19
MOS-AK 2005 8 avril 2005 CMOS compatible integrated magnetometers L. Hébrard 1 , J.-B. Kammerer 1 , M. Hehn 2 , V. Frick 1 , A. Schuhl 2 , P. Alnot 3 , P. French 4 , F. Braun 1 S - 2 LPM (UHP-Nancy) - 3 LPMI (UHP-Nancy) - 4 EIL (TU-Delft -The Neth

MOS-AK 20058 avril 2005 CMOS compatible integrated magnetometers L. Hébrard 1, J.-B. Kammerer 1, M. Hehn 2, V. Frick 1, A. Schuhl 2, P. Alnot 3, P. French

Embed Size (px)

Citation preview

MOS-AK 2005 8 avril 2005

CMOS compatible integrated magnetometers

L. Hébrard1, J.-B. Kammerer1, M. Hehn2, V. Frick1,

A. Schuhl2, P. Alnot3, P. French4, F. Braun1

1 InESS - 2 LPM (UHP-Nancy) - 3 LPMI (UHP-Nancy) - 4 EIL (TU-Delft -The Netherlands)

MOS-AK - 2005 Page 2/19Strasbourg 8 avril 2005

Outline• Magnetic measurement techniques

• Hall effect magnetic sensors

– Potential applications

– Conventional Hall effect sensors

– Multi-strip Hall device

– Need for accurate compact models

• High resolution integrated magnetometers

– Conventional approaches

– Fluxgate like technique using a MTJ

– Need for a good compact model of the MTJ

• Conclusion

MOS-AK - 2005 Page 3/19Strasbourg 8 avril 2005

CMOS compatible Magnetic Measurement Techniques

• Without post-processing– Hall effect sensors, 1D and 2D/3D

• With post-processing for ferromagnetic layer– Fluxgate– Spintronic devices (MTJ, GMR)

MOS-AK - 2005 Page 4/19Strasbourg 8 avril 2005

Hall effect sensor applications• Mainly for low cost applications :

• Automotive field – contactless displacement sensor,

• Energy metrology – contactless current sensing

• Medical instrumentation :

• Magnetic Resonance Imaging

• Magnetic tracking for endovascular intervention

MOS-AK - 2005 Page 5/19Strasbourg 8 avril 2005

CMOS conventional Hall effect device

• Made of a N-well sensitive to Bz • Based on the Lorentz force : FL = q v x B

P-substrate

Bz

++++++++++++

--------------------

IVH

VH =1

q n tI Bz

1q n t

SA = I = SI IN-well

To increase the sensitivity :

• decrease of t

• increase of I

I

t

MOS-AK - 2005 Page 6/19Strasbourg 8 avril 2005

Gated Hall effect device

n+n+

P-substrate

DZ

N-well

II

teff

DZ

Vg < Vth

Ibias

VH

Vg

GHD

SI = 120 V/AT against 100 V/AT for a rectangular Hall device with L/W ≥ 3

SA 120 mV/T for Imax 1mA

MOS-AK - 2005 Page 7/19Strasbourg 8 avril 2005

Short circuit effect

The multi-strips device needs a specific biasing circuit

G 1L/W ≥ 3 Multi-strips device

G 1

Short device

G << 1

VH =G

q n tI BzVH =

1q n t

I Bz

MOS-AK - 2005 Page 8/19Strasbourg 8 avril 2005

Specific biasing circuit

to preamplification+ + +Vh Vh Vh Vh

VH = 4 x Vh

VH = N x VhAssuming infinite output resistance for the biasing transistors

Yes, but beware of the noise…!!

MOS-AK - 2005 Page 9/19Strasbourg 8 avril 2005

Excess noise

R R R

2223

2

12 pnTotalNoise IIRNN

V

RI

VNoise 4

2 3 RI

VNoise 4

2 3

I3

I3

4

I3

4

I3

4

I3

4

I3

4

I3

42

I3

4

I3

MOS-AK - 2005Page 10

/19Strasbourg 8 avril 2005

Chopper stabilisation

1/f noise shifted around the chopping frequencyThermal noise is unchangedLow-pass filtering to suppress the 1/f noise

MOS-AK - 2005Page 11

/19Strasbourg 8 avril 2005

Experimental results with 4 and 5-strips devices

4-strips sensor without chopper

5-strips sensor with chopper at 45kHz

• SA = 375 mV/T for Imax = 4.5 mA

• Resolution of 30 Trms on 5Hz-1kHz

MOS-AK - 2005Page 12

/19Strasbourg 8 avril 2005

Need for accurate models

• Hall effect sensors are easy to integrate in CMOS

• Smart biasing and signal conditioning

• Noise level depends on the material properties and on the electrical

resistance R between adjacent strips

• Effective sensitivity depends on the ratio R/r where r is the output

resistance of the biasing transistors

• Non-linearity depends on the extension of the depleted zones

• Temperature,…

Accurate compact models are required for these sensorsto be widely used.

MOS-AK - 2005Page 13

/19Strasbourg 8 avril 2005

Conventional approaches for high resolution magnetometer integrated in CMOS

• Flux concentrators above IC + Hall effect sensors :

• Hysteresis

• High area

• Fluxgate : technique known since 1930

• Commercially available as macroscopic sensors

• No hysteresis

• Compatible with CMOS

• Size reduction is still a problem!

MOS-AK - 2005Page 14

/19Strasbourg 8 avril 2005

Fluxgate sensor principlesensing (V) excitation (H)

H magnetization (M)

M

V

External field to measure

Miniaturization

• possible (ferro post-

process)• good coupling between the

ferromagnetic core and the

sensing coil is an issue• Core size (Barkausen noise)

We need something to detect the magnetization flipping and saturation

MOS-AK - 2005Page 15

/19Strasbourg 8 avril 2005

Magnetic Tunnel Junction

Soft layer ±Hcsx

y

z

Hard layer ±Hch

Hcs Hch- Hcs- HchHx

Transverse field Hy = 0

R

Transverse field Hy ≠ 0

Symmetrical response

MOS-AK - 2005Page 16

/19Strasbourg 8 avril 2005

2D fluxgate sensor using a single MTJ• The soft layer is used as the ferromagnetic core• The junction resistance detects the magnetization changes

• Double excitation

no core-sensing coil coupling problem

• Macroscopic prototype

Triangle : along main axis

Square : perpendicular to main axis

MOS-AK - 2005Page 17

/19Strasbourg 8 avril 2005

Experimental results

Along the main axis :

1086 V/T

Perpendicular to main axis :

534 V/T

Resolution :

Integrated version

HzT /2

Resolution 1 nT

MOS-AK - 2005Page 18

/19Strasbourg 8 avril 2005

Integration of the MTJ-Fluxgate

• MTJ above IC (post-processing)

• planar excitation coils

• low noise integrated electronics

• small area MTJ (1m x 1m) no Barkhausen noise

Compact model of the MTJ is required to simulate the fluxgate system!

A first model has been developped :• magnetization vector• demagnetizing field (junction shape)• coupling factor between both ferrolayers of the MTJ

See poster on

Compact modeling ofSpintronic devices inVHDL-AMS

MOS-AK - 2005Page 19

/19Strasbourg 8 avril 2005

Conclusion

• Not only MOS transistors in CMOS chip

• Hall effect sensors can find wide applications

• Fully compatible with CMOS

• On-chip circuitry advantage

• Need for accurate compact models

• High resolution magnetometers

• Resolution below 1nT

• Post-process cost justified by high resolution

• Need for compact models for spintronic devices