30
PRG, SHAs, 1 MOS Sample/Hold Ampliers Ideal Sample/hold Amplier Deviations from Ideality MOS Sample/Holds Practical Implementations

MOS Smaple and Hold Amplifiers

Embed Size (px)

Citation preview

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 1/30

PRG, SHAs, 1

MOS Sample/HoldAmplifiers

• Ideal Sample/hold Amplifier

•Deviations from Ideality

•MOS Sample/Holds

•Practical Implementations

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 2/30

Ideal Sample/Hold

vi

T/H

T/Hout

S/H

out

t

t

t

t

S/Hvi

T/H in

inT

H

T

Vout

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 3/30

1. Hold to Track Transition

vi

T/H

t

in

S/Hvi

T/H

vo

Finite acquisition time

2. Track Mode

DC offset

Finite Bandwidth3. Track-Hold Transition

S/H OffsetAperture Delay

H

T

H

Important Deviations from Ideality

T

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 4/30

PRG, SHAs, 4

Performance Limits in SHAs:What Ultimately Limits Performance in A/D InterfaceSystems?

•Fundamental Device limitations in SH function

•Practical Design Issues in SH function

Can We Do this?:

AntennaLPF S/H ADC

All-DigitalTV

500Mhz,18bitADC

Key Issue: For a given technology, what limitssampling bandwidth and rate?

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 5/30

f sig f s

f sig f s

f sig f s f sig f s

f sig f s

f sig f s

Ideal S/H

Real S/H

Sample

Sample

Sample

Beat Freq Test

A Frequency Domain View

Distortion Productsplus noise

Sources of Noise:

Sources of Distortion:

Jitter, kT/C

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 6/30

PRG, SHAs, 6

The Sampling Jitter Problem

Assume Nyquist Sampling at fs = 2 f sig

Result:

δV

V

π

2

∆t

Ts  

 ≈

Key Point: For Nyquist sampling, need:

RMS Jitter <

1

6  

  1

2B    

 Ts

δV

dV

dt ∆t 2πVf= =

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 7/30

PRG, SHAs, 7

Jitter Requirements at VariousSampling Rates

SR 8 bits 10 bits 12 bits

1 MHz 700ps 175ps 44ps

10MHz 70ps 17.5ps 4.4ps

100MHz 7ps 1.75ps 0.44ps

1GHz 0.7ps 0.175ps 0.044ps

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 8/30

PRG, SHAs, 8

0 dB-70dB

10

20

30

40

50

60

7080

90

S/(N+D)

Input level

Low frequency signal

High Frequency Signal

V̇o Vos Vin 1 ε1

+( ) ε2

dVin

dt      

ε3

dVin

dt      

2

higherterms+ + + +=

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 9/30

PRG, SHAs, 9

Vin

Vg

Cs

Vo

MOS Sample/Hold Circuits

Fundamental Limits to Performance• kT/C Noise

• Sampling Jitter

• Sample-Mode Bandwidth

Practical Limits to Performance

• Charge-injection errors

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 10/30

PRG, SHAs, 10

C

100pF 6.4uV

10pF 21uV

1pF 64uV

100fF 210uV

10fF 0.64mV

kTC

kT/C Noise Limitation

VinCs

Vov

n2

4kTR∆f=

vo

2

f

vo

2

vo

2

 

 

∫ df kT

C=

V

Variance=kT/C

Vsample

Probability

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 11/30

PRG, SHAs, 11

Another Interpretation:

Vin Cs

Vo

εn

E 12

CV2

    kT ExpectedNoiseEnergy= = =

SNRεsigkT

=

εsig SignalEnergy

1

2CV

2

sig= =

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 12/30

PRG, SHAs, 12

Sample/Hold Offset

Vin

Vg

Cs

Vo

Vg

t

(vin+VT)

vin

VoVin

vin

∆v−( )+

What’s happening in the device?

S

G

D

Sub

Limiting Case1: Slow gate fall time, channel equilibrates

Limiting Case 2: Fast gate fall time, 1/2 of qc goes each way

S D

G

Substrate

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 13/30

PRG, SHAs, 13

Fast Case

S

G

D

Sub

Vg

Vg

t

φs

x

Lt=0-

φs x

L

t=0+

φs x

Lt=0++

Vg

id,is

Vout

t

t

t

isid

dV

Vout

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 14/30

PRG, SHAs, 14

Fast Case, Cont.

∆VColC

L

VH

VL

−    −

12

L 2Ld−

   WLCox VH VT

− Vi−

   

CL  

       

−=

∆V Vi

1 ε+( ) Vos

+=

Vos

COL

CL

V(H

VL

)−12

V(H

− VL

)C

C−=

ε 12

W L 2D ) Cox

−    

CL

=

Where:

C2 Cox L 2Ld−

 

 

W=

∆VC

olC

L

VH

VL

−    −

12

qchannel

CL          

−=

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 15/30

PRG, SHAs, 15

Slow Case

Vg

Cs

Vo

20/1.5

=1.0pF

∆V ColC

sC

ol+

vi 

  VT

VL  

 −+−=

ε 3.6fF1pF

0.0036= =

∆V ColC

s

vi 

  VT

VL  

 −+−=

∆V Vin 1 ε ) Vos

+ +  −=

εC

olC

L          

=

where:

Vos

VT

VL

−    

Col

CL

=

Example:

VT = 1V

VH= 5V

VL = 0V

Vi = 2V

Col = 0.18fF/micron

Col = (0.18fF/u)(20u)

Vos = (1v)(0.36%)

=3.6mV

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 16/30

PRG, SHAs, 16

Fast Case Example

Vin=1V

VT = 1V

VH = 5V

VL = 0VVi = 2V

Col = 0.18fF/micron

Cox = 1ff/square micron

Result:

ε 12

20µ 1.14µ( )1ff

µ2      

1pF0.014= =

Vos = 6.3mV

0.014

0.0036

fast slow

ε

6.3mV

3.6mV

fast slow

Vos

Vg

Cs

Vo

20/1.5

=1.0pF

Refs:

Wilson,JSC,12/85

Shieh, JSC, 4/87Vittoz, JSC, 6/85

β µCox

WL

=

VH

VL

−( ) βUC

s      

UdV

gdt

=

Critical params:

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 17/30

PRG, SHAs, 17

Speed-Accuracy Trade-off

Sample-Mode Bandwidth:

τ∆V( )L

2

2µ=

1

RonCL

1

τ

µqchan

L2CL

µ

L22∆V( )≈= =

τ∆V

0.5u 1u 1.5u 2u

Channel Length

12(mV)(ns)

Ref- Temes, Electronics Letters

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 18/30

PRG, SHAs, 18

Practical Implementations of CMOS SHAs

Key Issue: Control of Charge Injection

1. Dummy Switch

Cs

Problem: No way to balance overClock fall time variations

2. Dummy Switch w/Charge Balance Cap

Cs

Problem: R must be big,

limits sample-mode bandwidth

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 19/30

PRG, SHAs, 19

Implementations, Cont’d

3. Complementary NMOS, PMOS

Cs

Vh

Vl

t

Assume fast case12

qCN

12

VH

VTN

Vi

−−( ) WN

LN

CoxN

= Key Point:

1. Offsets PartiallyCancel

2. Gain errors ADD!!

1

2

q

CP

1

2

V

i

V

TP

V

L

−−( ) W

P

L

P

C

oxP

=

∆V Vin 1 ε ) Vos

+ +  −=

εW

PL

PC

oxPW

NL

NC

oxN+

CL    

     

=

where:

Vos

VOSN

VOSP

−    

Col

CL

=

,

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 20/30

PRG, SHAs, 20

Implementations, Cont’d

4. Get rid of offset- Go Differential

Cs

Cs

vi+

vi-

Vg

Vo+

Vo-

vo1

vi1

1 ε+( ) Vos1

+=

v

o2

v

i2

1 ε+( ) V

os2

+=

∆vo

∆vi

1 ε+( )=

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 21/30

PRG, SHAs, 21

Implementations, Cont’d

4. Get rid of Signal-Dependent Error- Bottom Plate Sampling

Csvi

+

vi-

Vo+

Vo-

Cs

φ1

φ2

1. Turn off

2. Turn off

3. Use Active Ckt to sense

φ2

φ1

φ1

φ2

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 22/30

PRG, SHAs, 22

Implementations, Cont’d

6. Add active device for signal sensing

Csvi+

vi- Cs

φ1A

φ1

φ1B

φ2

φ1C

φ1

φ2

φ2

AZ

vo+

vo-

φ1A

φ1B

φ1C

φ2

Example:

Ohara JSC 12/87

Vos<100uV

S/M BW = 30Mhz

Nulling Switch gives 4x better figure of merit

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 23/30

PRG, SHAs, 23

Stand-Alone Building-Block SHAs

Important Characteristic:

• Low-Impedance NRZ Output

• Usually Bipolar or BICMOS

Common Configurations:

Open Loop:

Closed Loop:

Closed Loop withSumming NodeSampling

refs: Chambers ISSCC91,Real, ISSCC91, Wooley ISSCC90

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 24/30

PRG, SHAs, 24

Stand-Alone SHAs, Cont’d

Example: Wooley JSC 12-89, Stafford JSC 12/74

-

+

-

+vin

S/H

CLRL

• Bottom-Plate Sampling- Different Implementation

• Output amp always active and valid

• Widely used in building blocks

• Disadvantage- Sample Mode Bandwidth limited by active devices

• Disadvantage- Offset, Noise limited by Amps

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 25/30

PRG, SHAs, 25

Nonlinear Transient Charge Injection in

MOS SHAs

Csvi

+

vi-

Vo+

Vo-

Cs

φ2

Ron1

Ron2

i=C(dV/dT)

i=C(dV/dT)

+

-

vds

= Ron

C(dv/dt)

v

ds

= -R

on

C(dv/dt)

+

-

Two Key Effects:

1. Ron

1, Ron

2 = f(vin

). Creates

Must match Ron

s

Signal-dependent charge-inj.

2. vds differences at turnoff givesdv/dt dependent charge

injection mismatch.

Must optimize switch sizes

Ref: Lin, JSC, April 91

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 26/30

PRG, SHAs, 26

Summary of S/H Charge-Injection Errors

Error Term Ckt Techniques

Vos Differential S/H

AZ Amplifier

Bottom-platesampler

Limits S/M Band-width

Nonlinear Chg Inj.

Vε Vos ε1Vin+ ε2

dVin

dt    

 

ε3

dVin

dt    

 2

etc+ += =

ε1

ε2

ε3

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 27/30

PRG, SHAs, 27

Diode Bridge Samplers

vin

Ibias

isw

Ibiasisw

Cs

Vout

t

off

on

t

off

on

isw

• Can be very fast if diodes are fast (i.e. Schottky)

• Hard to control pedestal- currents must match and must clamp toVout

• Matches ECL Bipolar well

Best suited to High-speed/low accuracy

Refs- Corcoran, ISSC87

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 28/30

PRG, SHAs, 28

Speed-Accuracy Trade-off in Diode Samplers

vin

Ibias

isw

Ibiasisw

Cs

Neglect Parasitics

Ron 1gm

kTqI

d∼=

qstored

Ibias

τf

=

Vεq

storedC

s

Ibias

τf

Cs

= =

ω 3db−1R

onC

s

I

biasC

skTq

1τ= = =

τVε τf kTq    

W

b

( )2

2µ= =

τVεL( )

2

2µ=

(Bipolar Figure of Merit)

(MOS Figure of Merit)

Ron

As

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 29/30

PRG, SHAs, 29

Performance Examples

Author TechnSupplyV

Pwr S.M. BWS.M.Vos

S/HVos

T/Hdelay

Sample Rate

Type

Ohara

JSC

12/87

3u

CMOS

10V 50mW 100Mhz 0 100uV 500ns 500khz MOS

Passiv

Sampl

Wool.

JSC

12/89

1.2u

BiCMOS

10V 1.2W 250Mhz 10mV 500uV 12ns 20Mhz CL/FB

RealISSCC

91

2u

BICMOS

10V 100mW

15Mhz NR 500uV 15ns 4Mhz OL/FB

ChambersISSCC

91

5Ghz/2.5Ghz

Compbipolar

+5,-5,+7

-10

1.2W 200Mhz 1mV 5ns 20Mhz OL

7/27/2019 MOS Smaple and Hold Amplifiers

http://slidepdf.com/reader/full/mos-smaple-and-hold-amplifiers 30/30

PRG, SHAs, 30

References on SHAs

• Stafford, et al JSC 12/74

• Vittoz, et al, JSC, 6/85

• Wilson, et al, JSC, 12/85

• Shieh,et al, JSC, 4/87

• Ohara, et al, JSC, 12/87

• Wooley, et al, JSC, 12/89

• Chambers,et al, ISSCC91

Real, et al, ISSCC91• Corcoran, et al, ISSCC87

• Lin JSC 4/91