MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

  • Upload
    chuong

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    1/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Lecture 16. Phase Transformation

    Learning Objectives After this lecture, you should be able to do the following:

    1. Understand nucleation and growth processes in phase

    transformations

    2. Understand the kinetics of phase transformations.

    Reading• Chapter 10: Phase Diagrams (10.1–10.4)

    Multimedia

    • Virtual Materials Science & Engineering (VMSE):

    http://www.wiley.com/college/callister/CL_EWSTU01031_S/vmse/

    1

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    2/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Kinetics of Phase Transformation

    2

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    3/26

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    4/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 - 4

    Solidification: Nucleation Types

    • Homogeneous nucleation – nuclei form in the bulk of liquid metal

     – requires considerable supercooling(typically 80-300°C)

    • Heterogeneous nucleation

     – much easier since stable “nucleating surface” isalready present — e.g., mold wall, impurities inliquid phase

     – only very slight supercooling (0.1-10°

    C)

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    5/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Driving force for solidification

    5

     At any temperature below Tm there is a driving force for solidification. The liquid solidify at T

    < Tm. If energy is removed quickly, the system can be significantly supercooled (or

    undercooled).

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    6/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Homogeneous Nucleation

    6

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    7/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Homogeneous Nucleation

    7

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    8/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 - 8

    r * = critical nucleus: for r < r * nuclei shrink; for r > r * nuclei grow (to reduce energy)

     Adapted from Fig.10.2(b), Callister & Rethwisch 9e.

    Homogeneous Nucleation & Energy Effects

     ∆GT = Total Free Energy

    =  ∆GS +  ∆GV 

    Surface Free Energy- destabilizes

    the nuclei (it takes energy to make

    an interface)

    γ = surface tension

    Volume (Bulk) Free Energy –

    stabilizes the nuclei (releases energy)

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    9/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Homogeneous Nucleation

    9

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    10/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 - 10

    Solidification

    Note:  ∆H f and γ are weakly dependent on  ∆T 

    r * decreases as  ∆T increases

    For typical  ∆T  r * ~ 10 nm

     ∆H f = latent heat of solidificationT m = melting temperature

    γ = surface free energy

     ∆T = T m - T = supercooling

    r* = critical radius

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    11/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Homogeneous Nucleation

    11

    Both r* and G* decrease withincreasing supercooling (  ∆T).

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    12/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Rate of Homogeneous Nucleation

    12

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    13/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Rate of Homogeneous Nucleation

    13

    Stable particle

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    14/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Rate of Homogeneous Nucleation

    14

    Nucleation rate [nuclei per unit volume per second]

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    15/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Heterogeneous Nucleation

    15

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    16/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Homogeneous Nucleation

    16

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    17/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Heterogeneous Nucleation

    17

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    18/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Heterogeneous Nucleation

    18

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    19/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Heterogeneous Nucleation

    19

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    20/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Growth

    20

    Particle growth occurs by long-range atomic diffusion, which involves

    several steps—for example, diffusion through the parent phase, across a phase

    boundary, and then into the nucleus. The growth rate is determined by the rate

    of diffusion, and its temperature dependence is the same as for the diffusioncoefficient (Equation 5.8):

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    21/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Transformation Rate

    21

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    22/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 - 22

    Kinetics: Rate of Phase

    TransformationsKinetics - study of reaction rates of phase

    transformations

    • To determine reaction rate – measure degree

    of transformation as function of time (while

    holding temp constant)

    measure propagation of sound waves –

    on single specimen

    electrical conductivity measurements –

    on single specimen

    X-ray diffraction – many specimens required

    How is degree of transformation measured?

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    23/26

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    24/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Temperature Dependence of

    Transformation Rate

    24

    • For the recrystallization of Cu, since

    rate = 1/t 0.5

    rate increases with increasing temperature

    • Rate often so slow that attainment of equilibrium

    state not possible!

    Fig. 10.11, Callister &

    Rethwisch 9e.(Reprinted with permission

    from Metallurgical

    Transactions, Vol. 188, 1950,

    a publication of The

    Metallurgical Society of AIME,Warrendale, PA. Adapted

    from B. F. Decker and D.

    Harker, “Recrystallization in

    Rolled Copper,” Trans. AIME,

    188, 1950, p. 888.)

    135C 119C 113C 102C 88C 43C

    1 10 102 104

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    25/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Summary

    1. Phase transformations: nucleation and growth

    2. Kinetics of phase transformations

    25

  • 8/18/2019 MSE 3300-Lecture Note 16-Chapter 10 Phase Transformations

    26/26

    MSE 3300 / 5300 UTA Fall 2014 Lecture 16 -

    Homework 8

    • 10.2, 10.4, 10.6, 10.11

    * Problems from Callister, 9th Edition

    26