37
Numerical Relativity: generating space-time on computers Yuichiro Sekiguchi (Toho University) MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13

MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Numerical Relativity: generating space-time on computers

Yuichiro Sekiguchi (Toho University)

MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations

Hokkaido University, 2018.07.02-13

Page 2: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Notation and Convention

Spacetime ๐‘€,๐‘”๐‘Ž๐‘ : spacetime manifold ๐‘€ and the metric ๐‘”๐‘Ž๐‘

The signature of the metric : โˆ’ + + +

We will use the abstract index notation for tensor fields and Einsteinโ€™s summation convention

Index of a tensor on ๐‘€ is raised/lowered by ๐‘”๐‘Ž๐‘/๐‘”๐‘Ž๐‘ as usual

Covariant derivative associated with ๐‘”๐‘Ž๐‘ is ๐›ป๐‘Ž (๐›ป๐‘๐‘”๐‘Ž๐‘ = 0)

Riemann tensor for the spacetime : 4 ๐‘…๐‘Ž๐‘๐‘ ๐‘‘

Ricci tensor and Ricci scalar : 4๐‘…๐‘Ž๐‘ = 4๐‘…๐‘Ž๐‘๐‘ ๐‘, 4๐‘… = ๐‘”๐‘Ž๐‘ 4๐‘…๐‘Ž๐‘

Symmetric and anti-symmetric notation

๐‘‡(๐‘Ž1โ‹ฏ๐‘Ž๐‘›) =1

๐‘›! ๐‘‡๐‘Ž๐œ‹(1)โ‹ฏ๐‘Ž๐œ‹(๐‘›)

๐‘›

, ๐‘‡[๐‘Ž1โ‹ฏ๐‘Ž๐‘›] =1

๐‘›! sgn(๐œ‹)๐‘‡๐‘Ž๐œ‹(1)โ‹ฏ๐‘Ž๐œ‹(๐‘›)

๐‘›

We use the geometrical unit : ๐‘ = ๐บ = 1

Page 3: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Einsteinโ€™s equation

2nd order quasilinear partial differential equations for the spacetime metric ๐‘”๐‘Ž๐‘

๐บ๐‘Ž๐‘: Einstein tensor

๐บ๐‘Ž๐‘ =8๐œ‹๐บ

๐‘4๐‘‡๐‘Ž๐‘

๐บ๐‘Ž๐‘ = ๐‘…๐‘Ž๐‘ โˆ’1

2๐‘”๐‘Ž๐‘๐‘…

๐‘…๐›ผ๐›ฝ = ๐œ•๐›พฮ“ ๐›ผ๐›ฝ๐›พ

โˆ’ ๐œ•๐›ผฮ“ ๐›พ๐›ฝ๐›พ

+ ฮ“ ๐›ผ๐›ฝ๐›ฟ ฮ“ ๐›ฟ๐›พ

๐›พโˆ’ ฮ“ ๐›พ๐›ฝ

๐›ฟ ฮ“ ๐›ฟ๐›ผ๐›พ

ฮ“ ๐›ผ๐›ฝ๐›พ

=1

2๐‘”๐›พ๐›ฟ(๐œ•๐›ผ๐‘”๐›ฝ๐›ฟ + ๐œ•๐›ฝ๐‘”๐›ผ๐›ฟ โˆ’ ๐œ•๐›ฟ๐‘”๐›ผ๐›ฝ)

๐‘…๐‘Ž๐‘: Ricci tensor

๐‘… = ๐‘”๐‘Ž๐‘๐‘…๐‘Ž๐‘ โˆถ Ricci scalar

ฮ“ ๐›ผ๐›ฝ๐›พ

โˆถ Christoffel symbol

๐‘‡๐‘Ž๐‘: stress energy momentum tensor

๐‘…๐œ‡๐œˆ = โˆ’1

2๐‘”๐›ผ๐›ฝ ๐œ•๐›ผ๐œ•๐›ฝ๐‘”๐œ‡๐œˆ + ๐œ•๐œ‡๐œ•๐œˆ๐‘”๐›ผ๐›ฝ โˆ’ 2๐œ•๐›ฝ๐œ•(๐œ‡๐‘”๐œˆ)๐›ผ + ๐น๐œ‡๐œˆ(๐‘”, ๐œ•๐‘”)

Page 4: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Numerical Relativity (NR) Solving Einsteinโ€™s equation on computer

Einsteinโ€™s equation in full covariant form are 2nd order quasilinear partial differential equations

The solution, spacetime metric ๐‘”๐‘Ž๐‘ is not a dynamical object in the sense that it represents the full geometry of ๐‘€ as the metric of the two-sphere does

To reveal the dynamical nature of Einsteinโ€™s equation, we must break the four dimensional general covariance and exploit the special nature of time and space

One method is 3+1 decomposition of spacetime (๐‘€, ๐‘”๐‘Ž๐‘) into a foliation {ฮฃ}, the induced metric ๐›พ๐‘Ž๐‘ on ฮฃ, and the extrinsic curvature ๐พ๐‘Ž๐‘ of ฮฃ

Then Einsteinโ€™s equation is posed as a Cauchy problem for initial data (ฮฃ, ๐›พ๐‘Ž๐‘ , ๐พ๐‘Ž๐‘), which can be solved numerically on computers

We also need to solve the matter equation ๐›ป๐‘Ž๐‘‡๐‘Ž๐‘ = 0

Page 5: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Initial value formulation of general relativity

In other theories of classical physics, we consider the time evolution of quantities from their initial conditions in the given the spacetime background (metric)

In general relativity, however, we are solving for the spacetime (metric) itself. So, we must view general relativity as describing the time evolution of some quantity (initial value formulation)

The initial value formulation must be well posed:

Small changes in initial data should produce only correspondingly โ€œsmall changesโ€ in the solution

Changes in the initial data in a region, ๐‘†, should not produce any changes in the solution outside the causal future, ๐ฝ+(๐‘†), of this region

Page 6: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Existence and uniqueness of solution

Thanks to the general covariance equipped by general relativity, we can employ any convenient coordinates (gauge degrees of freedom)

The local existence and uniqueness of Einsteinโ€™s equation can be proven [1] in harmonic coordinates : ๐ป๐œ‡ = ๐›ป๐‘Ž๐›ป

๐‘Ž๐‘ฅ๐œ‡ = 0 ๐›ป๐‘Ž is the covariant derivative associated with the spacetime metric ๐‘”๐‘Ž๐‘

In the harmonic coordinates, Einsteinโ€™s equation in vacuum becomes

Then, the theorem due to Leray [2] can be applied to prove local existence and uniqueness of solution of Einsteinโ€™s equation [3].

Global existence and uniqueness were also proved in [4]

๐‘”๐›ผ๐›ฝ๐œ•๐›ผ๐œ•๐›ฝ๐‘”๐œ‡๐œˆ = ๐น ๐œ‡๐œˆ(๐‘”, ๐œ•๐‘”)

[1] Choquet-Bruhat, Y. (1952) Acta. Math. 88, 141.

[2] Leray, J. (1952) โ€œHyperbolic Differential Equationsโ€, (Princeton University).

[3] Dionne, P. (1962) J. Anal. Math. Jerusalem 10, 1.

[4] Choquet-Bruhat, Y. and Geroch, R. P. (1969) Commun. Math. Phys. 14, 329.

Page 7: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Theorem (Leray 1952) : Let (๐œ™0)1,โ‹ฏ , (๐œ™0)๐‘› be any solution of the quasilinear hyperbolic system

๐‘”๐‘Ž๐‘ ๐‘ฅ; ๐œ™๐‘—; ๐›ป๐‘๐œ™๐‘— ๐›ป๐‘Ž๐›ป๐‘๐œ™๐‘– = ๐น๐‘– ๐‘ฅ; ๐œ™๐‘—; ๐›ป๐‘๐œ™๐‘— (1)

Where ๐›ป๐‘Ž is any derivative operator and ๐น๐‘– is an analytic function

and let (๐‘”0)๐‘Ž๐‘ = ๐‘”๐‘Ž๐‘ ๐‘ฅ; (๐œ™0)๐‘—; ๐›ป๐‘(๐œ™0)๐‘— . Suppose (๐‘€, (๐‘”0)๐‘Ž๐‘) is globally hyperbolic. Let ฮฃ be a smooth spacelike Cauchy surface for (๐‘€, (๐‘”0)๐‘Ž๐‘).

Then, the initial value formulation is well posed:

For Initial data sufficiently close to the initial data for (๐œ™0)1,โ‹ฏ , (๐œ™0)๐‘›, there exist an open neighborhood ๐‘‚ of ฮฃ such that eq. (1) has a solution ๐œ™1, โ‹ฏ , ๐œ™๐‘›, in ๐‘‚ and (๐‘‚, ๐‘”๐‘Ž๐‘(๐‘ฅ; ๐œ™๐‘—; ๐›ป๐‘๐œ™๐‘—)) is globally hyperbolic.

The solution is unique in ๐‘‚ and propagate causally:

If the initial data for ๐œ™โ€ฒ1, โ‹ฏ , ๐œ™โ€ฒ๐‘› agree with that of ๐œ™1,โ‹ฏ , ๐œ™๐‘› on a subset ๐‘† of ฮฃ, then the solutions agree on ๐‘‚โ‹‚๐ท+(๐‘†), where ๐ท+(๐‘†) is the future domain of dependence for ๐‘†.

The solutions depend continuously on the initial data

Page 8: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Theorem (summarized in Wald 1984 [5]): Let ฮฃ and ๐›พ๐‘Ž๐‘ be a 3-dimensional ๐ถโˆž manifold and a smooth metric on ฮฃ and let ๐พ๐‘Ž๐‘ be a smooth symmetric tensor field on ฮฃ.

๐›พ๐‘Ž๐‘ and ๐พ๐‘Ž๐‘ satisfy the constraint equations

Then there exist a unique ๐ถโˆž spacetime, (๐‘€, ๐‘”๐‘Ž๐‘), called the maximal Cauchy development of (ฮฃ, ๐›พ๐‘Ž๐‘ , ๐พ๐‘Ž๐‘) satisfying

(๐‘€, ๐‘”๐‘Ž๐‘) is a solution of Einsteinโ€™s equation and globally hyperbolic

The induced metric and extrinsic curvature of ฮฃ are ๐›พ๐‘Ž๐‘ and ๐พ๐‘Ž๐‘

Every other spacetime can be mapped isometrically into a subset of (๐‘€, ๐‘”๐‘Ž๐‘)

The solution ๐‘”๐‘Ž๐‘ depends continuously on the initial data (๐›พ๐‘Ž๐‘ , ๐พ๐‘Ž๐‘) on ฮฃ.

Furthermore, (๐‘€, ๐‘”๐‘Ž๐‘) satisfies the domain of dependence property desired in general relativity:

Suppose (ฮฃ, ๐›พ๐‘Ž๐‘, ๐พ๐‘Ž๐‘) and (ฮฃโ€ฒ, ๐›พโ€ฒ๐‘Ž๐‘, ๐พโ€ฒ๐‘Ž๐‘) are initial data sets with maximal

developments (๐‘€, ๐‘”๐‘Ž๐‘) and ๐‘€โ€ฒ, ๐‘”โ€ฒ๐‘Ž๐‘

. Suppose there is a diffeomorphism

between ๐‘† โŠ‚ ฮฃ and ๐‘†โ€ฒ โŠ‚ ฮฃโ€ฒ which carries (๐›พ๐‘Ž๐‘, ๐พ๐‘Ž๐‘) on ๐‘† into (๐›พโ€ฒ๐‘Ž๐‘, ๐พโ€ฒ๐‘Ž๐‘) on ๐‘†โ€ฒ. Then ๐ท(๐‘†) in (๐‘€, ๐‘”๐‘Ž๐‘) is isometric to ๐ท(๐‘†โ€ฒ) in (๐‘€โ€ฒ, ๐‘”โ€ฒ๐‘Ž๐‘)

[5] Wald, R. M. (1984), โ€œGeneral Relativityโ€ (Univ. of Chicago press)

Page 9: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

3+1 decomposition of spacetime

Foliation {ฮฃ} of ๐‘€ is a family of spacelike hypersurfaces (slices) which do not intersect each other and fill completely ๐‘€

We assume that spacetime is globally hyperbolic. Then each ฮฃ is a Cauchy surface which is parametrized by a global time function ๐‘ก and denoted as ฮฃ๐‘ก [1]

Now, foliation is characterized by the gradient 1-form, ฮฉ๐‘Ž = ๐›ป๐‘Ž๐‘ก

The norm of ฮฉ๐‘Ž is related to a function called the lapse function, ๐›ผ:

๐‘”๐‘Ž๐‘ฮฉ๐‘Žฮฉ๐‘ = โˆ’๐›ผโˆ’2

๐›ผ characterize the proper time between ฮฃ

Let us introduce the normalized 1-form

๐‘›๐‘Ž = โˆ’๐›ผฮฉ๐‘Ž

ใ€€taa

[1] e.g. Wald, R. M. (1984), โ€œGeneral Relativityโ€ (Univ. of Chicago press)

Page 10: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

The induced metric on ฮฃ

The spatial metric ๐›พ๐‘Ž๐‘ induced onto ฮฃ is defined as

๐›พ๐‘Ž๐‘ = ๐‘”๐‘Ž๐‘ + ๐‘›๐‘Ž๐‘›๐‘

Using ๐›พ๐‘Ž๐‘, a tensor on ๐‘€ is decomposed into components tangent and normal to ฮฃ, using the projection operator

โŠฅ๐‘๐‘Ž = ๐›พ๐‘

๐‘Ž = ๐›ฟ๐‘๐‘Ž + ๐‘›๐‘Ž๐‘›๐‘

The projection of a tensor ๐‘‡ ๐‘1โ‹ฏ๐‘๐‘ 

๐‘Ž1โ‹ฏ๐‘Ž๐‘Ÿ on ๐‘€ into a tensor on ฮฃ is

โŠฅ ๐‘‡ ๐‘1โ‹ฏ๐‘๐‘ 

๐‘Ž1โ‹ฏ๐‘Ž๐‘Ÿ =โŠฅ๐‘1

๐‘Ž1 โ‹ฏ โŠฅ๐‘๐‘Ÿ

๐‘Ž๐‘ŸโŠฅ๐‘1

๐‘‘1 โ‹ฏ โŠฅ๐‘๐‘ 

๐‘‘๐‘  ๐‘‡ ๐‘‘1โ‹ฏ๐‘‘๐‘ 

๐‘1โ‹ฏ๐‘๐‘Ÿ

It is easy to check โŠฅ ๐‘”๐‘Ž๐‘ = ๐›พ๐‘Ž๐‘

The covariant derivative operator ๐ท๐‘Ž associated with ๐›พ๐‘Ž๐‘ acting on tensors on ฮฃ is

๐ท๐‘๐‘‡ ๐‘1โ‹ฏ๐‘๐‘ 

๐‘Ž1โ‹ฏ๐‘Ž๐‘Ÿ =โŠฅ ๐›ป๐‘๐‘‡ ๐‘1โ‹ฏ๐‘๐‘ 

๐‘Ž1โ‹ฏ๐‘Ž๐‘Ÿ

It is easy to check Leibnitzโ€™s rules holes and ๐ท๐‘๐›พ๐‘Ž๐‘ = 0

Page 11: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Intrinsic and extrinsic curvature for ฮฃ

Riemann tensor ๐‘…๐‘Ž๐‘๐‘ ๐‘‘ and the extrinsic curvature tensor ๐พ๐‘Ž๐‘ for ฮฃ are

defined, respectively, by

๐ท๐‘Ž๐ท๐‘ โˆ’ ๐ท๐‘๐ท๐‘Ž ๐‘ค๐‘ = ๐‘…๐‘Ž๐‘๐‘ ๐‘‘๐‘ค๐‘ , ๐พ๐‘Ž๐‘ =โˆ’โŠฅ ๐›ป(๐‘Ž๐‘›๐‘) = โˆ’

1

2โ„’๐‘›๐›พ๐‘Ž๐‘

โ„’๐‘› is Lie derivative with respect to the unit normal vector ๐‘›๐‘Ž = ๐‘”๐‘Ž๐‘๐‘›๐‘

๐พ๐‘Ž๐‘ is โ€˜velocityโ€™ of ๐›พ๐‘Ž๐‘

The geometry of ฮฃ is described by ๐›พ๐‘Ž๐‘ and ๐พ๐‘Ž๐‘. In order that the foliation fits the spacetime, ๐›พ๐‘Ž๐‘ and ๐พ๐‘Ž๐‘ must satisfy Gauss, Codazzii, and Ricci relations, respectively, given by

โŠฅ4 ๐‘…๐‘Ž๐‘๐‘๐‘‘ = ๐‘…๐‘Ž๐‘๐‘๐‘‘ + ๐พ๐‘Ž๐‘๐พ๐‘๐‘‘ โˆ’ ๐พ๐‘Ž๐‘‘๐พ๐‘๐‘

โŠฅ4 ๐‘…๐‘Ž๐‘๐‘ ๐‘‘๐‘›๐‘‘ = ๐ท๐‘๐พ๐‘Ž๐‘ โˆ’ ๐ท๐‘Ž๐พ๐‘๐‘

โŠฅ4 ๐‘…๐‘Ž๐‘๐‘๐‘‘๐‘›๐‘๐‘›๐‘‘ =โŠฅ โ„’๐‘›๐พ๐‘Ž๐‘ + ๐พ๐‘Ž๐‘๐พ๐‘

๐‘ + ๐ท๐‘๐‘Ž๐‘ + ๐‘Ž๐‘Ž๐‘Ž๐‘

Where ๐‘Ž๐‘ = ๐‘›๐‘๐›ป๐‘๐‘›๐‘ = ๐ท๐‘ln ๐›ผ

Page 12: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Geometrical meaning of ๐พ๐‘Ž๐‘

๐พ๐‘Ž๐‘ is associated with the difference between the original and parallel-transported unit normal

vector ๐‘›๐‘Ž on ฮฃ๐‘ก For a slice ฮฃ๐‘ก embedded in the

spacetime in a โ€˜flatโ€™ manner, ๐พ๐‘Ž๐‘ = 0

๏ผ’

How ฮฃ๐‘ก is embedded in spacetime ๏ผˆcurvature seen from outside๏ผ‰ โ‡’ extrinsic curvature

bx

bb xx

)( ba xn)(

bba xxn

Parallel transport b

aba xKn

Page 13: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

โ€˜Evolutionโ€™ vector and general covariance

Any vector ๐‘ก๐‘Ž dual to ฮฉ๐‘Ž(๐‘ก๐‘Žฮฉ๐‘Ž = 1) can be the evolution vector

A simple candidate is ๐‘ก๐‘Ž = ๐›ผ๐‘›๐‘Ž

Note that the unit normal vector ๐‘›๐‘Ž can not be an evolution vector because โ„’๐‘› โŠฅ๐‘

๐‘Žโ‰  0 so that Lie derivative (evolution) with respect to ๐‘›๐‘Ž of a tensor tangent to ฮฃ is not a tensor tangent to ฮฃ

On the other hand, โ„’๐›ผ๐‘› โŠฅ๐‘๐‘Ž= 0

๐œฎ๐’•+๐’…๐’•

๐œฎ๐’•

๐œท๐’Š๐’…๐’• โˆถ shift vector

๐’๐’‚: unit normal

๐œถ๐’๐’‚๐’…๐’• โˆถ lapse function

๐’•๐’‚ : evolution vector We can add a spatial vector, called shift vector ๐›ฝ๐‘Ž (๐›ฝ๐‘Žฮฉ๐‘Ž = 0), to ๐‘ก๐‘Ž

Thus the general evolution vector is ๐‘ก๐‘Ž = ๐›ผ๐‘›๐‘Ž + ๐›ฝ๐‘Ž

The degree of freedom in choosing the evolution vector is originated in the general covariance of general relativity

Page 14: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

3+1 decomposition of Einsteinโ€™s equation Now we proceeds to 3+1 decomposition of Einsteinโ€™s equation

๐บ๐‘Ž๐‘ = 4๐‘…๐‘Ž๐‘ โˆ’1

2๐‘”๐‘Ž๐‘

4๐‘… =8๐œ‹๐บ

๐‘4๐‘‡๐‘Ž๐‘ = 8๐œ‹๐‘‡๐‘Ž๐‘

The decomposition of the stress-energy-momentum tensor ๐‘‡๐‘Ž๐‘ is ๐‘‡๐‘Ž๐‘ = ๐ธ๐‘›๐‘Ž๐‘›๐‘ + 2๐‘›(๐‘Ž๐‘ƒ๐‘) + ๐‘†๐‘Ž๐‘

where ๐ธ = ๐‘‡๐‘Ž๐‘๐‘›๐‘Ž๐‘›๐‘, ๐‘ƒ๐‘Ž =โˆ’โŠฅ ๐‘‡๐‘Ž๐‘๐‘›

๐‘ , and ๐‘†๐‘Ž๐‘ =โŠฅ ๐‘‡๐‘Ž๐‘ are the energy density, momentum density, and stress tensor measured by the Eulerian observer ๐‘›๐‘Ž

3+1 decompositions of Einsteinโ€™s equation corresponds to ๐บ๐‘Ž๐‘๐‘›๐‘Ž๐‘›๐‘,

โŠฅ ๐บ๐‘Ž๐‘๐‘›๐‘, and โŠฅ ๐บ๐‘Ž๐‘, which respectively give (๐พ = ๐พ๐‘Ž

๐‘Ž and ๐‘† = ๐‘†๐‘Ž๐‘Ž)

๐‘… + ๐พ2 โˆ’ ๐พ๐‘Ž๐‘๐พ๐‘Ž๐‘ = 16๐œ‹๐ธ (1)

๐ท๐‘๐พ๐‘Ž๐‘ โˆ’ ๐ท๐‘Ž๐พ = 8ฯ€๐‘ƒ๐‘Ž (2)

โ„’๐‘ก โˆ’ โ„’๐›ฝ ๐พ๐‘Ž๐‘ = โˆ’๐ท๐‘Ž๐ท๐‘๐›ผ + ๐›ผ ๐‘…๐‘Ž๐‘ + ๐พ๐พ๐‘Ž๐‘ โˆ’ 2๐พ๐‘Ž๐‘๐พ๐‘๐‘

โˆ’4ฯ€๐›ผ(2๐‘†๐‘Ž๐‘ โˆ’ ๐›พ๐‘Ž๐‘(๐‘† โˆ’ ๐ธ))

Note that Eqs. (1) and (2) do not contain time derivative of ๐›พ๐‘Ž๐‘ and ๐พ๐‘Ž๐‘ (constraints)

Page 15: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Introducing coordinates

We choose the evolution vector ๐‘ก๐‘Ž as the time basis vector: (๐œ•๐‘ก)๐‘Ž = ๐‘ก๐‘Ž

We also introduce the natural spatial basis vectors (๐œ•๐‘–)๐‘Ž on ฮฃ

(๐œ•๐‘–)๐‘Ž are Lie dragged along ๐‘ก๐‘Ž : โ„’๐‘ก(๐œ•๐‘–)

๐‘Ž = 0

Then (๐œ•๐‘–)๐‘Ž remains purely spatial because โ„’๐‘ก(ฮฉ๐‘Ž ๐œ•๐‘–)

๐‘Ž = 0

Dual basis (๐‘‘๐‘ฅ๐œ‡)๐‘Ž are defined in the standard manner

Components of geometrical quantities are (e.g., ๐‘”๐‘Ž๐‘ = ๐‘”๐œ‡๐œˆ(๐‘‘๐‘ฅ๐œ‡)๐‘Ž(๐‘‘๐‘ฅ๐œˆ)๐‘)

It can be shown ๐›พ๐‘–๐‘˜๐›พ๐‘˜๐‘— = ๐›ฟ๐‘—๐‘– so that indices of spatial tensors can be lowered

and raised by the spatial metric

๐‘›๐œ‡ =1

๐›ผ(1,โˆ’๐›ฝ๐‘–)๐‘‡

๐‘›๐œ‡ = (โˆ’๐›ผ, 0,0,0)

๐‘”๐œ‡๐œˆ =1

๐›ผ2โˆ’1 ๐›ฝ๐‘–

๐›ฝ๐‘– ๐›ผ2 โˆ’ ๐›ฝ๐‘–๐›ฝ๐‘—

๐‘”๐œ‡๐œˆ =โˆ’๐›ผ2 + ๐›ฝ๐‘˜๐›ฝ๐‘˜ ๐›ฝ๐‘–

๐›ฝ๐‘– ๐›พ๐‘–๐‘—

Page 16: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

ADM (Arnowitt-Deser-Misner) formulation

The 3+1 decompositions of Einsteinโ€™s equation together with the definition of ๐พ๐‘Ž๐‘ (tensor equations) are now a set of partial differential equations for ๐›พ๐‘Ž๐‘ and ๐พ๐‘Ž๐‘ (ADM system) [2] :

๐‘… + ๐พ2 โˆ’ ๐พ๐‘–๐‘—๐พ๐‘–๐‘— = 16๐œ‹๐ธ (3)

๐ท๐‘—๐พ๐‘–๐‘—โˆ’ ๐ท๐‘–๐พ = 8ฯ€๐‘ƒ๐‘– (4)

๐œ•๐‘ก โˆ’ โ„’๐›ฝ ๐พ๐‘–๐‘— = โˆ’๐ท๐‘–๐ท๐‘—๐›ผ + ๐›ผ ๐‘…๐‘–๐‘— + ๐พ๐พ๐‘–๐‘— โˆ’ 2๐พ๐‘–๐‘˜๐พ๐‘—๐‘˜

โˆ’4ฯ€๐›ผ(2๐‘†๐‘–๐‘— โˆ’ ๐›พ๐‘–๐‘—(๐‘† โˆ’ ๐ธ))

๐œ•๐‘ก โˆ’ โ„’๐›ฝ ๐›พ๐‘–๐‘— = โˆ’2ฮฑ๐พ๐‘–๐‘—

Eqs. (3) and (4) are elliptic constraint equations (Hamiltonian and momentum constraints, respectively) that ๐›พ๐‘Ž๐‘ and ๐พ๐‘Ž๐‘ must satisfy on each slice ฮฃ

The remaining equations are the evolution equations for ๐›พ๐‘–๐‘— and ๐พ๐‘–๐‘—

Note that Einsteinโ€™s equation tells us nothing about how to specify the gauge

degrees of freedom ๐›ผ and ๐›ฝ๐‘–, as expected from general covariance

[2] York, J. W. (1978), in โ€œSources of Gravitational Radiationโ€ eds. Smarr, L. L. (Cambridge Univ. press)

Page 17: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Evolution of constraints The โ€œevolutionโ€ equations for the Hamiltonian (๐ถ๐ป) and Momentum

(๐ถ๐‘€๐‘– ) constraints are

Where ๐น๐‘–๐‘— is the spatial projection of the evolution equation

The evolution equations show that the constraints are satisfied, if

They are satisfied initially and Einsteinโ€™s equation is solved correctly (๐น๐‘Ž๐‘ = 0)

Numerically, however, constraint violation may develop and simulations may crash in a short time

Constraints are elliptic equation : very time-consuming to solve

numerically (solve them at initial, but not solved in time evolution)

i

H

ki

M

j

M

i

j

ij

j

i

Mt

ij

ij

Hk

k

M

k

MkHt

DHFCFDKCCKFDC

FKFCKDCCDC

)2()(2)(

)2()(

L

L

abababab TgTRF

2

18 4

Page 18: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Generating spacetime

๏ผˆif ๐œถ, ๐œท๐’‚ are given๏ผ‰ we can construct the future slice ฮฃ๐’•+๐’…๐’• from ฮฃ๐‘ก

spatial metric ๐œธ๐’‚๐’ƒ on ๐œฎ๐’• and its โ€˜velocityโ€™ ๐‘ฒ๐’‚๐’ƒ~๐œธ ๐’‚๐’ƒ is given as initial data

๐›พ๐‘Ž๐‘ and ๐พ๐‘Ž๐‘ must satisfy the constraints (solving the elliptic equations)

3+1 decomposed Einsteinโ€™s equation provide their time developments

๐œธ๐’‚๐’ƒ ๐‘ฒ๐’‚๐’ƒ~๐œธ ๐’‚๐’ƒ

๐’ˆ๐’‚๐’ƒ

๐šบ๐’•

๐šบ๐’•+๐’…๐’•

Spacetime is generated if we can construct ๐‘”๐‘Ž๐‘ from ๐œธ๐’‚๐’ƒ, ๐‘ฒ๐’‚๐’ƒ

We need prescriptions to specify ๐›ผ and ๐›ฝ๐‘– (coordinate problem in NR)

๐’…๐’™๐’Š

๐œท๐’Š๐’…๐’• + ๐’…๐’™๐’Š

๐’…๐’”

๐œท๐’Š๐’…๐’• โˆถ ๐ฌ๐ก๐ข๐Ÿ๐ญ ๐ฏ๐ž๐œ๐ญ๐จ๐ซ ๐’•๐’‚ : ๐ญ๐ข๐ฆ๐ž ๐š๐ฑ๐ข๐ฌ

Lapse function

๐’…๐’”๐Ÿ = โˆ’ ๐œถ๐’…๐’• ๐Ÿ + ๐œธ๐’Š๐’‹(๐œท๐’Š๐’…๐’• + ๐’…๐’™๐’Š)(๐œท๐’‹๐’…๐’• + ๐’…๐’™๐’‹)

Page 19: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Gauge conditions Associated directly with the general covariance in general relativity,

there are degrees of freedom in choosing coordinates (gauge freedom)

Slicing condition is a prescription of choosing the lapse function ๐›ผ

Shift condition is that of choosing the shift vector ๐›ฝ๐‘Ž

Einsteinโ€™s equations say nothing about the gauge conditions

Choosing โ€œgoodโ€ gauge conditions are very important to achieve stable and robust numerical simulations

An improper slicing conditions in a stellar-

collapse problem will lead to appearance of

(coordinate and physical) singularities

Also, the shift vector is important in resolving

the frame dragging effect in simulations of

compact binary merger

Almost all choices are bad โ€ฆ

Collapsing star

Event horizon

singularity

t

space

๐›ผ = 1 slicing

Page 20: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Geodesic slicing =1, i=0

In the geodesic slicing, the evolution equation of the trace of the extrinsic curvature is

For normal matter (which satisfies the strong energy condition), the right-

hand-side is positive

Thus the expansion of time coordinate โˆ’๐พ = ๐›ป๐‘Ž๐‘›๐‘Ž decreases

monotonically in time

In terms of the volume element ๐›พ, (๐›พ = det ๐›พ๐‘Ž๐‘) , this means that the volume element goes to zero, as

This behavior results in a coordinate singularity

As can be seen in this example, slicing condition is closely related to the trace

of the extrinsic curvature ๐พ

SEKKK ij

ijt 34

KDK k

kijt

ij

t 2

1ln

Page 21: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Maximal slicing (Smarr & York 1978) Because the decrease in time of the volume element ๐›พ results in a

coordinate singularity, let us maximize the volume element

We take the volume element of a 3D-domain ๐‘† and consider a variation along

the time vector

If ๐พ = 0 on the slice, the volume is maximal Time evolution is delayed in strong gravity has strong singularity avoidance property But the normal vector gets focused โ‡’ eventually simulation crash

Necessary to use ๐›ฝ๐‘Ž

Maximal slicing condition is elliptic equation for ๐›ผ

Hyperbolic lapse has been developed

Singularity Event horizon

Choice of the lapse function ๐œถ

SxdSV 3][

SS

i

it xdKKxdSV 33 )(][ L

)](4)(0 SEKKDDK ij

ij

i

it LL

Page 22: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Utilizing the shift vector ๐œท๐’‚

Distortion of the time vector is problematic Distortion of ๐‘›๐‘Ž due to the black hole formation The dragging of the frame around a rotating object

We can use ๐›ฝ๐‘Ž to minimize these distortions

Minimal distortion shift (Smarr & York 1978) The covariant derivative of any timelike unit vector

can be decomposed as (Helmholtzโ€™s theorem)

Minimize distortion functional

Gives a condition for shift Vector elliptic equation Hyperbolic shift has been

developed

baabababba zhz 3

1

(shear) ,

(twist) ,

metric) (induced ,

TF

)(

][

baab

baab

baabab

z

z

zzgh

ion)(accelerat ,

)(expansion ,

a

c

ca

c

c

zz

z

3dxI ab

ab TF

)(

TFTF ~

2

1 baababtab nK L

ab

ab

b

ab

ab

bb

ab

c

ca

ac

c PKDDAADRDDDD 1622

Page 23: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Utilizing the shift vector ๐œท๐’‚

Distortion of the time vector is problematic Distortion of ๐‘›๐‘Ž due to the black hole formation The dragging of the frame around a rotating object

We can use ๐›ฝ๐‘Ž to minimize these distortions

Minimal distortion shift (Smarr & York 1978) The covariant derivative of any timelike unit vector

can be decomposed as (Helmholtzโ€™s theorem)

Minimize distortion functional

Gives a condition for shift Vector elliptic equation Hyperbolic shift has been

developed

baabababba zhz 3

1

(shear) ,

(twist) ,

metric) (induced ,

TF

)(

][

baab

baab

baabab

z

z

zzgh

ion)(accelerat ,

)(expansion ,

a

c

ca

c

c

zz

z

3dxI ab

ab TF

)(

TFTF ~

2

1 baababtab nK L

ab

ab

b

ab

ab

bb

ab

c

ca

ac

c PKDDAADRDDDD 1622

๐œท๐’Š๐’…๐’• โˆถ shift vector

Page 24: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

ADM formulation is unstable ! Numerical relativity simulations based on ADM formulation is unstable

This crucial limitation may be captured in terms of hyperbolicity

Consider a first-order system : ๐œ•๐‘ก๐‘ข๐‘– + (๐ด๐‘–๐‘—)๐‘๐œ•๐‘๐‘ข

๐‘— = 0. This system is called

Strongly hyperbolic : if a matrix (representation) of ๐ด has real eigenvalues and a complete set of eigenvectors

Weakly hyperbolic : if ๐ด has real eigenvalues but not a complete set of eigenvectors

Hyperbolicity is a key property for the stability

Strongly hyperbolic system is well-posed and only characteristic fields corresponding to negative eigenvalues need boundary conditions

Weakly hyperbolic system is not well-posed and the solution can be unbounded faster than exponential

Note that Einsteinโ€™s equation is nonlinear (2nd order quasi-linear) so that the above arguments may not be adopted directly

(a first order formulation version of) the ADM system is weakly hyperbolic

seeking (at least) strongly hyperbolic reformulation is a central issue in NR

Page 25: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

We need formulations for the Einsteinโ€™s equation which is (at least)

strongly hyperbolic (in a linearized regime) (as โ€˜wave-likeโ€™ as possible)

Caution ! : better hyperbolicity is necessary condition, not sufficient

Let us consider Maxwellโ€™s equation in flat spacetime to capture what we

should do to obtain a more stable system

โˆ’๐œ• ๐ด๐‘–๐‘ก2 + ๐›ป๐‘˜๐›ป๐‘˜๐ด๐‘– โˆ’ ๐›ป๐‘–๐›ป๐‘˜๐ด

๐‘˜ = ๐›ป๐‘–๐œ•๐‘ก๐œ™

๐œ•๐œ‡๐ด๐œ‡ = 0 ๐น = ๐›ป๐‘˜๐ด

๐‘˜ ๐›ป๐‘˜๐ธ๐‘˜ = 4๐œ‹๐œŒ๐‘’

๐œ•๐‘ก๐น = โˆ’๐›ป๐‘˜๐ธ๐‘˜ โˆ’ ๐›ป๐‘˜๐›ป๐‘˜๐œ™

๐œ•๐‘ก๐น = โˆ’4๐œ‹๐œŒ๐‘’ โˆ’ ๐›ป๐‘˜๐›ป๐‘˜๐œ™

Adopting better gauge Introduce new variables Utilize constraints

๐œ•๐œ‡๐œ•๐œ‡๐ด๐‘– = ๐›ป๐‘–๐œ•๐‘ก๐œ™ + ๐›ป๐‘–๐น ๐œ•๐œ‡๐œ•๐œ‡๐ด๐‘– = 0

Lorenz gauge :

๐›ป๐‘˜๐ธ๐‘˜ = 4๐œ‹๐œŒ๐‘’ ๐›ป๐‘˜๐ด

๐‘˜ = 0 Coulomb gauge :

๐œ•๐œ‡๐œ•๐œ‡๐ด๐‘– = ๐›ป๐‘–๐œ•๐‘ก๐œ™ ๐œ•๐‘ก๐น = โˆ’๐›ป๐‘˜๐ธ

๐‘˜ โˆ’ ๐›ป๐‘˜๐›ป๐‘˜๐œ™

Evolution eq for ๐น

Divergence terms prevents the system from achieving better hyperbolicity

Three ways to achieve better hyperbolicity

Page 26: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Reformulating Einsteinโ€™s equation

Strongly/Symmetric hyperbolic reformulations of Einsteinโ€™s equation

Choosing a better gauge

Better hyperbolicity vs. Singularity avoidance/frame dragging

Generalized harmonic gauge ( Pretorius, CQG 22, 425 (2005) )

Z4 formalism ( Bona et al. PRD 67, 104005 (2003) )

Introducing new, independent variables BSSN ( Shibata & Nakamura PRD 52, 5428 (1995);

Baumgarte & Shapiro PRD 59, 024007 (1999) )

Kidder-Scheel-Teukolsky ( Kidder et al. PRD 64, 064017 (2001) ) symmetric hyp.

Bona-Masso ( Bona et al. PRD 56, 3405 (1997) )

Nagy-Ortiz-Reula ( Nagy et al. PRD 70, 044012 (2004) )

Using the constraint equations to improve the hyperbolicity

adjusted ADM/BSSN ( Shinkai & Yoneda, gr-qc/0209111 )

BSSN outperforms ! ( Alcubierreโ€™s text book 2008 )

Exact reason is not clear (better hyperbolicity is necessary condition)

Page 27: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

BSSN formulation (Shibata & Nakamura 1995; Baumgarte & Shapiro 1998)

Strategy: as wave-like as possible

Introduce new variables ฮ“๐‘Ž = ๐œ•๐‘๐›พ๐‘Ž๐‘

Extract the โ€˜trueโ€™ degrees of freedom of gravity (GW)

Conformal decomposition by York (PRL 26, 1656 (1971); PRL 28, 1082 (1972))

the two degrees of freedom of the gravitational field are carried by the conformal equivalence classes of 3-metric, which are related each other by the conformal transformation :

๐œธ๐’‚๐’ƒ = ๐๐Ÿ’๐œธ ๐’‚๐’ƒ

Extrinsic curvature is also conformally decomposed

Trace of K is associated with the lapse function (c.f. maximal slicing) โ‡’ split

๐‘ฒ๐’‚๐’ƒ = ๐๐Ÿ’๐‘จ ๐’‚๐’ƒ +๐Ÿ

๐Ÿ‘๐œธ๐’‚๐’ƒ๐‘ฒ

Reformulation based on new variables :

๐œ“, ๐›พ ๐‘Ž๐‘, ๐ด ๐‘Ž๐‘, ๐พ = tr ๐พ , ฮ“๐‘Ž = ๐œ•๐‘๐›พ๐‘Ž๐‘

Page 28: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

BSSN reformulation

0212

1~~~~~ 2

EKAARDD ij

ij

i

i

ii

j

ijij

j PKDDAAD

8

~ln

~~6

~~

k

kk

k

t K 6

1

6

1ln

k

kij

k

ijk

k

jikijijk

k

t A ~

3

2~~~2~

)](4 SEKKDDK ij

ij

i

ik

k

t

k

kij

k

ijk

k

jik

k

jikij

TF

ijijjiijk

k

t

AAA

AAAKSRDDA

~

3

2~~

~~2

~)8()(

~

TFTF4

Hamiltonian constraint is used

i

kj

jkk

kj

ijj

j

ii

j

ji

j

j

j

ij

j

ij

j

ijjki

jk

ii

k

k

t AKAAP

~~

3

1

3

2

~2~

3

2ln

~6

~~216

Momentum constraint is used

Page 29: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Long-lasting problem until 2005

Treatment of black hole

Excision boundary

Problem: Black holes contain physical singularities

Methods 1: Horizon excision The first breakthrough by

F. Pretorius in 2005

Generalized harmonic formulation

Phys. Rev. Lett. 95, 121101 (2005)

Methods 2: Moving puncture gauge

๐œ•๐‘ก โˆ’ ๐›ฝ๐‘–๐œ•๐‘– ๐›ผ = โˆ’2๐›ผ๐พ, ๐œ•๐‘ก๐›ฝ๐‘– =

3

4ฮ“๐‘– โˆ’ ๐œ‚๐›ฝ๐‘–

These gauge conditions map only the spacetime outside the physical singularity

Campanelli et al. (BSSN)

Phys. Rev. Lett. 96, 111101, (2006)

Baker et al. (BSSN)

Phys. Rev. Lett. 96, 111102, (2006)

The year 2005 : Dawn of new era of BH simulations

Lapse function Wyle scalar

Page 30: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

BH excision: Very complicated actually

Excision boundary

Excision boundary

Page 31: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

A milestone simulation by SXS collaboration:

Long-term simulation of BH-BH merger

Scheel et. al., Phys. Rev. D 79, 024003 (2009); Cohen et. al., Class. Quantum Grav. 26 035005 (2009)

Page 32: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

A milestone simulation by SXS collaboration:

Long-term simulation of BH-BH merger

Scheel et. al., Phys. Rev. D 79, 024003 (2009); Cohen et. al., Class. Quantum Grav. 26 035005 (2009)

Lovelace et al. CQG 29, 045003 (2012)

(SXS collaboration) Almost Exact solution of BH-BH binary with spin 0.97 for the last 25.5 orbits

Page 33: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

GWs from BH-BH merger

Orbital separation decreases due to GW emission

Orbital velocity increases basically according to Keplerโ€™s law

Also, GW frequency and, accordingly amplitude, increases

GW Amplitude takes maximum at the moment of the merger

After the merger, BH quickly becomes axisymmetric due to its characteristic property (no hair theorem)

GW amplitude quickly decreases because stationary axisymmetric object does not emit GW

separation

velocity

Page 34: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Evolving spacetime with matters

Shock waves are formed in general : treatment of discontinuities (High-resolution shock-capturing schemes)

General relativistic hydrodynamics

Valencia group: Marti et al., Astron. Astrophys. 235, 535 (1991)

General relativistic megnetohydrodynamics

Valencia group: Anton et al., Astrophys. J. 637, 296 (2006)

Shibata and Sekiguchi, PRD 72, 044014 (2005)

First binary neutron star merger simulation by Shibata & Uryu (2000)

Recent trend : More โ€˜realisticโ€™ simulations

Microphysical equation of state and neutrinos

Stellar core collapse: Dimmelmeier et al., PRL 98, 251101 (2007) Sekiguchi PTP 124, 331 (with neutrinos)

Binary neutron star merger: Sekiguchi et al. PRL 107, 051102 (2011)

Black hole-neutron star merger: Foucart et al. PRD 90, 024026 (2014); Sekiguchi (2015,2016)

Page 35: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Black hole-neutron star merger

Kiuchi, Sekiguchi et al. (2015)

Page 36: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Summary of Numerical Relativity

Page 37: MSJ-SI: The Role of Metrics in the Theory of Partial ...MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations Hokkaido University, 2018.07.02-13 Notation and

Summary and outlook

After long-term efforts (more than 50 years) and thanks to recent development of computer resources, Numerical Relativity has become a mature field

Many observation-motivated simulations are ongoing, together with studies of extending the frontier of numerical-relativity simulations themselves

Numerical relativity will contribute in clarifying unsolved issues in GW physics, astrophysics, and nuclear physics, and gravity in the next decade

Gravitational waves : Towards gravitational astronomy: Electromagnetic counterparts of gravitational waves

High energy astrophysics : Formation processes of black holes and their association with the central engine of short and long gamma-ray bursts

Nuclear physics : exploring dense matter physics using GW from NS binaries

Gravitational physics : Testing general relativity via Numerical gravity theories