MS Course Mass Analyzers Class1

Embed Size (px)

Citation preview

  • 8/6/2019 MS Course Mass Analyzers Class1

    1/67

    Mass Analyzersrpd Somogyi

    Chemistry and Biochemistry MassSpectrometry Facility

    Universit Joseph Fourier, Grenoble, November 19, 2010

    Want to do MS or MS/MS ?Need a Mass Spectrometer

    Ionizationsource

    Massanalyzer

    Detector

    inlet all ions sortedions

    Datasystem

  • 8/6/2019 MS Course Mass Analyzers Class1

    2/67

    Ionizationsource

    Massanalyzer

    Detector

    ions

    a asystem

    Ion movement Charged metal plates (electrodes, lenses) used

    Electrodes and physical slits used to shape andrestrict ion beam

    Good sensitivit is de endent on ood iontransmittance efficiency in this area

    inlet all ions

    Ionizationsource

    Massanalyzer

    sortedions

    Detector

    Datasystem

  • 8/6/2019 MS Course Mass Analyzers Class1

    3/67

    Ion detection

    Ions can be detected efficiently w/ high

    that eject electrons

    inlet all ions

    Ionizationsource

    Massanalyzer

    sortedions

    Detector

    Datasystem

    Kinetic energy of ions defined by

    Ion energy

    E = zeV = qV = mv2

    E = kinetic energy

    m = mass

    v = velocitye = electronic charge (1.60217e-19 C)

    z = nominal charge

    V = accelerating voltage

  • 8/6/2019 MS Course Mass Analyzers Class1

    4/67

    Learning Check

    Consider two electrodes,

    one at 1000 V and one at ground (0 V)

    1000V 0 V

    + ion will travel with kinetic energy of___________

    Mass spectrometers separate ions with a

    Mass Resolution

    defined resolution/resolving power

    Resolving power- the ability of a massspectrometer to separate ions with

    eren mass o c arge m z ra os.

  • 8/6/2019 MS Course Mass Analyzers Class1

    5/67

    M

    Resolution defined at 10% valley

    R=M/M

    M

    Example of ultrahigh resolutionin an FTICR

    J. Throck Watson Introduction to Mass Spectrometry p. 103

  • 8/6/2019 MS Course Mass Analyzers Class1

    6/67

    General about mass

    spectrometers

    Common features

    Accelerated charge species (ions) interactwith

    Electrostatic field (ESA, OT)

    Ma netic field B ICR

    Electromagnetic (rf) fields (Q, IT, LT)

    Or ions just fly (TOF)

    1) They should sort ions by m/z

    Desirable mass spectrometercharacteristics

    2) They should have good transmission (improvessensitivity)

    3) They should have appropriate resolution (helpsselectivity)

    4) They should have appropriate upper m/z limit

    5) They should be compatible with source output(pulsed or continuous)

  • 8/6/2019 MS Course Mass Analyzers Class1

    7/67

    For each of the following applications, choose the mostappropriate mass analyzer from the following list. Use eachanalyzer only once.

    orbitrap (OT) quadrupole (Q)time-of-flight (TOF) FTICR

    Analyzer Purpose______ synthetic organic chemist wants exact mass of

    compound_______ biochemist wants protein molecular weight of

    relatively large protein (MW 300,000)_______

    confirmation of benzene in extracts from 3000

    soil samples_______ Petroleum chemist wants to confirm the

    presence of 55 unique compounds at onenominal mass/charge value in a mass spectrum

    m/z values are determined by actually measuring different

    Mass spectrometers record m/zvalues

    Type of analyzer electric sector

    magnetic sector

    Physical parameter used asbasis for separation kinetic energy/z

    momentum/z

    p ys ca parame ers

    quadrupole, ion trap time-of-flight

    FT-ion cyclotron resonance

    m/z flight time

    m/z (resonance frequencies)

  • 8/6/2019 MS Course Mass Analyzers Class1

    8/67

    Magnetic (B) and/or Electrostatic (E) (HISTORIC/OLDEST)

    Time-of-flight (TOF)

    Types of Mass Analyzers

    Quadrupole (Q)

    Quadrupole Ion Trap (IT)

    Linear Ion Trap (LT)

    Orbitrap

    Fourier Transform-Ion Cyclotron Resonance (ICR)

    Performance Advantages / Disadvantages / $$$

    TOF

    Quadrupole

    Quadrupole Ion trap

    FTICR

    Orbitrap

  • 8/6/2019 MS Course Mass Analyzers Class1

    9/67

    Notice: accelerating voltages vary with analyzer(has consequences for MS/MS)

    High voltage (keV energy range)

    magne

    electrostatic (E)

    time-of-flight (TOF)

    quadrupole (Q)

    ion trap (IT, LT)

    ion cyclotron resonance (ICR)

    IonizationIonization AnalysisAnalysis

    MS and MS/MS revisited

    MS:

    Collide withtarget to producefragments

    Collide with

    fragments

    MS/MS:

    Ionization

    MS/MS:

    Ionization AnalysisAnalysisSelectionSelection ActivationActivation

  • 8/6/2019 MS Course Mass Analyzers Class1

    10/67

    http://www.iupac.org/goldbook/T06250.pdf

    Tandem in Space

    Current popular MS/MSarrangements (2009)

    q

    Q Trap

    Q TOF

    TOF TOF

    Tandem in Time

    Ion Trap (2 or 3 D)

    FT-ICR (FT)

  • 8/6/2019 MS Course Mass Analyzers Class1

    11/67

    Decision factors when choosing a

    mass spectrometer

    S p e e e e e e e e e e e e e d

    R e s o l u t i o n Sensitivity

    r Co$t

  • 8/6/2019 MS Course Mass Analyzers Class1

    12/67

    TOFQuadrupole

    Quadrupole Ion trap

    FTICR

    Orbitrap

    D

    tor

    Time of Flight

    KE = zeV = mv2 m = massV = velocity

    v = D/t D = distance of flight

    m/z

    V

    Dete

    t = time of flightm(D/t)2 = zeV KE = kinetic energy

    e = charge

    D=t

    21

    2zeVm

    /

  • 8/6/2019 MS Course Mass Analyzers Class1

    13/67

    How does the ion generationstep in TOF influence m/z

    analysis?

    Matrix

    h

    et

    Analyte+

    Targ

    Analyte ion may have (1) Kinetic Energydistribution or (2) Spatial distribution

    How will KE spread influencethe spectrum?

    Ions of same

    Hasslightlygreater KE

    Effect is broadpeaks

    c/o Cotter

  • 8/6/2019 MS Course Mass Analyzers Class1

    14/67

    Solution to peak broadening caused by

    How will KE spread influencethe spectrum?

    kinetic energy spread:

    Reflectron (ion mirror)

    Series of ring electrodes, typicallywith linear voltage gradient

    Increased resolution by compensating for KE spread from thesource

    Time-of-Flight Reflectron

    http://www.jic.bbsrc.ac.uk/services/proteomics/tof.htm

  • 8/6/2019 MS Course Mass Analyzers Class1

    15/67

    Ion Source

    Detector

    Mass Analyzer

    (TOF)

    Reflectron

    Reflectron TOF

    xx

    x

    x x

    (MALDI)

    KE = mv2

    High resolution

    Ion Source

    Detector

    Mass Analyzer(TOF)

    ReflectronReflectron TOF

    x

    (MALDI)

    KE = mv2

    High resolution

  • 8/6/2019 MS Course Mass Analyzers Class1

    16/67

    http://www.abrf.org/ABRFNews/1997/June1997/jun97lennon.html

    We talked about howto deal with kineticenergy spread.

    How do we deal withions formed atdifferent locations inthe source (spatialdistribution)?

  • 8/6/2019 MS Course Mass Analyzers Class1

    17/67

    10 KV 10 KV

    Delayed Extraction

    +

    +

    +

    +

    7 KV

    ++

    ++

    +

    +

    Low mass (below 40 k Da)High resolution

    Continuous TOF

    Resolution = 700 (FWHM)

    Continuous vs. Delayed Extraction

    Delayed Extraction

    Resolution = 6000 (FWHM)

  • 8/6/2019 MS Course Mass Analyzers Class1

    18/67

    3145.708 * Pepmix\0_N6\1\1SRef

    5000

    6000

    In

    te

    n

    s.

    [a

    .u.

    ]

    Recent TOF designs: improved resolution, better sensitivity and mass accuracy(Ultraflex III MALDI TOF-TOF)

    Resolution: 25 000

    3177.722

    1000

    2000

    3000

    4000

    S/N: 46

    03140 3145 3150 3155 3160 3165 3170 3175 3180 3185

    m/z

    m/zRange: unlimited u

    ~

    Quantification: low -

    Typical TOF Specs

    ,(Reflectron)

    Mass Accuracy: ~ 3-10ppm (300-4,000 u)

    Scan Speed: 106 u/s

    Vacuum: 10-7 Torr

    Positive andNegative Ions

    Variations: Linear,Reflectron, Tandem

    ,and/or sectors

  • 8/6/2019 MS Course Mass Analyzers Class1

    19/67

    constructed if the only analyzer

    type available is TOF?

    TOF-TOF

    http://docs.appliedbiosystems.com/pebiodocs/00106293.pdf

  • 8/6/2019 MS Course Mass Analyzers Class1

    20/672

    TOF TOF(high energy, keV, collisions)

    More

    ragmen a on

    than QqQ

    or trap

    (low energy,e , co s ons

    Mass Spectrometer Advantages Disadvantages

    TOF-TOF high resolution, high Large size

    Advantages and Disadvantages

    m/z fragment ions

    keV CID

    Not ideal forcontinuous

    ionization source

    easier de novopeptide sequencing

    $$$

    dn and wn todistinguish Ile/Leu

  • 8/6/2019 MS Course Mass Analyzers Class1

    21/672

    TOFQuadrupole

    Analyzers

    Quadrupole Ion trap

    FTICR

    Orbitrap

  • 8/6/2019 MS Course Mass Analyzers Class1

    22/672

    Quadrupole (Q)

    four parallel rods or poles

    fixed DC and alternating RF voltages

    Quadrupole (Q)

    rf voltage+dc voltage

    rf voltage 180 out of phase-dc voltage

    on y part cu ar m z w e ocuse on t edetector, all the other ions will be deflected intothe rods

    scan by varying the amplitude of the voltages

    (AC/DC constant).

  • 8/6/2019 MS Course Mass Analyzers Class1

    23/672

    Positive rod

    Quadrupole Field Animation

    Negative rod

    http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html

    Positive rod Negative rod

    negative DC offset

    +

    +

    -- positive DC offset

    -DC

    +DC

  • 8/6/2019 MS Course Mass Analyzers Class1

    24/672

    + DC, ions focused to center

    Ion Motion in Quadrupoles- a qualitative understanding

    - DC, ions defocused

    +DC w/ rf, light ions respond to rf, eliminated(high mass filter)

    -DC w/ rf, light ions respond to rf, focused tocenter(low mass filter)

    TSQ 70001993 to 2000

    TSQ Quantum2001 to

    c/o ThermoFinnigan Corp.

  • 8/6/2019 MS Course Mass Analyzers Class1

    25/672

    Quadrupole animation

    http://www.youtube.com/watch?v=8AQaFdI1Yow&feature=related

    QuickTime and aTIFF (LZW) decompressor

    are needed to see this picture.

  • 8/6/2019 MS Course Mass Analyzers Class1

    26/672

    RF only mode

    Initial kinetic energy affects ion motion in quad

  • 8/6/2019 MS Course Mass Analyzers Class1

    27/672

    m/zRan e: 2-4000 u Quantification: good

    Quadrupole Typical Specs

    Resolution: Unit Mass Accuracy: ca +/-

    0.1 u

    Scan Speed: 4000 u/s Vacuum: 10-4 10-5

    Torr

    Positive and NegativeIons

    Variations: SingleQ,TripleQ, Hybrids

    Low Voltages:

    RF ~6000 10000 VDC ~500V-840V

    Source near ground

    What MS/MS instruments can be

    What MS/MS instruments can beproduced from Q and TOF?

  • 8/6/2019 MS Course Mass Analyzers Class1

    28/672

    Triple Quadrupole- since 1970s and still going strong!

    Q1 Q2 Q3

    S D

    Attractive Features:

    Source near ground and operates at relatively high pressure

    Couples well to source and to chromatographyMultiple scan modes easy to implement

    DetectionSystem

    Q3

    Dynode Turbo

    Triple Quadrupole (QQQ)

    Source

    HeatedCapillary

    Q2

    Q1Q0

    c/o Thermo Finnigan Corp.

    Q3

    Q2

    Q1 Q0 Q00

    c/o Agilent Corp.

  • 8/6/2019 MS Course Mass Analyzers Class1

    29/672

    Quadrupole Time of Flight(Q-TOF)

    http://www.waters.com/WatersDivision/waters_website/products/micromass/ms_top.asp (outdated)

    Low-energy (eV) Collisionswith Gas

    The third Q in QQQ is replacedby a TOF

    Advantages?

  • 8/6/2019 MS Course Mass Analyzers Class1

    30/673

    Q-TOF

    80 fmol BSA digest

    QQQ

    Shevchenko, A., et al., Rapid. Commum. Mass Spectrom., 1997, 11: 1015-1024

    Ion Mobility in a Q-TOF - Animation

    http://mass-spec-blog.blogspot.com/2007/09/ion-mobility-separation-animation.html

  • 8/6/2019 MS Course Mass Analyzers Class1

    31/673

    Another important use of a modified Q-TOF:

    Ion Mobility

    http://mass-spec-blog.blogspot.com/2007/09/ion-mobility-separation-animation.html

    Selection of [M+2H]+2 at m / z246.1

    600

    500

    400

    100

    80enisty

    300

    200

    100

    m/z

    SDGRGGRGDS

    40

    20

    0RelativeIn

    76543210Drift Time (ms)

  • 8/6/2019 MS Course Mass Analyzers Class1

    32/673

    Transfer CID of [M+2H]+2 at m / z246.1

    3.0

    ime(ms)

    100eAbundance

    100

    50

    0

    .

    2.0Drift

    dt = 2.68-2.83 ms

    SDGRG

    b4

    RSi

    y4y3

    50

    0

    Relativ

    500400300200100

    m / z

    dt = 2.49-2.68 ms

    GRGDS

    b3

    b2

    y1

    R

    Si

    UL_110510_GNR.raw : 1

  • 8/6/2019 MS Course Mass Analyzers Class1

    33/673

  • 8/6/2019 MS Course Mass Analyzers Class1

    34/673

    140

    150

    )

    Corrected Cross Sections (A2) as a Function of m/z for SinglProtonated GnR (n=1-7)

    G7R

    100

    110

    120

    130

    libratedCrossSections(A

    G4R

    200 250 300 350 400 450 500 550 600

    90

    C

    m/z

    GR

  • 8/6/2019 MS Course Mass Analyzers Class1

    35/673

    TOFQuadrupole

    Analyzers

    Quadrupole Ion trap

    FTICR

    Orbitrap

    What is small, inexpensiveand still gives great MSMS ?????

    Quadrupole Ion TrapsMiniature IT: Cooks, R. G. and coworkers

    Anal. Chem. 2002, 74, 6145-6153; 2000, 72, 3291-3297.

  • 8/6/2019 MS Course Mass Analyzers Class1

    36/673

    http://www.chem.wm.edu/dept/faculty/jcpout/faculty.html

    Ion path in a trap

    Quadrupole Ion Trap (QIT)

    http://www-methods.ch.cam.ac.uk/meth/ms/theory/iontrap.html

  • 8/6/2019 MS Course Mass Analyzers Class1

    37/673

    Quadrupole Ion Trap (QIT)

    Quadrupole ion trap mass analyzer consists of threehyperbolic electrodes: the ring electrode, theentrance end cap electrode and the exit endcape ec ro e.

    Ions enter trap through inlet focusing system andentrance endcap electrode.

    An AC potential of constant frequency and variableamplitude is applied to the ring electrode to producea 3D quadrupolar potential field within the trappingcavity which traps ions in a stable oscillating

    . The oscillating trajectory is dependent on the trapping

    potential and the mass-to-charge ratio of the ions. During ion detection, the electrode system potentialsare altered to produce instabilities in the iontrajectories and thus eject the ions.

    Quadrupole Ion Trap (QIT)

  • 8/6/2019 MS Course Mass Analyzers Class1

    38/673

    3D - Quadrupole Ion Trap (Demo)

    Activation:Low-energy (eV) Collisions

    w as

    IRMPD(Infrared Multiphoton Dissoc)

  • 8/6/2019 MS Course Mass Analyzers Class1

    39/673

    Research: Micro CIT ArrayResearch: Micro CIT Array

    Matt Blain, SandiaCooks, Purdue

    . m

    2.4 m

    Top End Cap Array

    Ring Electrode Array

    Bottom End Cap Array

    Collector Array

    QIT Typical Specs

    m/zRange: 20-6000 u Quantification:

    Mass Accuracy: ca +/-0.1 u

    Scan Speed: 4000 u/s

    Vacuum: 10-3 Torr

    ,

    Positive andNegative Ions

  • 8/6/2019 MS Course Mass Analyzers Class1

    40/674

    Mass Spectrometer Advantages Disadvantages

    QIT Compact Limited storage of ions limits the

    Advantages and Disadvantages

    ion trap (spacecharge effect)

    MSn 1/3 of low massrange lost in MS/MS

    mode, typicaloperation

    scanning

    Relativelyinexpensive

    Low E collisions

    Mass Spectrometer Advantages Disadvantages

    QIT Poor uantification

    Advantages and Disadvantages

    Sensitive Collision energy notwell-defined in CIDMS/MS

    Mass Accuracy

    To increase mass accuracy in aTrap LT, orbitrap, FT-ICR

  • 8/6/2019 MS Course Mass Analyzers Class1

    41/674

    RF ION TRAP ELECTRODESTRUCTURES

    LCQ-Type 3D LTQ-Type (2D)

    ASMS Fall Workshop2006 JEPS

  • 8/6/2019 MS Course Mass Analyzers Class1

    42/674

    2D vs. 3D Ion Traps

    Skimmer

    Ion Transfer

    Tube

    Tube Lens

    Linear Trap Demo

    Skimmer

    Ion Transfer

    Tube

    Tube Lens

  • 8/6/2019 MS Course Mass Analyzers Class1

    43/674

    Overall Performance GainsOverall Performance Gains

    Trapping efficiency

    Detection efficiency

    Trapping capacity

    ~ 50-100% ~50% ~ 1-2x

    ~ 55-70% ~5% ~ 11-14x

    ~ 20,000 ions ~500 ions ~ 40x

    Increased Trapping Efficiency

    Increased Trapping Capacity

    Motivating Factors Realized

    Increased Sensitivity

    Increased Inherent Dynamic Range

    Which means....

    ncrease or u can Practical MSn

    Faster Scan Times - no scans (only one)

  • 8/6/2019 MS Course Mass Analyzers Class1

    44/674

    How are 3-D traps and linear

    ion traps used in MS/MS

    Stand alone

    3-D traps

    LTQ

    Front or back end of tandem-in-space

    LT-TOF

    LT-FT, LT-Orbitrap,

    QTrap

    Skimmer

    ~ 100% of ions trapped aredetected due to radial ejection

    Linear Ion Trap

    LIT and QTrap; Different ways of using Linear TrapsLIT and QTrap; Different ways of using Linear Traps

    Axial ejection allows forhybridization without compromise (FT)!

    Hybrid Quadrupole Trap

    ~ 15% detected*

    Majority of trapped ionscannot be scanned out

    Axial ejection depends on fringe fields generated by grid this grid compromises triple quadrupole performance

    *Hager, J., RCM., 2003, 17, 1389

  • 8/6/2019 MS Course Mass Analyzers Class1

    45/674

    Activation:

    CID-

    with Gas

    IRMPD

    ETD(electron transfer dissociation)

  • 8/6/2019 MS Course Mass Analyzers Class1

    46/674

    TOFQuadrupole

    Analyzers

    Quadrupole Ion trap

    FTICR

    Orbitrap

    Cyclotron motion of an ion in a magnetic field (B).Note: ion motion is much more complex due to the presence ofelectrostatic field (magnetron/cyclotron motion, see below)

  • 8/6/2019 MS Course Mass Analyzers Class1

    47/674

    Ion Detection Plates

    RF-excitation

    B

    v

    Ion Detection Plates

    Note: for clarity, the front and back trapping plates are not shown

  • 8/6/2019 MS Course Mass Analyzers Class1

    48/674

  • 8/6/2019 MS Course Mass Analyzers Class1

    49/674

    In the presence of a magnetic field, sampleions orbit accordin to c clotron fre uenc f

    Fourier Transform-Ion Cyclotron

    Resonance (FTICR)

    Cyclotron frequency related to charge of ion(z), magnetic field strength (B) and mass ofion (m).

    All ions of same m/z will have same cyclotronfrequency at a fixed B and will move in acoherent ion packet.

  • 8/6/2019 MS Course Mass Analyzers Class1

    50/675

    FTICR Image is Fourier transformed to obtain the component

    frequencies and amplitudes (intensity) of the various ions. Cyclotron frequency value is converted into a m/z value to

    produce mass spectrum w/ the appropriate intensities.

    a

    b c194.1405

    C9H16N5time (ms)

    194.1657

    194.1154

    C11H20N3

    C7H12N7

  • 8/6/2019 MS Course Mass Analyzers Class1

    51/675

    If the frequency is slightly off,The excitation is called SORI (sustained off-resonance irradiation)

    FTICR animation

    http://www.youtube.com/watch?v=a5aLlm9q-Xc&NR=1

    QuickTime and aTIFF (LZW) decompressor

    are needed to see this picture.

  • 8/6/2019 MS Course Mass Analyzers Class1

    52/675

    FTICR Typical Specs

    m/zRange: > 15000 u6

    Quantification:,

    Mass Accuracy: 100ppb

    Scan Speed: fast

    Vacuum: 10-7- 10-9 Torr

    ,

    Positive andNegative Ions

    11+

    10+

    12+

    9+

  • 8/6/2019 MS Course Mass Analyzers Class1

    53/675

    Charge state/MW determination

    for proteins

    m = z(m/z)

    Carbonsisotopes som=1 Da

    Calc(m/z)

    FTMS Data

    Finnigan LTQ FTLinear Ion Trap MS MS, MS/MS and MSn Analysis AGC Control Secondary Electron Multiplier Detector

    FTICR MS Ion Image Current Detector Accurate Mass, High Resolution ECD, IRMPD

    7 T Actively Shielded

    Superconducting Magnet

    Linear Ion Trap Data

    210L/s60m3/hr 300L/s 400L/s 210L/s15L/s

    Triple Ported Turbo Pump

    ECD Assembly

    IRMPD Laser Assembly

  • 8/6/2019 MS Course Mass Analyzers Class1

    54/675

    The new apex-ultra- -

    Introducing the New apex-ultraHybrid Qq-FTMS

    Announced at PittCon 2007 in Chicago, IL

    with power and versatility

    Improved electronics forsubstantial gains inanalytical performanceand capabilities

    Comprehensive softwaretools that are specificallydesigned for proteincharacterization

    Versatility matched with Performance

    The apex-ultra

    Q1 h2h1

    Masses can be filteredhere in a results-driven,targeted approach

    ESI source region ECD / IRMPD

    Ions accumulated hereto build significantpopulations an in-cellevent (e.g. ECD)

    Continuous Accumulation of Selected Ions CASI

    CA SI p rov ides the means to en r i ch o r am p l i f y l ow abundan t spec ies fo r subsequen t f ragm en ta t ion and ana lys is

  • 8/6/2019 MS Course Mass Analyzers Class1

    55/675

    Bruker 9.4 T FT-ICR Apex-Qh Tandem Mass Spectrometer

    MALDIDual source, MS only, no ion selection

    ESI

    QCID (eV) MS/MS

    Ion selection and activation in the ICR

    IRMPD, SORI, ECD

    HDX in the ICR cell

  • 8/6/2019 MS Course Mass Analyzers Class1

    56/675

    Activation:

    SORI CIDLow-energy (eV) Collisionswith Gas (off resonance)

    RE(resonance excitation)

    IRMPD(Infrared Multiphoton Dissoc)

    ECD(electron transfer dissociation)

    90.2256

    175.1186

    249.1593

    302.1453

    408.1864465.2077

    560.2803

    595.3171

    YIGSR_QCID_22eV_000002.d: +MS2(595.0)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    7x10

    Intens.

    1 : +81

    MH+

    QCID 22 eVMS/MS spectra depend

    oni) Charge stateii) Ion activation methodiii) Collision energy

    136.0756

    249.1593

    277.1541

    319.1718

    432.2552

    _dou y_ _ e _ 1.d: + ( .

    0.0

    0.5

    1.0

    1.5

    x1

    YIGSR_doubly_IRMPD_40P_0_30s_000001.d: +MS2(298.0)7x10

    [M+2H]2+

    QCID 6 eV

    y5

    (more details in theIon ActivationMethodsby Vicki Wysocki)

    100 200 300 400 500 600 m/z100 200 300 400 500 600 m/z

    102.7325

    249.1644

    .

    595.34660.0

    0.5

    1.0

    1.5

    2.0

    100 200 300 400 500 600 m/z

    IRMPD 0.3s, 30%

  • 8/6/2019 MS Course Mass Analyzers Class1

    57/675

    Mass Spectrometer Advantages DisadvantagesFTICR Highest recorded

    mass resolution of allLimited Dynamic

    Range

    Advantages and Disadvantages

    mass spectrometers

    MSn Low E collisions

    Non-destructive iondetection

    High vacuum

    Low presure

    (difficult GC/LCcoupling)

    Accurate massmeasurement

    Big size

    Powerful capabilitiesfor ion chemistryexperiments (ion-

    molecule rxns)

    Not a highthroughput technique

  • 8/6/2019 MS Course Mass Analyzers Class1

    58/675

    TOFQuadrupole

    Quadrupole Ion trap

    Magnetic sector

    FTICR

    Orbitrap

    Orbitrap

  • 8/6/2019 MS Course Mass Analyzers Class1

    59/675

    Orbitrap

    LTQ Orbitrap Hybrid MSFinnigan LTQ Linear Ion Trap

    API Ion source Linear Ion Trap C-Trap

    Differential pumping

    Differential pumping

  • 8/6/2019 MS Course Mass Analyzers Class1

    60/676

    LTQ Orbitrap Hybrid MSSystem Integration

    Gas

  • 8/6/2019 MS Course Mass Analyzers Class1

    61/676

    Ion Motion in the Orbitrap

    Simulation of ion trajectory with SIMIONSimulation of ion trajectory with SIMION

    2

    Rm2

    RmCharacteristic frequenciesCharacteristic frequencies

    Frequency of rotation

    Frequency of radial oscillations r

    Frequency of axial oscillations z

    2

    =R

    2

    =R

    2

    2

    =R

    Rmzr

    2

    2

    =R

    Rmzr

    qm

    kz

    /=

    qm

    kz

    /=

    Insulin: m/z = 5733

    Charge state: +5, +4 and +3

    Insulin: m/z = 5733

    Charge state: +5, +4 and +3

    Orbitrap --Resolving Power

    +

    +5

    +3

    m/z1,1491,1481,147

    +4

    m/z2,0001,8001,6001,4001,200

    +4m/m = 70,000

    m/m = 45,000

    m/z1,4361,4351,434

    m/z1,9141,9131,9121,911

    +3

    m/m = 40,000

    R. Noll, H. Li, 2002

  • 8/6/2019 MS Course Mass Analyzers Class1

    62/676

    Question: Consider an ion source block and anextraction lens. How would you bias the block andlens if you want the ions to be accelerated by

    b) 5 eV (appropriate for entering a quadrupole)

    c) 20,000 eV (appropriate for entering a TOF)

  • 8/6/2019 MS Course Mass Analyzers Class1

    63/676

    Learning Check

    Draw the appearance of the mass spectrum in whichboth singly and doubly charged YGGFLR (molecular.

    quadrupole, TOF and FT-ICR (Hint: peaks widthsimportant)

    712 in Quad, TOF, ICR

    sity

    TOF

    m/z

    Intensity

    Inten

    QUAD

    ICR

    m/z

    m/z

    Intensity

  • 8/6/2019 MS Course Mass Analyzers Class1

    64/676

    Instrument Performance for Proteomic Applications

    Han et al., Curr. Opin. Chem. Biol. 2008; 12(5):483-490.

  • 8/6/2019 MS Course Mass Analyzers Class1

    65/676

    Many instruments are complementary

    ,

    Assess your needs

    Assess your budget

    @ Research level, may want to buildyour own

    Suggested Reading ListGENERAL MS AND MS/MS

    Kinter, M. and Sherman, N. E., Protein Sequencing and Identification Using Tandem Mass Spectrometry,Wiley and Sons, New York, NY, 2000.

    De Hoffmann E., Mass Spectrometry Principles and Applications (Second Edition), Wiley and Sons,New York, NY, 2002.

    Busch, K.L., et al., Mass spectrometry/ mass spectrometry: techniques and applications of tandemmass spectrometry, VCH Publishing, New York, NY, 1988.

    McLafferty, F.W. (Ed) Tandem Mass Spectrometry, Wiley and Sons, New York, NY, 1983.

    McLafferty, F.W. and Turecek, F. Interpretation of Mass Spectra, University Science Books, New York, NY, 1993.

    Siuzdak, G. Mass Spectrometry for Biotechnology, Academic Press, San Diego, CA, 1996.

    Gygi, S.P. and Aebersold, R., Curr. Opin. Chem. Biol., 4 (5): 489, 2000.

    Roepstorff, P., Curr. Opin. Biotech., 8: 6, 1997.

    De Hoffmann, JMS, 31: 129, 1996.

    Mann, M. et al., Annu. Rev. Biochem., 70: 437, 2001.

    McLuckey, S and Wells, J.M., Chem. Rev., 101: 571, 2001.

  • 8/6/2019 MS Course Mass Analyzers Class1

    66/676

    Suggested Reading ListQ-TOF

    Morris, H.R. et al., J. Protein Chem., 16: 469, 1997.

    ShevchenckoA. et al. Ra idCommun. MassS ectrom., 11: 1015 1997.., ., . ., , .

    Shevchencko A., et al., Anal. Chem., 72: 2132, 2000.

    Medzihradszky, K.F., et al., Anal. Chem., 72: 552, 2000.

    Glish, G.L. and Goeringer, D.E., Anal. Chem., 56: 2291, 1984

    Morris, H.R. et al., Rapid Commun. Mass Spectrom., 10: 889, 1996.

    Wattenberg, A. et al., JASMS, 13 (7): 772, 2002.

    Lododa, A.V. et al., Rapid Commun. Mass Spectrom., 14(12): 1047, 2000.

    TOF

    Bush, K., Spectroscopy,12: 22, 1997.

    Cotter, R.J., Time-of-Flight: Instrumentation and Applications in Biological Research,ACS, Washington, DC, 1994.

    Suggested Reading ListTOF-TOF

    Yergey, A.L. et al., JASMS, 13 (7): 784, 2002.

    Go, E.P. et al., Anal. Chem., 75: 2504, 2003.

    FTICR

    Buchanan, M.V. (Ed), Fourier Transform MS, ACS, Washington, DC, 1987.

    Comisarow, M.B. and Marshall, A. G., Chem. Phys. Lett., 25: 282, 1974.

    McIver, R.T. et al., Int. J. Mass Spectrom. Ion Processes, 64: 67, 1985.

    Kofel, P. et al., Int. J. Mass Spectrom. Ion Processes, 65: 97, 1985.

    Williams, E. R. Anal. Chem., 70: 179A, 1998.

    McLafferty, F. W. Acc. Chem. Res., 27: 379, 1994.

    Fridriksson, E. K. et al., Biochemistry,39: 3369, 2000.

    Fridriksson, E. K. et al., Biochemistry, 38: 8056, 1999.

    Kelleher, N. L.et al., Protein Science, 7: 1796, 1998.

    McLafferty, F. W. et al., Int. J. Mass Spectrom., 165: 457, 1997..

  • 8/6/2019 MS Course Mass Analyzers Class1

    67/67

    Suggested Reading ListGreen, M. K. and Lebrilla, C. B. Mass Spectrom. Rev., 16: 53, 1997.

    Guan, S. and Marshall, A. G. Chem. Rev., 94: 2161, 1994

    QIT

    Marsh, R.E. et al., Quadrupole Storage Mass Spectrometry, vol.102, Wiley and Sons, New York, NY, 1989.

    Cooks, R.G. et al., Ion trap mass spectrometry. Chem. Eng. News, 69(12): 26, 1991.

    Jonscher, K.R. et al., Anal Biochem, 244(1): 1, 1997.

    Louris, J.N. et al., Anal. Chem., 59(13): 1677, 1987.

    Louris, J.N. et al., Int. J. Mass Spectrom. Ion Processes, 96(2): 117 1990.

    Cooks, R.G. et al., Int. J. Mass Spectrom. Ion Processes, 118-119: 1 1992.

    McLuckey, S. A. et al., Int. J. Mass Spectrom. Ion Processes, 106: 213, 1991.

    Ngoka, L. C. M. and Gross, M. L. Int. J. Mass Spectrom. 194: 247, 2000.

    Suggested Reading ListQQQ

    Yost, R. A. and Enke, C. G. J. Am. Chem. Soc., 100: 2274, 1978.Arnott, D. in Proteome Research: Mass Spectrometry, james, P (Ed.), pp 11-31, Springer-Verlag, Germany, 2001.Steen H. et al., JMS, 36: 782, 2001Miller, P.E. and Denton, M.B., J. Chem. Educ., 7: 617, 1986.Yang, l. et al., Rapid Commun. Mass Spectrom., 16(21): 2060, 2002.Mohammed, S. et al., JMS, 36: 1260, 2001.Dongre, A.R. et al., JMS, 31: 339, 1996.

    Orbitrap

    Hu, Q, Noll, RJ, Li, H., Makarov, A., Hardman, M., Cooks, R.G. JMS, 430-443, 2005.Makarov A. Anal. Chem. 2000; 72(6):1156-1162.

    Makarov A, Denisov E, Kholomeev A, Baischun W, Lange O, Strupat K, Anal. Chem. 2006; 78(7):2113-2120.

    Makarov A, Denisov E, Lange O, Horning S. JASMS. 2006; 17(7):977-982.

    Macek B, Waanders LF, Olsen JV, Mann M. Mol. Cell. Proteom. 2006; 5(5):949-958.

    Perry RH, Cooks RG, Noll RJ. Mass Spectrom. Rev. 2008; 27(6):661-699.