55
Radar Lecture @ Prof Y Kwag Korea Aerospace Univ. RSP Lab Chapter 4 Radar Detection

MS_4장 Radar Detection-std

Embed Size (px)

DESCRIPTION

Radar Detection

Citation preview

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ. RSP Lab

    Chapter 4

    Radar Detection

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.1 Detection in the Presence of Noise

    RSP Lab

    Detection in the Presence of Noise

    Fig 4.1. Simplified block diagram of an envelope detector and threshold receiver

    2variancewithnoise,Gaussianwhitemeanzeroadditive:)(

    signalechoradar:)(where

    )()(signalinput

    tn

    ts

    tnts

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    RADAR DETECTION

    RSP Lab

    - Band pass IF filter output signal is

    )/tan()(

    )1.4()(ofenvelope)(where

    )(sin)()(,)(cos)()(

    ))(cos()(sin)(cos)()( 000

    IQ

    QI

    QI

    vvaphaset

    tvtr

    ttrtvttrtv

    tttrttvttvtv

    alarmMissVtnts

    alarmFalseVtn

    DetectionVtnts

    T

    T

    T

    )()(

    )(

    )()(

    Radar designers seek to maximize the probability of detection for a given

    probability of false alarm

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    RADAR DETECTION

    RSP Lab

    - If filter output is composed of

    noise alone

    )2.4()()(,)()( tntvtntv QQII

    noise plus target return signal (sine wave of amplitude A)

    )3.4()(sin)()()(

    )(cos)()(cos)()()(

    ttrtntv

    AttnttrtnAtv

    QQ

    III

    Where the noise quadrature components and are uncorrelated zero mean

    Low pass Gaussian noise with equal variance, .

    )(tnI )(tnQ

    2

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Joint probability density function

    RSP Lab

    - The joint probability density function (pdf) of the two random variables is QI nn ,

    )4.4(2

    )sin()cos(exp

    2

    1

    2exp

    2

    1),(

    2

    22

    22

    22

    2

    rArnnnnf

    QI

    QI

    - The pdf of the random variable and , represent the modulus and phase

    of . The joint pdf for the two random variables is

    )(tr )(t

    )(tv )(,)( ttr

    )8.4(cos

    exp2

    exp2

    ),(

    )7.4()(casethisin

    )6.4(cossin

    sincosjacobian:where

    )5.4(),(),(

    22

    22

    2

    rAArrrf

    trJ

    r

    r

    n

    r

    n

    n

    r

    n

    J

    Jnnfrf

    QQ

    II

    QI

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Rice probability density function

    RSP Lab

    - The pdf for r alone is obtained by integrating over ),( rf

    2

    0

    22

    22

    2

    2

    0

    cosexp

    2

    1

    2exp

    ),()(

    drAArr

    drfrf

    Where the integral inside Eq.(4.9) is known as the modified Bessel function

    of zero order.

    )10.4(2

    1)(

    2

    0

    cos

    0

    deI

    Thus,

    2

    22

    202 2exp)(

    ArrAI

    rrf

    Rice probability density function.

    )11.4(

    )9.4(

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Rayleigh & Gaussian pdf

    RSP Lab

    )11.4(2

    exp)(2

    22

    202

    ArrAI

    rrf

    - Rice pdf

    pdfRayleighpdfRiceA thebecames),alonenoise(0If- 2

    .varianceandmeanofathebecames

    ,largeveryisIf-

    2

    2

    ApdfGaussianpdfRice

    A

    )12.4(2

    exp)(2

    2

    2

    rrrf

    )13.4(2

    )(exp

    2

    1)(

    2

    2

    2

    Arrf

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Rayleigh & Gaussian pdf

    RSP Lab

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Rayleigh & Gaussian pdf

    RSP Lab

    - The density function for the random variable is

    * Note that for the case of noise alone (A=0), Eq.(4.15) collapses to

    a uniform pdf over the interval {0, 2}.

    drrff

    r

    0

    ),()(

    cos

    2

    )sin(exp

    2

    cos

    2exp

    2

    1)(

    2

    2

    22

    2 AF

    AAAf

    x

    dexFwhere

    22

    2

    1)(

    )14.4(

    )15.4(

    )16.4(

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Rayleigh & Gaussian pdf

    RSP Lab

    - One excellent approximation for the function F(x) is

    02

    1

    51.5339.0661.0

    11)( 2

    2

    2

    xe

    xxxF x

    xofvaluesnegativeforand

    )(1)( xFxF

    )17.4(

    )18.4(

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.2. Probability of False Alarm

    RSP Lab

    Probability of False Alarm

    - Probability of false alarm is define as the probability that a sample

    of the signal will exceed the threshold voltage when noise alone.

    faP

    R )(tr TV

    levelthresholdtheinchangessmall

    tosensitiveveryisPfa

    2

    2

    2

    2

    2 2exp

    2exp

    T

    V

    fa

    Vdr

    rrP

    T

    )19.4( a

    fa

    TP

    V1

    ln2 2 )19.4( b

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.2. Probability of False Alarm

    RSP Lab

    Fig 4.3. Normalized detection threshold versus probability of false alarm

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    False Alarm Time

    RSP Lab

    - The false alarm time is faT

    - Since the radar operating bandwidth is the inverse of B intt

    Maximizing increasing decreased faT TV max)( dR

    fa

    intfa

    P

    tT )20.4(

    voltaged threshol thepass willdetector envelope theofouput the

    thattimeaverageortimenintegratioradarwhere intt

    )21.4(

    2

    2

    2exp

    1

    T

    fa

    V

    BT

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    MATLAB function que_func.m

    Compute -function [PD] = marcumsq(a, b)

    -This function uses Parls method to compute PD

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.3. Probability of Detection

    RSP Lab

    Probability of Detection - Probability of detection is the probability that a sample of will exceed

    the threshold voltage in the case of noise plus signal

    DP )(trR

    )22.4(2

    exp2

    22

    202dr

    ArrAI

    rP

    TV

    D

    - Assume that the radar signal is a sine waveform with amplitude A, then its power

    is . By using (single-pulse SNR) and . 22A 22 2ASNR )1ln()2(

    22

    faT PV

    )24.4()(,

    )23.4(1

    ln2,2

    exp

    2/)(

    0

    2

    2

    )/1ln(2

    2

    22

    202

    22

    2

    deIQ

    P

    AQdr

    ArrAI

    rP

    faP

    D

    fa

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Probability of Detection

    RSP Lab

    - Many approximations for computing Eq.(4.23). Very accurate approximation

    presented by North is given by

    - Q is called Marcums Q-function. When is small and is large so that the

    Threshold is also large, Eq.(4.24) can be approximated by

    faP DP

    fa

    DP

    AFP

    1ln2

    )25.4(

    5.0ln5.0 SNRPerfcP faD )26.4(

    isfunctionerrorarycomplementthewhere

    z

    v dvezerfc0

    221)(

    )27.4(

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Table 4.1 Single Pulse SNR(dB)

    RSP Lab

    dBSNRPandP faD 12.16pulsesinglemin.1099.010

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Example 4.1

    RSP Lab

    dBSNR

    FigandTablefromand

    BTP

    nB

    solution:

    le pulse.f a singhe SNR o , and t alarm P of falseobability , the prtime t

    ration dar integd the ra1GHz. FinBandwidth 0.9 and bection Py of detprobabilit

    e 16.67minutrm T false ala: time ofification wing specthe follodar has pulsed raA

    fa

    fa

    faint

    D

    fa

    75.15)(

    4.4.1.4

    106067.1610

    11

    sec110

    11t

    1

    12

    9

    9int

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Probability of Detection vs single pulse SNR

    RSP Lab

    Compute - This program us used to produce Fig. 4.3 with marcumsq.

    10-2

    10-4

    10-6

    10-8 10-10 10-12

    15.75dB

    Assume

    Tfa=16.67minutes, PD=0.9,

    (SNR)1 ?

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.4. Pulse Integration

    Radar pulse integration

    : adding radar echoes from many pulses

    (1) Coherent (Pre-detection) integration

    perform on the quadrature components prior to the envelop detection

    (2) Non-coherent (Post-detection) integration

    perform after the envelop detector

    RSP Lab

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Coherent Integration

    RSP Lab

    Coherent Integration Perfect integrator using Integrating np pulses improve the SNR

    The case for non-coherent integration integration loss

    - mth pulse

    )()( tntsy mm (4.34)

    )(ts

    )(tnm

    : radar return of interest

    : white uncorrelated additive noise signal

    - Coherent integration of np

    (4.35)

    ppp n

    m

    m

    p

    n

    m

    m

    p

    n

    m

    m

    p

    tnn

    tstntsn

    yn

    tz111

    )(1

    )()]()([11

    )(

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Coherent Integration

    RSP Lab

    (4.36)

    (4.37)

    - Total noise power in z(t) = variance

    2

    1,

    2

    21,

    *

    2

    2 11)]()([1

    ny

    p

    n

    lm

    mlny

    p

    n

    lm

    lm

    p

    nznn

    tntnEn

    pp

    *

    11

    2 )(1

    )(1 pp

    n

    l

    l

    p

    n

    m

    m

    p

    nz tnn

    tnn

    E

    2

    ny : single pulse noise power

    : 0 (ml) , unity (m=l) ml

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Coherent Integration

    - The desired signal power after coherent integration : not change

    noise power is reduced by 1/np

    RSP Lab

    - SNR after coherent integration : Improve np

    - Single pulse SNR : (SNR)1 ,

    - Integrated (np) pulse SNR : (SNR)np

    - SNR after coherent integration : improve np

    1)(1

    )( SNRn

    SNRp

    np (4.38)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Non-Coherence Integration

    Non-Coherence Integration

    RSP Lab

    : Non-Coherence Integration : implemented after the envelope detector

    Fig 4.5. Simplified block diagram of a square law detector and non-

    coherent integration

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Non-Coherence Integration

    RSP Lab

    - Square law detector used as an approximation to the optimum receiver

    - Define a dimensionless variable (y)

    /nn ry

    SNRA

    Rp 22

    2

    (4.39)

    (4.40)

    - The pdf for the new variable

    2

    )(exp)()()(

    2

    0

    pn

    pnn

    n

    nnn

    RyRyIy

    dy

    drrfyf

    (4.41)

    2

    2

    1nn yx

    (4.42)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Non-Coherence Integration

    RSP Lab

    - The pdf for the variable at the output of the square law detector

    pnpnn

    nnn RxI

    Rx

    dx

    dyyfxf 2

    2exp)()( 0

    (4.43)

    - Non-coherent integration of np pulses

    pn

    n

    nxz1

    (4.44)

    - xn are independent, the pdf for variable z

    (4.45) )()()()( 21 pnxfxfxfzf

    : the modified Bessel function of order

    ppnppn

    pp

    zRnIRnzRn

    zzf

    p

    p

    22

    1exp

    2)( 1

    2/)1(

    (4.46)

    1p

    n1pnI

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Non-Coherence Integration

    RSP Lab

    1)(

    )()( 1

    pnp

    pSNRn

    SNRnE

    - Non-Coherent integration efficiency

    (4.47)

    - Integration improvement factor for a specific Pfa

    ppp

    n

    p nnEnSNR

    SNRnI

    p

    )()(

    )()( 1

    (4.48)

    - An empirically derived expressed for improvement factor

    (accurate within 0.8dB)

    (4.49)

    2)log(018310.0)log(140.01

    )log(6.46

    )/1log(1)235.01(79.6)(

    pp

    p

    fa

    DdBp

    nn

    nP

    PnI

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Non-Coherence Integration

    RSP Lab

    Fig 4.6. Improvement factor VS number of pulses (non-coherent integration).

    These plots were generated using the empirical approximation in Eq.(4.49).

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.5. Detection of Fluctuating Targets

    RSP Lab

    Detection Probability Density Function - probability density function for fluctuating targets

    0exp1

    )(

    A

    A

    A

    AAf

    avav

    02

    exp4

    )(2

    A

    A

    A

    A

    AAf

    avav

    Swerling I & II

    Swerling III & IV

    (4.50)

    (4.51)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Detection of Fluctuating Targets

    - Performing the analysis for the general case

    RSP Lab

    2

    2

    12

    22/)1(

    222

    2

    1exp

    )/(

    2)/(

    AznI

    Anz

    An

    zAzf pnp

    n

    pp

    p

    (4.52)

    - To obtain f(z) use the relations

    )()/(),( AfAzfAzf

    - Finally,

    (4.53)

    (4.54)

    dAAzfzf ),()(

    (4.55) dAAfAzfzf )()/()(

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Detection of Fluctuating Targets

    Threshold Selection

    RSP Lab

    - DiFranco and Rubin general form relating the threshold and Pfa for any

    number of pulsed and non-coherent integration

    - Incomplete Gamma function

    1,1 p

    p

    Tlfa n

    n

    VP

    dn

    en

    n

    V pT pnV

    p

    n

    p

    p

    Tl

    /

    0

    11

    )!11(1,

    1

    2

    1

    )!1(

    )2)(1(11

    )!1(11,

    p

    Tp

    n

    T

    p

    T

    pp

    T

    p

    p

    Vn

    Tp

    p

    Tl

    V

    n

    V

    nn

    V

    n

    n

    eVn

    n

    V

    - Approximated,

    (4.56)

    (4.57)

    (4.58)

  • RSP Lab Hankuk Aviation Univ.

    Threshold vs TV pn

    10 100

    19.11

    Nfa = Marcums false alarm number nfa : pfa

    30.05

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.6. Probability of Detection Calculation

    - Single pulse SNR is unity (0 dB) range R0 (reference range)

    RSP Lab

    14

    4

    00

    3

    22

    0

    BFLRkT

    GPSNR tR

    4003

    22

    4 BFLRkT

    GPSNR t

    4

    0

    0

    R

    R

    SNR

    SNR

    R

    - Single pulse SNR at any range R

    - Dividing Eq.(4.66) by Eq.(4.65)

    (4.65)

    (4.66)

    (4.67)

    R

    RSNR dB

    0log40

    - SNR at any other range R

    (4.68)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Detection of Swerling I targets

    Detection of Swerling I Targets

    - detection probability for Swerling I type targets (derived by Swerling)

    1

    1 pSNRV

    D ; nePT

    11,1

    1

    111,1

    1

    1

    p

    SNRnV

    p

    p

    TI

    n

    p

    pTID ; nen

    SNRn

    V

    SNRnnVP pT

    p

    (4.76)

    (4.77)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    2 4 6 8 10 12 14 16 18 20 220

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    SNR - dB

    Pro

    babili

    ty o

    f dete

    ction

    Swerling V

    Swerling I

    Probability of detection versus SNR,

    single pulse. Pfa= 910

    Swerling I and V type fluctuating np=1

    Matlab Function pd_swerling1.m

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    -10 -5 0 5 10 15 20 25 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    SNR - dB

    Pro

    babili

    ty o

    f dete

    ction

    np = 1

    np = 10

    np = 50

    np = 100

    Probability of detection versus SNR,

    Swerling I. Pfa= 610

    Matlab Function pd_swerling1.m

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    -10 -5 0 5 10 15 20 25 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    SNR - dB

    Pro

    babili

    ty o

    f dete

    ction

    np = 1

    np = 10

    np = 50

    np = 100

    Probability of detection versus SNR,

    Swerling I. Pfa= 1210

    Matlab Function pd_swerling1.m

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Detection of Swerling II targets

    Detection of Swerling II Targets - detection probability for Swerling II type targets

    50,

    11

    pp

    TID ; nn

    SNR

    VP

    - When np>50, Eq.(4.70) is used to compute detection probability

    pnC

    3

    13

    SNRnp 1

    PnC

    4

    14

    2/2

    36 CC

    (4.78)

    (4.79)

    (4.80)

    (4.81)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    -10 -5 0 5 10 15 20 25 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    SNR - dB

    Pro

    babili

    ty o

    f dete

    ction

    np = 1

    np = 10

    np = 50

    np = 100

    Matlab Function pd_swerling2.m

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Detection of Swerling III targets

    Detection of Swerling III Targets

    - detection probability for Swerling III type targets (derived by Marcum)

    - when np=1, 2

    op

    pp

    T

    n

    pp

    TD Kn

    SNRnSNRn

    V

    SNRnSNRn

    VP

    p

    22

    2/11

    21

    2/1exp

    2

    1,/21

    1,1!22/1

    0

    1

    p

    p

    TIpTI

    pp

    Vn

    TD n

    SNRn

    VKnV

    nSNRn

    eVP

    Tp

    - for np>2

    (4.82)

    (4.83)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Matlab Function pd_swerling3.m

    RSP Lab

    -10 -5 0 5 10 15 20 25 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    SNR - dB

    Pro

    babili

    ty o

    f dete

    ction

    np = 1

    np = 10

    np = 50

    np = 100

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Detection of Swerling IV targets

    Detection of Swerling IV Targets

    - detection probability for Swerling IV type targets (derived by Marcum)

    - for np

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Matlab Function pd_swerling4.m

    -10 -5 0 5 10 15 20 25 300

    0.2

    0.4

    0.6

    0.8

    1

    SNR - dB

    Pro

    babili

    ty o

    f dete

    ction

    np = 1

    np = 10

    np = 50

    np = 100

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.7. Cumulative Probability of Detection

    RSP Lab

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.7. Cumulative Probability of Detection

    - The cumulative probability of detection refers to detecting the target at least

    once (range R)

    - The target gets closer to the radar, probability of detection increases

    - The probability of detection during the n th frame is PDn ,

    Then, cumulative probability of detecting during n th frame is

    RSP Lab

    )1(11

    n

    i

    DC inPP (4.95)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    Prob 4.3. A radar detects a closing at R, PD= 0.5 , Pfa=10-7. Compute and

    sketch the single look probability of detection as a function of range

    (interval 2~20 Km) If successive frame is 1Km, cumulative

    probability of detection at 8Km ?

    RSP Lab

    Example 4.3

    RR

    SNRSNR R log405210

    log40)()( 10

    Sol) From table 4.1 the SNR corresponding to PD= 0.5 , Pfa=10-7 is 12dB.

    From eq. (4.68) , the SNR at any range R as

    -The cumulative probability of detection at 8Km is

    9998.0)1)(01.01)(07.01)(25.01)(5.01)(9.01)(999.01(1 39

    CP

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ. RSP Lab

    Example 4.3

    < PD versus normalized range>

    frame 1 2 3 4 5 6 7 8 9

    Range in Km 16 15 14 13 12 11 10 9 8

    < range listing for frames 1 through 9 (frame 9 corresponds to R = 8Km) >

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.8 Solving the Radar Equation

    RSP Lab

    4

    1

    0

    3

    2

    )()4(

    SNRFLkT

    GGTfPR

    e

    rtirt

    gain antennareceivingG

    gain antennangtransmittiG

    tervalindwellT

    PRFf

    widthpulse

    power dtransmittepeakP

    r

    t

    i

    r

    t

    (4.96)

    detectionfor requiredSNRminimum(SNR)

    figure noisereceiver F

    emperaturereceiver tT

    constant sBoltzmnn'k

    loss systemtotalL

    section crosstarget

    wavelength

    0

    e

    where,

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ. RSP Lab

    4.8 Solving the Radar Equation

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    4.9 Constant False Alarm Rate (CFAR)

    RSP Lab

    fa

    TP

    V1

    ln2 2

    - Relationship between threshold value VT and Pfa

    - The process of continuously changing the threshold to maintain a constant

    => Constant False Alarm Rate (CFAR)

    Three different types of CFAR

    Adaptive threshold CFAR ( assume that interference distribution is known)

    Nonparametric CFAR ( unknown interference distribution )

    Nonlinear receiver techniques ( normalize root mean square of interference )

    (4.97)

    powernoisewhere 2,

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ. RSP Lab

    4.9.1 Cell-Averaging CFAR (single pulse)

    < Conventional CA-CAFR >

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ.

    - The echo return for each pulse is detected by a square law detector

    - The Cell Under Test (CUT) is the central cell

    - The neighbors of the CUT are excluded from average process due to

    spillover

    - The output of M reference cells is averaged

    - The threshold value is obtained by averaged estimate all reference cell by K0

    RSP Lab

    4.9.1 Cell-Averaging CFAR (single pulse)

    ZKY 01

    - Cell-averaging CFAR assumes all reference cells contain zero mean

    independent Gaussian noise of variance

    - In this case, the gamma pdf is,

    0;)2/(2

    )(2/

    )2/(1)2/( 2

    zM

    ezzf

    MM

    zM

    (4.98)

    (4.99)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ. RSP Lab

    4.9.1 Cell-Averaging CFAR (single pulse)

    - The conditional probability of false alarm when y= VT can be written as 22/)( yTfa eyVP

    - The unconditional probability of false alarm is

    dyyfyVPP Tfafa

    0

    )()(

    where, f(y) is the pdf of threshold,

    - Except for the constant K0 is the same as (4.99). Therefore,

    0;)()2(

    )(2

    0

    )2/(12

    0

    yMK

    eyyf

    M

    KyM

    Mfa KP

    )1(

    1

    0

    - Substituting (4.102) and (4.100) into (4.101) yields

    (4.101)

    (4.100)

    (4.102)

    (4.103)

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ. RSP Lab

    4.9.2 Cell-Averaging CFAR with Non-Coherent Integration

    < Conventional CA-CFAR with non-coherent integration>

  • Radar Lecture @ Prof Y Kwag Korea Aerospace Univ. RSP Lab

    4.9.2 Cell-Averaging CFAR with Non-Coherent Integration

    - The output of each reference cell is the sum of nP squared envelopes

    - Total number of summed reference samples is MnP

    - The output Y1 is also the sum of nP squared envelopes

    - Noise alone is present CUT, Y1 random variable (pdf with 2 nP degrees of

    freedom)

    - The probability of false alarm is equal to the probability Y1 /Z exceeds threshold

    11 /Pr KZYobPfa

    - Let conditional probability of false when y= VT be Pfa (VT = y),

    unconditional false alarm probability is,

    dyyfyVPP Tfafa

    0

    )()(

    where, f(y) is the pdf of the threshold

    (4.104)

    (4.105)