23
Department of EECS University of California, Berkeley Prof. Ali M. Niknejad Prof. Rikky Muller Module 2.2: IC Resistors and Capacitors

Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

Department of EECS University of California, Berkeley

Prof. Ali M. NiknejadProf. Rikky Muller

Module 2.2:IC Resistors and Capacitors

Page 2: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

2

IC Fabrication: Si Substratel Pure Si crystal is starting material (wafer)l The Si wafer is extremely pure (~1 part in a billion

impurities) l Why so pure?

– Si density is about 5 10^22 atoms/cm^3– Desire intentional doping from 10^14 – 10^18– Want unintentional dopants to be about 1-2 orders of

magnitude less dense ~ 10^12 l Si wafers are polished to about 700 µm thick

(mirror finish)l The Si forms the substrate for the IC

University of California, Berkeley

Page 3: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

3

IC Fabrication: Oxidel Si has a native oxide: SiO2

l SiO2 (Quartz) is extremely stable and very convenient for fabrication

l It’s an insulators so it can be used for house interconnection

l It can also be used for selective dopingl SiO2 windows are etched using photolithographyl These openings allow ion implantation into selected

regionsl SiO2 can block ion implantation in other areas

University of California, Berkeley

Page 4: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

4

IC Fabrication: Ion Implantation

l Si substrate (p-type)l Grow oxide (thermally)l Add photoresistl Expose (visible or UV source)l Etch (chemical such as HF)l Ion implantation (inject dopants)l Diffuse (increase temperature and allow dopants to diffuse)

University of California, Berkeley

P-type Si Substrate

oxide

N-type diffusion region

Page 5: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

5

“Diffusion” Resistor

l Using ion implantation/diffusion, the thickness and dopant concentration of resistor is set by process

l Shape of the resistor is set by design (layout)l Metal contacts are connected to ends of the resistorl Resistor is capacitively isolation from substrate

– Reverse Bias PN Junction!University of California, Berkeley

P-type Si Substrate

N-type Diffusion RegionOxide

Page 6: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

6

Poly Film Resistor

l To lower the capacitive parasitics, we should build the resistor further away from substrate

l We can deposit a thin film of “poly” Si (heavily doped) material on top of the oxide

l The poly will have a certain resistance (say 10 Ohms/sq)

University of California, Berkeley

OxidePolysilicon Film (N+ or P+ type)

P-type Si Substrate

Page 7: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

7

Ohm’s Lawl Current I in terms of Jnl Voltage V in terms of electric field

– Result for R

University of California, Berkeley

IRV =

JtWJAI ==

LVE /=

EWtJtWJAI s===

VLWtJtWJAI s

===

tWLRs1

=tW

LR r=

Page 8: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

8

Sheet Resistance (Rs)

l IC resistors have a specified thickness – not under the control of the circuit designer

l Eliminate t by absorbing it into a new parameter: the sheet resistance (Rs)

University of California, Berkeley

÷øö

çèæ=÷

øö

çèæ÷øö

çèæ==

WLR

WL

tWtLR sq

rr

“Number of Squares”

Page 9: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

9

Using Sheet Resistance (Rs)

l Ion-implanted (or “diffused”) IC resistor

University of California, Berkeley

Page 10: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

10

Idealizations

l Why does current density Jn “turn”?l What is the thickness of the resistor?l What is the effect of the contact regions?

University of California, Berkeley

Page 11: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

11

Electrostatics Review (1)l Electric field go from positive charge to negative

charge (by convention)

l Electric field lines diverge on charge

l In words, if the electric field changes magnitude, there has to be charge involved!

l Result: In a charge free region, the electric field must be constant!

University of California, Berkeley

+++++++++++++++++++++

− − − − − − − − − − − − − − −

er

=×Ñ E

Page 12: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

12

Electrostatics Review (2)l Gauss’ Law equivalently says that if there is a net

electric field leaving a region, there has to be positive charge in that region:

University of California, Berkeley

+++++++++++++++++++++

− − − − − − − − − − − − − − −

Electric Fields are Leaving This Box!

ò =×eQdSE

òò ==×ÑVV

QdVdVE eer /

eQdSEdVE

SVòò =×=×Ñ

Recall:

Page 13: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

13

Electrostatics in 1Dl Everything simplifies in 1-D

l Consider a uniform charge distribution

University of California, Berkeley

er

==×ÑdxdEE dxdE

er

=

')'()()(0

0 dxxxExEx

xò+=

er

)(xr

xxdxxxE

x

er

er 0

0

')'()( == ò

Zero fieldboundarycondition

1x

0r

1x

)(xE1

0 xer

Page 14: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

14

Electrostatic Potentiall The electric field (force) is related to the potential

(energy):

l Negative sign says that field lines go from high potential points to lower potential points (negative slope)

l Note: An electron should “float” to a high potential point:

University of California, Berkeley

dxdE f

-=

dxdeqEFef

-==1f

2f

dxdeFef

-=e

Page 15: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

15

More Potentiall Integrating this basic relation, we have that the

potential is the integral of the field:

l In 1D, this is a simple integral:

l Going the other way, we have Poisson’s equation in 1D:

University of California, Berkeley

ò ×-=-C

ldExx!

)()( 0ff

)(xf

)( 0xf E

ld!

ò-=-x

xdxxExx

0

')'()()( 0ff

erf )()(

2

2 xdxxd

-=

Page 16: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

16

Boundary Conditionsl Potential must be a continuous function. If not, the fields

(forces) would be infinite l Electric fields need not be continuous. We have already

seen that the electric fields diverge on charges. In fact, across an interface we have:

l Field discontiuity implies charge density at surface!

University of California, Berkeley

)( 11 eE

)( 22 eE

ò =+-=× insideQSESEdSE 2211 eeexD

00¾¾ ®¾ ®DxinsideQ

02211 =+- SESE ee

1

2

2

1

ee

=EES

Page 17: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

17

IC MIM Capacitor

l By forming a thin oxide and metal (or polysilicon) plates, a capacitor is formed

l Contacts are made to top and bottom platel Parasitic capacitance exists between bottom plate and

substrate

University of California, Berkeley

Top PlateBottom Plate Bottom Plate

Contacts

CVQ =

Thin Oxide

Page 18: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

18

Review of Capacitors

l For an ideal metal, all charge must be at surfacel Gauss’ law: Surface integral of electric field over

closed surface equals charge inside volume

University of California, Berkeley

+++++++++++++++++++++

− − − − − − − − − − − − − − −

+− Vs

ò =×eQdSE

ò -=×eQdSE

sox VtEdlE ==×ò 0ox

s

tVE =0

ò ==×eQAEdSE 0 e

QAtV

ox

s =

sCVQ =

oxtAC e

=

Page 19: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

19

Capacitor Q-V Relation

l Total charge is linearly related to voltagel Charge density is a delta function at surface (for

perfect metals)

University of California, Berkeley

sCVQ =

sV

Q

y

)(yQ

y+++++++++++++++++++++

− − − − − − − − − − − − − − −

Page 20: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

20

A Non-Linear Capacitor

l We’ll soon meet capacitors that have a non-linear Q-V relationship

l If plates are not ideal metal, the charge density can penetrate into surface

University of California, Berkeley

)( sVfQ =

sV

Q

y

)(yQ

y+++++++++++++++++++++

− − − − − − − − − − − − − − −

Page 21: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

21

What’s the Capacitance?l For a non-linear capacitor, we have

l We can’t identify a capacitancel Imagine we apply a small signal on top of a bias

voltage:

l The incremental charge is therefore:

University of California, Berkeley

ss CVVfQ ¹= )(

sVV

sss vdVVdfVfvVfQ

s=

+»+=)()()(

Constant charge

sVV

s vdVVdfVfqQQ

s=

+»+=)()(0

Page 22: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

22

Small Signal Capacitancel Break the equation for total charge into two terms:

University of California, Berkeley

sVV

s vdVVdfVfqQQ

s=

+»+=)()(0

ConstantCharge

IncrementalCharge

ssVV

vCvdVVdfq

s

===

)(

sVVdVVdfC

=

º)(

Page 23: Module 2.2: IC Resistors and Capacitors Prof. Ali M ...rfic.eecs.berkeley.edu/105/pdf/module2-2_ICtech.pdf · IC MIM Capacitor l By forming a thin oxide and metal (or polysilicon)

EE 105 Fall 2016 Prof. A. M. Niknejad

23

Example of Non-Linear Capacitorl We’ll see that for a PN junction, the charge is a

function of the reverse bias:

l Small signal capacitance:

University of California, Berkeley

bpaj

VxqNVQf

--= 1)(

ConstantsCharge At N Side of Junction

Voltage Across NPJunction

b

j

b

b

pajj V

CV

xqNdVdQ

VC

fff

-=

-==

11

12

)( 0