14
Mon. Tues. Wed. Fri. 5.5 -.7 Curving Motion 6.1-.4 (.21) Introducing Energy & Work Quiz 5 3pm Visit from Columbia Rep RE 5.b EP 5, HW5: Ch5 Pr’s 16, 19, 45, 48, 64(c&d) dt p d F all system Ch. 5 – Rate of change (if any) of momentum Special Cases Equilibium 0 dt p d F all system Uniform Circular Motion 0 dt p d

Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Embed Size (px)

Citation preview

Page 1: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Mon. Tues. Wed. Fri.

5.5 -.7 Curving Motion

6.1-.4 (.21) Introducing Energy & Work Quiz 5

3pm – Visit from Columbia Rep

RE 5.b EP 5, HW5: Ch5 Pr’s 16, 19, 45, 48, 64(c&d)

dt

pdF

all

system

Ch. 5 – Rate of change (if any) of momentum

Special Cases Equilibium

0 dt

pdF

all

system

Uniform Circular Motion

0dt

pd

Page 2: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

The process for force problems

Define and stick with your system

Identify what objects are interacting with it and determine the corresponding forces acting upon it

Add the forces to get the net force acting on the system

Equate with rate of change of momentum via momentum principle

Solve for unknowns

𝐹 𝑠𝑦𝑠𝑡𝑒𝑚 ←=𝑑𝑝 𝑠𝑦𝑠𝑑𝑡

𝑎𝑙𝑙

Earth

𝐹 𝑝𝑒𝑟𝑠𝑜

𝑛←

𝐸𝑎𝑟𝑡ℎ

𝑝 𝑝𝑒𝑟𝑠𝑜𝑛

Page 3: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Changing Momentum: Magnitude and Direction

dt

pdF objnet

dt

pdpp

dt

pd

dt

ppd ˆˆ

ˆ

Speeding/slowing changing direction

Special Case: Uniform Circular Motion (only direction changing)

dt

pdpp

dt

pd

dt

ppd

dt

pd ˆˆ

ˆ

similarly

comparing

d

r

dt

rd

dt

rdv

dt

rdrr

dt

rd

dt

rdv

ˆˆ

dt

dr

dt

rd

dt

d

dt

rd

ˆ

Rate of change of position vector’s direction

vr1

Should point… Parallel to momentum vector

Perpendicular to momentum vector

rdrd

Page 4: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Speeding/slowing changing direction

Should point… Parallel to momentum vector

Perpendicular to momentum vector

Changing Momentum: Magnitude and Direction

dt

pdF objnet

dt

pdpp

dt

pd

dt

ppd ˆˆ

ˆ

Special Case: Uniform Circular Motion

dt

pdpp

dt

pd

dt

ppd

dt

pd ˆˆ

ˆ

d

dt

d

dt

rd

ˆ

Rate of change of position vector’s direction

Rate of change of momentum vector’s direction

Equals

dt

pd

dt

rd ˆˆ

vr1

vr1

pdˆ

direction? Opposite of r. r̂

rr

vp

dt

pdˆ

rp

See Vpython example

Page 5: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Example: Geosynchronous Orbit There’s only one orbital radius for satellites that ‘stay put’ in the sky – orbit with the same period as the Earth spins: T = 1 day. What’s the orbital radius?

-G𝑀

𝐸𝑀

𝑆

|𝑟𝑠←𝐸|2𝑟 𝑠 ← 𝐸 =-|𝑝 |

|𝑣|

|𝑟𝑠←𝐸|𝑟 𝑠 ← 𝐸

Application: Circular Gravitational Orbits

𝐹 𝑛𝑒𝑡=𝑑𝑝

𝑑𝑡

System: Satellite

Gravitational Force

Circular Motion

G𝑀

𝐸𝑀

𝑆

|𝑟𝑠←𝐸|=|𝑝 ||𝑣|

𝑣 𝑝

𝑀𝐸

𝑀𝑆

≈ 𝑀𝑆𝑣 G𝑀

𝐸𝑀

𝑆

|𝑟𝑠←𝐸|= 𝑀𝑆|𝑣||𝑣|

G𝑀

𝐸

|𝑟𝑠←𝐸|=𝑣2

v = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒 =

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑎𝑛𝑐𝑒

𝑃𝑒𝑟𝑖𝑜𝑑 =

2𝜋𝑟𝑠←𝐸

𝑇 G

𝑀𝐸

|𝑟𝑠←𝐸|=

2𝜋𝑟𝑠←𝐸

𝑇 2

𝑟𝑠←𝐸 = G𝑀𝐸

𝑇

2𝜋 2

13

= 6.7 × 10−11𝑁𝑚

2

𝑘𝑔2 6 × 1024𝑘𝑔86,400𝑠

2𝜋

2

13

= 4.2 × 107𝑚

Page 8: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Circular Motion Example: Say you had a 1 km radius space-station, with what period must it spin to provide a normal force equal to that on Earth?

r

Homework: spinning carnival ride – friction holds you up

𝐹 𝑊𝑎𝑙𝑙.𝑁

𝐹 𝑊𝑎𝑙𝑙.𝑓

𝐹 𝐸𝑎𝑟𝑡ℎ.𝑔

≤ 𝜇𝑠𝐹𝑊𝑎𝑙𝑙.𝑁

Page 9: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

(Know and care what interactions provide net force) Person rides on a “swing” ride at a carnival. The man rides in a swing at the end of a 12.0 m chain which hangs out at 65 up from vertical. Assuming uniform circular motion, and a combined, chair+rider, mass of 220 kg, (a) what is the tension in the chain? (b) what is tangential speed of the chair?

𝑭𝒄𝒉𝒂𝒊𝒏

𝒗=? M = 220kg

= 65o

𝑭𝑬𝒂𝒓𝒕𝒉

Page 10: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Circular Motion: Banked Curves

Why is the track banked? 𝒙

𝒚 𝐹𝑐←

𝑅.𝑦

𝐹𝑐 ← 𝑅. 𝑥

𝐹 𝑛𝑒𝑡=𝑑𝑝

𝑑𝑡

𝑦 : 𝐹𝑐 ← 𝐸 + 𝐹𝑐 ← 𝑅.y= 0

-𝑚𝑔 + 𝐹𝑐 ← 𝑅.y= 0

𝑚

𝐹 𝑐←

𝐸

𝐹𝑐 ← 𝑅cos(θ) = 𝑚𝑔

𝐹𝑐 ← 𝑅 =𝑚𝑔

cos(θ)

y-co

mp

on

ent

of

forc

es a

nd

ch

ange

in m

om

en

tum

x-

com

po

nen

t o

f fo

rces

an

d

chan

ge in

mo

me

ntu

m

Aerial View

Curve’s “kissing” circle r

𝑥 : 𝐹𝑐← 𝑅.x =|𝑝 |

|𝑣|

|𝑟|

𝑝 ≈ 𝑚𝑣

𝐹𝑐 ← 𝑅.x =𝑚𝑣2

|𝑟|

𝐹𝑐 ← 𝑅 sin()=𝑚𝑣2

|𝑟|

𝑚𝑔

cos(θ )sin()=𝑚

𝑣2

|𝑟| 𝑔tan()=𝑣2

|𝑟|

For a given radius of curvature and

expected speed, there’s a particular

banking angle.

Page 11: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Circular Motion: Banked Curves

𝒙

𝒚 𝐹𝑐←

𝑅.𝑦

𝐹𝑐 ← 𝑅. 𝑥

𝑚

𝐹 𝑐←

𝐸

𝒈𝐭𝐚𝐧()=𝒗𝟐

|𝒓|

For a given radius of curvature and expected speed, there’s a particular banking angle.

If you’re taking the interchange between I-10 West and I-125 South, you may well be going 65 mph around a curve with a radius of curvature of 1/8 mi. If it was designed for this speed, at what angle should it be banked?

If your tires have a coefficient of static friction of 0.9, how fast could you take the curve without sliding sideways?

Page 12: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Circular Motion: Banked Curves Why do planes bank when they turn?

Page 13: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Circular Motion: Generalized – “Kissing” Circles

rk.1

rk.2

rk.3

kiss

kiss

objnet

objnet

RR

vpp

dt

pdF

dt

pdpp

dt

pd

dt

ppdF

ˆˆ

ˆˆ

ˆ

Page 14: Mon. 5.5 -.7 Curving Motion Tues. Wed. 6.1 -.4 (.21) …facweb1.redlands.edu/fac/Eric_hill/Phys231/Lecture/Da… ·  · 2014-11-18Application: Circular Gravitational Orbits The Moon

Mon. Tues. Wed. Fri.

5.5 -.7 Curving Motion

6.1-.4 (.21) Introducing Energy & Work Quiz 5

3pm – Visit from Columbia Rep

RE 5.b EP 5, HW5: Ch5 Pr’s 16, 19, 45, 48, 64(c&d)