18
Monte Carlo simulations for the JEDI polarimeter at COSY Paul Maanen on behalf of the JEDI Collaboration JEDI Collaboration | Physics Institute III B, RWTH Aachen University DPG Frühjahrstagung 2016

Monte Carlo simulations for the JEDI polarimeter at COSY ...collaborations.fz-juelich.de/ikp/jedi/public_files/usual_event/presentation_v1.pdf · Outline Introduction Detector concept

  • Upload
    phamque

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Monte Carlo simulations for the JEDIpolarimeter at COSY

Paul Maanen on behalf of the JEDI CollaborationJEDI Collaboration | Physics Institute III B, RWTH Aachen UniversityDPG Frühjahrstagung 2016

Outline

Introduction

Detector concept

Simulation studies

Summary & Outlook

March 18, 2016

2/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Motivation

Where is the Antimatter in our Universe?

• One precondition for Baryogenesis: CP

• Standard Model prediction: nBnBn

1018

• WMAP and COBE (2012): nBnBn

1010

)Not enough CP in Standard Modell

H = d ~SS · ~E

d = EDMP : H = +d ~S

S · ~ET : H = +d ~S

S · ~E)Electric Dipole Moments violate CP (assuming CPT ))Probe into the physics of the early universe

March 18, 2016

3/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Nuclear scattering polarimetry

• Nuclear scattering cross section for scattering of polarized particles:(,) = 0() ·

1 + PyAy() · cos()

• Measure left-right asymmetries in cross section: Py = 1Ay

LRL+R

• May need to also include up, down to account for tensor polarization

• Currently using elastic deuteron-carbon scattering

March 18, 2016

4/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Design goals for an EDM polarimeter

• EDM search in storage rings: Let EDM interact with fields, wait for polarizationchange: d ~S

dt / d ~E ~S

• Current candidate method for EDM search implicates a linear buildup ofpolarization with time at P = O(106/1000s)

• Design goals for polarimeter:– Large FoM

– Minimal influence on beam

– High sensitivity to systematic effects

– Good long term stability and reproducibility

March 18, 2016

5/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Target choice

[deg]Θ5 10 15 20 25 30

[mb/

sr]

Ω/d

σd

1−10

1

10

210

310200 MeV270 MeV

Cross-Section

[deg]Θ5 10 15 20 25 30

FOM

[a.u

.]

1

10

210

2y A× σFOM =

200 MeV270 MeV

[deg]Θ5 10 15 20 25 30

yA

0.2

0.4

0.6

0.8

1

Analyzing Power

200 MeV270 MeV

270 MeV: Y. Satou et al. Phys. Let. B 549, 307200 MeV: T. Kawabata et al. Phys. Rev. C 70, 034318

• Carbon was chosen as working choice• Large analysing power, high elastic cross section• FOM for Protons also concentrated in the forward region

March 18, 2016

6/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Detector concept

PL Sci

Fast HCAL

PMT

COSYbeam

Vacuum pipe

Target chamber

March 18, 2016

7/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Signal generation

[deg]Θ5 10 15 20 25

[MeV

]dE

260262264266268270272274276278280

C12C(d,pn)12

[MeV]nE0 100 200 300

[MeV

]pE

0

50

100

150

200

250

300C12C(d,pn)12

• Elastically scattered deuterons retain almost complete beam energy.• Break-up has almost no analyzing power, so discard it• Protons and neutrons from break-up are energetically well separated)Complete stop of particles provides good signal separation

• Inelastic reactions carry some analysing power, so maybe keep these

March 18, 2016

8/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

d+C elastic

Candidate Materials: LYSO/Plastic Scintillator

LYSO

Fe + Pl.

LYSO BGO Plastic---------------------------------------------------------------[g/cm3] 7.3 7.1 1.05

Devay [ns] 40 300 2.4

L. Y. % NaI(Tl) 75 25 25

S. Peak [nm] 420 480 420

N ref. 1.82 2.15 1.58

Melt. OC 2050 1050 75

Hygrosc. No No No

Radioact. Yes No No

LYSO

Fe + Pl.

LYSO BGO Plastic---------------------------------------------------------------[g/cm3] 7.3 7.1 1.05

Devay [ns] 40 300 2.4

L. Y. % NaI(Tl) 75 25 25

S. Peak [nm] 420 480 420

N ref. 1.82 2.15 1.58

Melt. OC 2050 1050 75

Hygrosc. No No No

Radioact. Yes No No

LYSO PlasticDensity [g/cm3] 7.3 1.05

Decay [ns] 40 2.4L. Y. % NaI(Tl) 75 25S. Peak [nm] 420 420

N ref. 1.82 1.58Melt. [°C] 2050 75Hygrosc. No NoRadioact Yes No

March 18, 2016

9/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Simulation setup

• Geometry: Single detector element

• Generated 100k events each at Td = 270 MeV,5 < < 20, 0 < < 360

– Signal: 12C(d , d)12C– Background: 12C(d , pn)12C

• FOM / (elel + bgbg)

Ay ,elelel+bgbgAy ,bg(elel+bgbg)

2

March 18, 2016

10/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Lyso scintillators

range [mm]60 61 62 63

rel.

freq.

0

0.05

0.1

0.15

0.2

0.25

deuteron range in lysoConstant 0.3159± 0.1976

Mean 0.66± 61.44

Sigma 0.5261± 0.5184

deuteron range in lyso

lat. displacement x [mm]10− 5− 0 5 10

rel.

freq.

0

0.05

0.1

0.15

0.2

0.25

deuteron lateral displacement in lysoConstant 0.2761± 0.1856

Mean 2.10319±0.08023 −

Sigma 2.189± 2.046

deuteron lateral displacement in lyso

• Chosen detector size of 3 3 10 cm3as starting value

March 18, 2016

11/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Detector response - lyso

[MeV]depE0 100 200 300

rel.

freq.

[%]

1−10

1

10

Edep in lyso

otherneutron (breakup) escapesneutron (other) escapes escapesγ

deuteron escapesno particle escape

• Breakup is main cause of efficiency lossMarch 18, 2016

12/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

elastic

Detection efficiencies (lyso)

[MeV]cutE0 100 200 300

0

0.2

0.4

0.6

0.8

1

dcelastic detection efficiency in lyso

0%

5%

10%

20%

dcelastic detection efficiency in lyso

[MeV]cutE0 100 200 300

0

0.2

0.4

0.6

0.8

1

dcbreakup detection efficiency in lyso

0%

5%

10%

20%

dcbreakup detection efficiency in lyso

[MeV]cutE0 100 200 300

rel.

fom

[au]

02468

10121416

relative fom in lyso

0%

20%

March 18, 2016

13/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

preliminary

Plastic scintillators

z / mm0 20 40 60 80 1000

50

100

150

200

250

vs z - deuterons in ironkinE vs z - deuterons in ironkinE

range [mm]42 42.5 43 43.5 44

rel.

freq.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4deuteron range in plastic

Constant 0.5037± 0.3739

Mean 0.39± 43.24

Sigma 0.2810± 0.3565

deuteron range in plastic

• Use degrader to suppress photon background and reduce length of plasticdetector.

• Td = 270 MeV– Absorber thickness 40 mm– Scintillator thickness 50 mm

March 18, 2016

14/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Detector response - plastic

[MeV]depE0 100 200 300

rel.

freq.

[%]

1−10

1

10

in plasticdepE

otherneutron (breakup) escapesneutron (other) escapes escapesγ

deuteron escapesno particle escape

March 18, 2016

15/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

elastic

Detection efficiencies (plastic)

[MeV]cutE0 100 200 300

00.10.20.30.40.50.60.70.8

dcelastic detection efficiency in plastic

0%

5%

10%

20%

dcelastic detection efficiency in plastic

[MeV]cutE0 100 200 300

00.020.040.060.08

0.10.120.140.16

dcbreakup detection efficiency in plastic

0%

5%

10%

20%

dcbreakup detection efficiency in plastic

[MeV]cutE0 100 200 300

rel.

fom

[au]

0

2

4

6

8

10

12

14

16

relative fom in plastic

0%

20%

March 18, 2016

16/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

preliminary

Results

• Main cause of efficiency loss is breakup in detector

• Maximum relative FOM:

0% 20%Plastic 15.5 14.5LYSO 17 12

• LYSO and plastic scintillators provide comparable performance

• No strong dependence on energy resolution

March 18, 2016

17/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration

Summary & Outlook

• We have a candidate layout for JEDI polarimeter

• Simulations suggest promising performance

• Hardware tests with LYSO crystals are in progress

• Will include E E particle identification technique

• Will include inelastic scattering in simulation

March 18, 2016

18/18

Monte Carlo simulations for the JEDI polarimeter at COSY

Paul Maanen on behalf of the JEDI Collaboration