tan 2!p ="xy

(#x ! #y)/2

Page 37: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximizing Stresses--θp

• how do we maximize the normal stress? differentiate wrt θ and set equal to zero

7

d!x!

d"= !

!x ! !y

2(2 sin 2") + 2#xy cos 2" = 0

tan 2!p ="xy

(#x ! #y)/2

Page 38: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Principal (Normal) Stresses• now substitute θp into the stress transformation equations:

8

Page 39: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Principal (Normal) Stresses• now substitute θp into the stress transformation equations:

8

!

!

Page 40: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Principal (Normal) Stresses• now substitute θp into the stress transformation equations:

8

!

!

Page 41: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Principal (Normal) Stresses• now substitute θp into the stress transformation equations:

8

!

!

cos 2!p =("x ! "y)/2

!

"

!x!!y

2

#2

+ #2xy

Page 42: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Principal (Normal) Stresses• now substitute θp into the stress transformation equations:

8

!

!

cos 2!p =("x ! "y)/2

!

"

!x!!y

2

#2

+ #2xy

Page 43: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Principal (Normal) Stresses• now substitute θp into the stress transformation equations:

8

!

!

cos 2!p =("x ! "y)/2

!

"

!x!!y

2

#2

+ #2xy

Page 44: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Principal (Normal) Stresses• now substitute θp into the stress transformation equations:

8

!1,2 =!x + !y

!

"

!x ! !y

2

#2

+ "2xy

Page 45: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximum Shear Stress• differentiate the shear stress equation wrt θ, set equal to zero

• solve for θs

• substitute into the shear stress equation

9

Page 46: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximum Shear Stress• differentiate the shear stress equation wrt θ, set equal to zero

• solve for θs

• substitute into the shear stress equation

9

tan 2!s =!("x ! "y)/2

#xy

Page 47: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximum Shear Stress• differentiate the shear stress equation wrt θ, set equal to zero

• solve for θs

• substitute into the shear stress equation

9

tan 2!s =!("x ! "y)/2

#xy

Page 48: Module 20: Mohr’s Circle Transformationsejb9z/Media/module20.pdfModule 20: Mohr’s Circle Transformations April 16, 2010 1. The transformed stresses are called principal stresses

MAE 2310 Str. of Materials © E. J. Berger, 2010 20-

Theory: Maximum Shear Stress• differentiate the shear stress equation wrt θ, set equal to zero

• solve for θs

• substitute into the shear stress equation

9

!max =

!

"

"x ! "y

2

#2

+ !2xy

tan 2!s =!("x ! "y)/2

#xy