MTP1 Presentation

Embed Size (px)

Citation preview

  • 8/3/2019 MTP1 Presentation

    1/12

    CONTINUOUS TIMECONTINUOUS TIME

    SIGMA-DELTA ADCSIGMA-DELTA ADC

    (WITH 2-BIT QUANTIZER)(WITH 2-BIT QUANTIZER)

  • 8/3/2019 MTP1 Presentation

    2/12

    Basics of Sigma Delta ModulatorsBasics of Sigma Delta Modulators

  • 8/3/2019 MTP1 Presentation

    3/12

    Advantages and Issues in CTSDMAdvantages and Issues in CTSDM

    ADVANTAGES

    Implicit Anti-aliasing

    No front-end S/H

    Lack of KT/C Noise

    Low Power Consumption

    ISSUES

    Finite Gain & GBW of Op-amp

    Quantizer Non-linearity

    RC-time constant variations

    Excess Loop Delay

    Clock Jitter

  • 8/3/2019 MTP1 Presentation

    4/12

    Architecture of Cascaded 211Architecture of Cascaded 211

    CTSDMCTSDM

  • 8/3/2019 MTP1 Presentation

    5/12

    Noise Cancellation FilterNoise Cancellation Filter

  • 8/3/2019 MTP1 Presentation

    6/12

    MATLAB Simulation ResultsMATLAB Simulation Results

    (2bit Quantizer)(2bit Quantizer)

  • 8/3/2019 MTP1 Presentation

    7/12

    MATLAB Simulation ResultsMATLAB Simulation Results

    (1bit Quantizer)(1bit Quantizer)

  • 8/3/2019 MTP1 Presentation

    8/12

    Design Parameters & Other CoefficientsDesign Parameters & Other Coefficients

    (CTSDM with 2bit Quantizers)(CTSDM with 2bit Quantizers)

    DesignParameters

    FeedbackCoefficients

    OtherParameters

    fb = 24 KHz Ksig = 1/4 MSA = 0.89 V

    OSR = 64 K1 = 1 SNR = 133 dB

    fs = 3.072MHz K2 = 3/2

    K3 = 1 For 1bitQuantizer

    MSA = 0.48 VSNR = 100 dB

    K51 = -1

    K61 = 2

    K71 = -4/3

    K4 = 1K52 = 1/3

    K62 = -1/2

    K72 = 7/24

    K82 = 1

    K92 = -1/4

  • 8/3/2019 MTP1 Presentation

    9/12

    Conclusion & Future TaskConclusion & Future Task

    A Continuous Time Sigma-Delta ADC with 3 stageCascaded 211 Architecture and 2bit Quantizer at eachstage was simulated in MATLAB.

    An improvement of 30 dB in SNR and 0.4 V in MSAwas observed over similar architecture with 1bitQuantizer at each stage.

    CIRCUIT LEVEL implementation will bedone in this semester in 130nmtechnology, while targeting TAPE-OUT.

  • 8/3/2019 MTP1 Presentation

    10/12

    ReferencesReferences

    Understanding Delta-Sigma Data Converters Richard Schreier & Gabor C.

    Temes.

    Delta-Sigma Data Converters, Theory, Design and Simulation RichardSchreier, Gabor C. Temes & Steven R. Norsworthy.

    Delta-Sigma Toolbox Richard Schreier.

    A Cascaded Continuous Time Sigma-Delta Modulator with 80 dB DynamicRange Maurits Ortmanns, Markus Kuderer, Yiannos Manoli & FriedelGerfers.

    A Case Study on a 2-1-1 Cascaded Continuous-Time Sigma-Delta Modulator Maurits Ortmanns, Friedel Gerfers, & Yiannos Manoli.

    Optimal Parameters for Delta-Sigma Modulator Topologies AugustoMarques, Vincenzo Peluso, Michel S. Steyaert, & Willy M. Sansen.

  • 8/3/2019 MTP1 Presentation

    11/12

    ReferencesReferences

    Analysis of Integrator Nonlinearity in a Class of Continuous-Time Delta

    Sigma Modulators Prabu Sankar and Shanthi Pavan.

    Excess Loop Delay in Continuous-Time DeltaSigma Modulators James A.Cherry and W. Martin Snelgrove.

    A Power Optimized Continuous-Time ADC for Audio Applications ShanthiPavan, Nagendra Krishnapura, Ramalingam Pandarinathan, and PrabuSankar

    Theory, Practice, and Fundamental Performance Limits of High-Speed DataConversion Using Continuous-Time Delta-Sigma Modulators James A.Cherry

    Compensation of the Influence of Finite GBW on CT-SDM MauritsOrtmanns, Friedel Gerjers, Eannos Manoli

    A Clock Jitter Insensitive Multi-bit DAC Architecture for High-PerformanceLow-Power CTSDM Gerfers, M . Ortmanns, P Schmitz, Z Manoli & K. M.Soh

  • 8/3/2019 MTP1 Presentation

    12/12

    Thank YouThank You