61
Metal-Organic Frameworks의 합성 및 응용 Metal-Organic Frameworks의 합성 및 응용 2010. 8.25 2010 제올라이트학교@KAIST 응용 공학동 그린화학연구단, 바이오리파이너연구센터 황영규

MOF note

  • Upload
    lsueyin

  • View
    23

  • Download
    9

Embed Size (px)

DESCRIPTION

MOF note

Citation preview

Page 1: MOF note

Metal-Organic Frameworks의

합성 및 응용

Metal-Organic Frameworks의

합성 및 응용

2010 825

2010 제올라이트학교KAIST 응용 공학동

그린화학연구단 바이오리파이너연구센터

황영규

Introduction

Synthesis of MOFs

Applications

목 차목 차

Characteristics of MOFs

Introduction

Page sect 4

What is Metal-organic framework (MOF)

Metal-Organic Frameworks arecrystalline compounds consisting ofmetal ions or clusters coordinatedto often rigid organic molecules toform one- two- or three-dimensional structures that can beporous (Wikipediaorg)

Coordination polymers(CP)Metal-organic frameworks(MOF)Porous coordination network(PCN)Porous coordination polymer(PCP)MIL (Material from Institute Lavoisier)POST-1HKUST-1UMCM-1

Crystal Growth amp Design 9 2969-2970 (2009)

Page sect 5

Evolution of Coordination Polymers (or MOFs)

Hoskins and Robson J Am

Chem Soc 112 1546 (1990)

Yaghi et al J Am Chem Soc 117 10401 (1995)

Yaghi et al Nature 378 703 (1995)

Tomic et al J Appl Polym Sci 9 3745 (1965)

Addressed as MOFs coordination polymers

or supramolecularstructures

15-Dihydroxynaphthalene-26-dicarboxylic acid formed

coordination polymers with Zn Ni Al and Fe+3

1960s Early 1990s Middle 1990s

Bailar et al Prep Inorg React 1 1 (1964)

Copper 44prime-bipyridyl complex that exhibited extended metal-organic interactions

Page sect 6

A Various Organic Linkers

Page sect 7

A Various Organic Linkers

Page sect 8

Isoreticular IRMOFs and Unique Properties

Applications- Gas storagesepartion- CatalystsAdsorbents- Drug delivery- Sensor- Templates

Page sect 9

Metal-organic framework MOF-5(IRMOF-1)

HO O

OHO

H2BDC =

Benzene dicarboxylic acidYaghi et al Nature 402 276-279 (1999)

14-BDC + Zn2+ agrave [Zn4O(RCO2)6] agrave MOF-5

SBULinker

LinkerFlexibility

VoidCavity

+

Highly Stable and Porous MOF

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 2: MOF note

Introduction

Synthesis of MOFs

Applications

목 차목 차

Characteristics of MOFs

Introduction

Page sect 4

What is Metal-organic framework (MOF)

Metal-Organic Frameworks arecrystalline compounds consisting ofmetal ions or clusters coordinatedto often rigid organic molecules toform one- two- or three-dimensional structures that can beporous (Wikipediaorg)

Coordination polymers(CP)Metal-organic frameworks(MOF)Porous coordination network(PCN)Porous coordination polymer(PCP)MIL (Material from Institute Lavoisier)POST-1HKUST-1UMCM-1

Crystal Growth amp Design 9 2969-2970 (2009)

Page sect 5

Evolution of Coordination Polymers (or MOFs)

Hoskins and Robson J Am

Chem Soc 112 1546 (1990)

Yaghi et al J Am Chem Soc 117 10401 (1995)

Yaghi et al Nature 378 703 (1995)

Tomic et al J Appl Polym Sci 9 3745 (1965)

Addressed as MOFs coordination polymers

or supramolecularstructures

15-Dihydroxynaphthalene-26-dicarboxylic acid formed

coordination polymers with Zn Ni Al and Fe+3

1960s Early 1990s Middle 1990s

Bailar et al Prep Inorg React 1 1 (1964)

Copper 44prime-bipyridyl complex that exhibited extended metal-organic interactions

Page sect 6

A Various Organic Linkers

Page sect 7

A Various Organic Linkers

Page sect 8

Isoreticular IRMOFs and Unique Properties

Applications- Gas storagesepartion- CatalystsAdsorbents- Drug delivery- Sensor- Templates

Page sect 9

Metal-organic framework MOF-5(IRMOF-1)

HO O

OHO

H2BDC =

Benzene dicarboxylic acidYaghi et al Nature 402 276-279 (1999)

14-BDC + Zn2+ agrave [Zn4O(RCO2)6] agrave MOF-5

SBULinker

LinkerFlexibility

VoidCavity

+

Highly Stable and Porous MOF

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 3: MOF note

Introduction

Page sect 4

What is Metal-organic framework (MOF)

Metal-Organic Frameworks arecrystalline compounds consisting ofmetal ions or clusters coordinatedto often rigid organic molecules toform one- two- or three-dimensional structures that can beporous (Wikipediaorg)

Coordination polymers(CP)Metal-organic frameworks(MOF)Porous coordination network(PCN)Porous coordination polymer(PCP)MIL (Material from Institute Lavoisier)POST-1HKUST-1UMCM-1

Crystal Growth amp Design 9 2969-2970 (2009)

Page sect 5

Evolution of Coordination Polymers (or MOFs)

Hoskins and Robson J Am

Chem Soc 112 1546 (1990)

Yaghi et al J Am Chem Soc 117 10401 (1995)

Yaghi et al Nature 378 703 (1995)

Tomic et al J Appl Polym Sci 9 3745 (1965)

Addressed as MOFs coordination polymers

or supramolecularstructures

15-Dihydroxynaphthalene-26-dicarboxylic acid formed

coordination polymers with Zn Ni Al and Fe+3

1960s Early 1990s Middle 1990s

Bailar et al Prep Inorg React 1 1 (1964)

Copper 44prime-bipyridyl complex that exhibited extended metal-organic interactions

Page sect 6

A Various Organic Linkers

Page sect 7

A Various Organic Linkers

Page sect 8

Isoreticular IRMOFs and Unique Properties

Applications- Gas storagesepartion- CatalystsAdsorbents- Drug delivery- Sensor- Templates

Page sect 9

Metal-organic framework MOF-5(IRMOF-1)

HO O

OHO

H2BDC =

Benzene dicarboxylic acidYaghi et al Nature 402 276-279 (1999)

14-BDC + Zn2+ agrave [Zn4O(RCO2)6] agrave MOF-5

SBULinker

LinkerFlexibility

VoidCavity

+

Highly Stable and Porous MOF

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 4: MOF note

Page sect 4

What is Metal-organic framework (MOF)

Metal-Organic Frameworks arecrystalline compounds consisting ofmetal ions or clusters coordinatedto often rigid organic molecules toform one- two- or three-dimensional structures that can beporous (Wikipediaorg)

Coordination polymers(CP)Metal-organic frameworks(MOF)Porous coordination network(PCN)Porous coordination polymer(PCP)MIL (Material from Institute Lavoisier)POST-1HKUST-1UMCM-1

Crystal Growth amp Design 9 2969-2970 (2009)

Page sect 5

Evolution of Coordination Polymers (or MOFs)

Hoskins and Robson J Am

Chem Soc 112 1546 (1990)

Yaghi et al J Am Chem Soc 117 10401 (1995)

Yaghi et al Nature 378 703 (1995)

Tomic et al J Appl Polym Sci 9 3745 (1965)

Addressed as MOFs coordination polymers

or supramolecularstructures

15-Dihydroxynaphthalene-26-dicarboxylic acid formed

coordination polymers with Zn Ni Al and Fe+3

1960s Early 1990s Middle 1990s

Bailar et al Prep Inorg React 1 1 (1964)

Copper 44prime-bipyridyl complex that exhibited extended metal-organic interactions

Page sect 6

A Various Organic Linkers

Page sect 7

A Various Organic Linkers

Page sect 8

Isoreticular IRMOFs and Unique Properties

Applications- Gas storagesepartion- CatalystsAdsorbents- Drug delivery- Sensor- Templates

Page sect 9

Metal-organic framework MOF-5(IRMOF-1)

HO O

OHO

H2BDC =

Benzene dicarboxylic acidYaghi et al Nature 402 276-279 (1999)

14-BDC + Zn2+ agrave [Zn4O(RCO2)6] agrave MOF-5

SBULinker

LinkerFlexibility

VoidCavity

+

Highly Stable and Porous MOF

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 5: MOF note

Page sect 5

Evolution of Coordination Polymers (or MOFs)

Hoskins and Robson J Am

Chem Soc 112 1546 (1990)

Yaghi et al J Am Chem Soc 117 10401 (1995)

Yaghi et al Nature 378 703 (1995)

Tomic et al J Appl Polym Sci 9 3745 (1965)

Addressed as MOFs coordination polymers

or supramolecularstructures

15-Dihydroxynaphthalene-26-dicarboxylic acid formed

coordination polymers with Zn Ni Al and Fe+3

1960s Early 1990s Middle 1990s

Bailar et al Prep Inorg React 1 1 (1964)

Copper 44prime-bipyridyl complex that exhibited extended metal-organic interactions

Page sect 6

A Various Organic Linkers

Page sect 7

A Various Organic Linkers

Page sect 8

Isoreticular IRMOFs and Unique Properties

Applications- Gas storagesepartion- CatalystsAdsorbents- Drug delivery- Sensor- Templates

Page sect 9

Metal-organic framework MOF-5(IRMOF-1)

HO O

OHO

H2BDC =

Benzene dicarboxylic acidYaghi et al Nature 402 276-279 (1999)

14-BDC + Zn2+ agrave [Zn4O(RCO2)6] agrave MOF-5

SBULinker

LinkerFlexibility

VoidCavity

+

Highly Stable and Porous MOF

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 6: MOF note

Page sect 6

A Various Organic Linkers

Page sect 7

A Various Organic Linkers

Page sect 8

Isoreticular IRMOFs and Unique Properties

Applications- Gas storagesepartion- CatalystsAdsorbents- Drug delivery- Sensor- Templates

Page sect 9

Metal-organic framework MOF-5(IRMOF-1)

HO O

OHO

H2BDC =

Benzene dicarboxylic acidYaghi et al Nature 402 276-279 (1999)

14-BDC + Zn2+ agrave [Zn4O(RCO2)6] agrave MOF-5

SBULinker

LinkerFlexibility

VoidCavity

+

Highly Stable and Porous MOF

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 7: MOF note

Page sect 7

A Various Organic Linkers

Page sect 8

Isoreticular IRMOFs and Unique Properties

Applications- Gas storagesepartion- CatalystsAdsorbents- Drug delivery- Sensor- Templates

Page sect 9

Metal-organic framework MOF-5(IRMOF-1)

HO O

OHO

H2BDC =

Benzene dicarboxylic acidYaghi et al Nature 402 276-279 (1999)

14-BDC + Zn2+ agrave [Zn4O(RCO2)6] agrave MOF-5

SBULinker

LinkerFlexibility

VoidCavity

+

Highly Stable and Porous MOF

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 8: MOF note

Page sect 8

Isoreticular IRMOFs and Unique Properties

Applications- Gas storagesepartion- CatalystsAdsorbents- Drug delivery- Sensor- Templates

Page sect 9

Metal-organic framework MOF-5(IRMOF-1)

HO O

OHO

H2BDC =

Benzene dicarboxylic acidYaghi et al Nature 402 276-279 (1999)

14-BDC + Zn2+ agrave [Zn4O(RCO2)6] agrave MOF-5

SBULinker

LinkerFlexibility

VoidCavity

+

Highly Stable and Porous MOF

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 9: MOF note

Page sect 9

Metal-organic framework MOF-5(IRMOF-1)

HO O

OHO

H2BDC =

Benzene dicarboxylic acidYaghi et al Nature 402 276-279 (1999)

14-BDC + Zn2+ agrave [Zn4O(RCO2)6] agrave MOF-5

SBULinker

LinkerFlexibility

VoidCavity

+

Highly Stable and Porous MOF

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 10: MOF note

Page sect 10

Pore volumeVP = 104 cm3g

= 060 cm3cm3

Surface areaSL = 2900 m2g

Sorption Isotherms

Faujasite

VP = 048 cm3g

SL = 500 m2g

amou

nt s

orbe

d (m

gg)

PP0

Sorption Properties of MOF-5

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 11: MOF note

Page sect 11

MOF-177 [Zn4(O)(BTB)215DEF3H2O]

H3BTB + Zn(NO3)2 bull 6 (H2O)

Zn4(O)(BTB)2bull 15DEF bull 3H2OMOF-177

Chae H K Kim J Go Y Eddaoudi M A J Matzger Yaghi O M Nature 2004 427 523

BTB 135-benzenetribenzoate

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 12: MOF note

Page sect 12

0

300

600

900

1200

1500

0 02 04 06 08 1

Am

ount

sor

bed

(mg

g)

PP0

N2 sorptionN2 desorption

Surface area = 4500 m2gPore volume = 159 cm3g

(069 cm3cm3)

N2 sorption isotherm for Zn4O(BTB)2 (MOF-177)

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 13: MOF note

Page sect 13

Yaghi

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 14: MOF note

Page sect 14

Ultrahigh Porosity in Metal-Organic Frameworks

Kim et al Science 329 424 (2010)

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 15: MOF note

Page sect 15

A Chromium Terephthalate MIL-101

Giant cell volume~702000Aring

Langmuir surface area~5900 m2g

Large pore size30-34Aring

Ferey et al Science 309 2040 (2005)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 16: MOF note

Page sect 16

Porous Coordination Polymers

A rigid metalndashorganic coordination framework

[Co2(44-bipy)3(NO3)4]4H2O]n

Angew Chem Int Ed 36 1725 (1997)

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 17: MOF note

Page sect 17

A Chemically Functionalizable MOF Cu3(BTC)2(H2O)3]n

HKUST-1SBET = 1390 m2g

SY Chui et al Science 283 1148 (1999)

17

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 18: MOF note

Page sect 18

Zeolite Imidazolate Frameworks

ZIF-20 Hayashi et al Nat Mat 2007

Metal-Organic Polyhedra(MOP)

Eddaoudi et al JACS 2001

New Types of Crystalline Porous Hybrids

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 19: MOF note

Page sect 19

On The Road German adventurer Zietlowposes in Egypt in November 2006 during his 28000-mile driving expedition in a natural-gas-fueled vehicle The vehicle was equipped with fuel tanks that were modified with MOF compounds to increase their storage capacity

Now In Stores A worker packages MOF materials produced in kilogram batches at BASFs pilot plant in Ludwigshafen Germany

Heading To Market With MOFs

Methane Hoarder This framework compound dubbed PCN-14 is composed of dicopper paddlewheel units and linkers based on an anthracene derivative Among porous materials PCN-14 holds the record for methane storage Cu is turquoise C is gray and O is red

Room To SpareChromium trimers (left center) and the carboxylate linkers trimesate (left top) and terephthalate(left bottom) combine to form supertetrahedra from which the framework compounds MIL-100 and MIL-101 are constructed Each compound contains smaller and larger nanometer-sized cages accessible via interconnecting windows The MIL-100 small cage is 25 Aring in diameter MIL-100 large cage 29 Aring MIL-101 small cage 29 Aring MIL-101 large cage 34 Aring Cr is yellow C is white O is red and H2O is green

CampEN Cover 200805

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 20: MOF note

Page sect 20

The pervasive chemistry of metal-organic frameworks

Chem Soc Chem 38 1213 (2009)

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 21: MOF note

Synthesis

sect SolvothermalHydrothermal synthesissect Microwave or Sonochemical synthesissect Electrochemical synthesissect Ionothermal synthesis

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 22: MOF note

Page sect 22

Molecular Building Blocks (or Secondary Building Blocks) Self-Assembly Crystalline Solids

How to design or synthesize

If appropriate SBUs andligands chose desired MOFcan be formed depending on reaction condition

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 23: MOF note

Page sect 23

Yaghi et al Nature 402 276-279 (1999)

Solvothermal Syntheses of MOFs

SynthesisSolvothermal bomb placed in autoclaveat 10~100bar and 100oC for 1-4daysScale 30 ~500mgReaction control ManualMonitoring None

Small scale slow reaction

Mueller et al J Mater Chem16 626 (2006)

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 24: MOF note

Page sect 24

In Situ Diffraction Study of solvothermal Crystallization

Millange et al Angew Chem Int Ed 48 1 (2009)

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 25: MOF note

Page sect 25

Microwave (or sonochemical) Syntheses of MOFs

Jhung et al Adv Mater 19 121 (2007)

Ahn et al Chem Commun 6336 (2008)

MOF-5

HKUST-1

Hwang et al Micropor Mesopor Mater 119 331 (2009)

Rapid synthesis of MOFs through microwave-irradiation- Homogeneous and selective heating- fast nucleation and crystallization

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 26: MOF note

Page sect 26

Microwave Synthesis of MIL-101(Cr)

Jhung et al Adv Mater 19 121 (2007)

(c)

(a)

(d)

(b)

200nm

500nm500nm

1 min

10 min

20 min

40 min

200nm

TEM

Nanoparticles

Microwave synthesisMicrowave synthesis at 483 K for 1 ndash 40 min10 Cr(NO3)3middot9H2O 10 BDC 10 HF 280 H2O (BDC = terephthalic acid)

MIL-101 Cr3F(H2O)2O[C6H4(CO2)2]3nH2O n~25

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 27: MOF note

Page sect 27

Ionothermal syntheses of MOFs

Russell E Morris Chem Commun 2990 (2009)

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 28: MOF note

Page sect 28

High-throughput Syntheses of Cobalt Succinates

Forster et al Angew Chem Int Ed 44 7608 (2005)

pH Temperature Concentration and Time

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 29: MOF note

Page sect 29

Electrochemical Synthesis of HKUST-1

Mueller et al J Mater Chem16 626 (2006)

150 min at a 12-19V 13ASBET 1820 m2g

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 30: MOF note

Page sect 30

Large Scale Syntheses of MOFs

Muller et al Chem Soc Rev 38 1284 (2009)

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 31: MOF note

Page sect 31

Nanoscale Syntheses of MOFs

Lin et al Angew Chem Int Ed 47 129 (2008)Lin et al Eur J Inorg Chem 3725 (2010)

Surfactant-assisted synthesis of nanoscaleGadolinium MOFsCTAB1-hexanoln-heptanewater Microemulsions

Ga2(bhc)H2O)6

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 32: MOF note

Page sect 32 Mellot-Draznieks et al Z Anorg Allg Chem 630 2599 (2004)

Computational Design of MILs

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 33: MOF note

Page sect 33

Crystal growth of HKUST-1 by AFM

Whittingham et al Crytstal Growth Design 6 2419 (2006)

How Molecules turn into MOFs

R Morris ChemPhysChem 10 327 (2009)Attfield et al Angew Chem Int Ed 47 8525 (2008)

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 34: MOF note

Page sect 34

Characteristics of MOFs

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 35: MOF note

Page sect 35

Functions of MOFs (Nanospace laboratory)

Kitagawa et al Angew Chem Int Ed 43 2334 (2004)

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 36: MOF note

Page sect 36

Guest-induced transformation of MOFs

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 37: MOF note

Page sect 37 Gerard Ferey Chem Soc Rev 37 191 (2008)

Dynamic frameworks and Breathing of MOFs

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 38: MOF note

Page sect 38

Zeolite A Imidazolate Frameworks (ZIF)

Breakthrough curves

CO2

CH4

Sorption Isothems at 298 K

CO2

CH4

LTA Topology

Yaghi and co-workers Nature Mater 6 501 (2007)

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 39: MOF note

Applications

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 40: MOF note

Page sect 40 40

Hydrogen storage capacities of MOFs

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 41: MOF note

Page sect 41

Hydrogen storage of HKUST-1

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 42: MOF note

Page sect 42

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 43: MOF note

Page sect 43

Carbon Dioxide Capture of MOFs

0 10 20 30 40 500

200

400

600

800

Pressure (bar)Am

ount

ads

orbe

d (c

m3 g

)

0

10

20

30

40

Amount adsorbed (m

molg)

COCO22 SpongeSponge

MOF-177 Adsorption isotherms of MIL-101at 303 K

Chang et al Langmuir 24 7245 (2008)

176 wt176 wt at 303 K and 50 bars

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 44: MOF note

Page sect 44

Sulfur Sorption of HKUST-1

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 45: MOF note

Page sect 45

Summary of catalytic reaction employing MOFs

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 46: MOF note

Page sect 46

Catalytic Oxidation of Sulfides with H2O2 over MIL-101

aThe reaction time was 12 h bH2O2benzyl phenyl sulfide = 2 cH2O2 efficiency () = 100 x (mole of oxygenated products)(total mole of H2O2 converted)

nCUS = ca 1 mmolg

FOH

H2O H2OCUS

FOH

at 150oC

CUS- 2H2O

m3-O bridged Cr(III) trimer

CrCrCr

CrCrCr

Sulfoxidation

Formation of CUS

Appl Cata A Gen 2009

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 47: MOF note

Page sect 47

CdCl2 + L [Cd3Cl6L3](1)

Ti(OiPr)4

W Lin J Am Chem Soc 127 8940(2005)

Chiral Catalysis in MOF

Kim et al 404 982 (2000)

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 48: MOF note

Page sect 48

Water Resistance of HKUST-1

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 49: MOF note

Page sect 49

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 50: MOF note

Page sect 50

Water Resistance of MOFs

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 51: MOF note

Page sect 51

a

b c

d

e

Surface Functionalization of Cr-MIL-101

Chang et al Angew Chem Int Ed 47 4144-4148 2008 (Cover Figure)

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 52: MOF note

Page sect 52

Ph H

ONC CO2Et H2O

H

Ph CN

CO2Et

+ +

Knoevenagel Condensation over Amine-grafted MIL-101

Reaction conditions 1 mmol of benzaldehyde 1 mmol of ethylcyano-acetate and 20 mg of catalyst20 mg of catalyst in 25 ml of cyclohexane at 80oC

0 5 10 15 200

20

40

60

80

100

Conv

ersi

on o

f CEA

()

Reaction time (h)

APS-MIL-101 DETA-MIL-101 ED-MIL-101 APS-SBA-15

APS-SBA-15(reference)

353 K

cf ED ethylene diamine DETA diethylene triamine APS 3-aminopropyl- triethoxysilane

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 53: MOF note

Page sect 53

Post-functionalization of MOFs

Cohen Chem Soc Rev 38 1315 (2009)

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 54: MOF note

Page sect 54

Depostion of MOFs on Surfaces

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 55: MOF note

Page sect 55

Thin Films of HKUST-1 on Functionalized Surfaces

XRD Patterns of HKUST-1

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 56: MOF note

Page sect 56

Layer-by-Layer growth of Interpenetrated MOFs

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 57: MOF note

Page sect 57

Sensor Device of HKUST-1

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 58: MOF note

Page sect 58

Molecular Sieve Membrane of ZIF-7

Microwave-assisted secondary growth of ZIF-7

ZIF-7 membrane showed a high H2 selectivity for targeting H2CO2 separation

Soladite topology ZIF-7(Zni(bim)2) Hydrophobic thermally stable

small pore(03nm)

Bim benzimidazolate

CO2 033nmH2 029nm

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 59: MOF note

Page sect 59

Drug Delivery of MILs

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 60: MOF note

Page sect 60 Chemistry amp Industry 2008

Future of MOFs

경청해 주셔서 감사합니다

Page 61: MOF note

경청해 주셔서 감사합니다