13
Page 1 of 13 ©2017, R2Sonic LLC C.W. Brennan, Chief Hydrographic EngineerR2Sonic R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components Multibeam Survey Suite Components 1 Auxiliary Sensors and Components A multibeam survey system is comprised of more components than just the Sonic 2024 Multibeam Echosounder. These components are the auxiliary sensors, which are required to provide the necessary information for a multibeam survey. This does not mean that these sensors are a minor part of the survey system; each auxiliary sensor is required for any multibeam survey operation. The required sensor data: Position: Differential Global Positioning System Receiver Heading: Gyrocompass Attitude: Motion Sensor Refraction correction: Sound Velocity Probe Each of the individual sensors requires their own setup and operation procedures. The details, discussed here, concerning the installation and calibration of the auxiliary sensors, is supplemental to any and all manufacturer’s documentation. 1.1 Differential Global Positioning System The Global Positioning System (GPS) is well known to all surveyors. There was a period of time when the GPS position was intentionally made less accurate; this was Selective Availability (SA). When SA was enacted, the GPS position became too inaccurate for survey use. It was during this period that the concept of differential corrections was established. Differential corrections were derived from users monitoring the GPS position at a known survey point and computing the corrections required to adjust the various pseudo ranges to make the GPS position agree with the known survey position. If a vessel was operating within the local area and observing the same satellite constellation; the derived pseudo range corrections could be applied on board to make for a more accurate and consistent position. The corrections are normally transmitted over a radio link and applied within the GPS receiver. 1.1.1 Installation The first and foremost consideration when installing the DGPS system is the location of the respective antennae. Both the GPS antenna and the differential antenna (if they are two separate antennae) need to be mounted on the vessel in such a way so as to have a totally unobstructed view of the sky. When installing the GPS antenna, the surveyor should be aware of the position of the stacks and masts; in particular are davits or cranes that may be currently in a stored position, but will be in use during survey operations. If mounting the antenna on a vessel that has helicopter landing facilities, coordinate the placement of the antenna with the personnel in charge of helicopter operations. When the location for the antennae has been determined the next step is determining how the coaxial cable, connecting the antenna and the receiver, is to be run. The cables should be run in such a manner so as to be protected from possible damage. Cables should not be run through hatches or windows, if it can be avoided; if such runs are necessary then a block or other such

Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  • Upload
    others

  • View
    17

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 1 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

MultibeamSurveySuiteComponents

1 AuxiliarySensorsandComponentsA multibeam survey system is comprised of more components than just the Sonic 2024 Multibeam 

Echosounder.  These components are the auxiliary sensors, which are required to provide the 

necessary information for a multibeam survey.  This does not mean that these sensors are a minor 

part of the survey system; each auxiliary sensor is required for any multibeam survey operation.  The 

required sensor data: 

Position: Differential Global Positioning System Receiver 

Heading: Gyrocompass 

Attitude: Motion Sensor 

Refraction correction: Sound Velocity Probe 

Each of the individual sensors requires their own setup and operation procedures.  The details, 

discussed here, concerning the installation and calibration of the auxiliary sensors, is supplemental 

to any and all manufacturer’s documentation.   

1.1 DifferentialGlobalPositioningSystemThe Global Positioning System (GPS) is well known to all surveyors.  There was a period of time when 

the GPS position was intentionally made less accurate; this was Selective Availability (SA).  When SA 

was enacted, the GPS position became too inaccurate for survey use.  It was during this period that 

the concept of differential corrections was established. Differential corrections were derived from 

users monitoring the GPS position at a known survey point and computing the corrections required 

to adjust the various pseudo ranges to make the GPS position agree with the known survey position.  

If a vessel was operating within the local area and observing the same satellite constellation; the 

derived pseudo range corrections could be applied on board to make for a more accurate and 

consistent position.  The corrections are normally transmitted over a radio link and applied within 

the GPS receiver. 

1.1.1 InstallationThe first and foremost consideration when installing the DGPS system is the location of the 

respective antennae. Both the GPS antenna and the differential antenna (if they are two separate 

antennae) need to be mounted on the vessel in such a way so as to have a totally unobstructed view 

of the sky. 

When installing the GPS antenna, the surveyor should be aware of the position of the stacks and 

masts; in particular are davits or cranes that may be currently in a stored position, but will be in use 

during survey operations.  If mounting the antenna on a vessel that has helicopter landing facilities, 

coordinate the placement of the antenna with the personnel in charge of helicopter operations. 

When the location for the antennae has been determined the next step is determining how the 

coaxial cable, connecting the antenna and the receiver, is to be run.  The cables should be run in 

such a manner so as to be protected from possible damage.  Cables should not be run through 

hatches or windows, if it can be avoided; if such runs are necessary then a block or other such 

Page 2: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 2 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

obstruction should be placed so that the hatch or window will not close on the cable.  If the cables 

are to be suspended between two points, a rope or other line should be strung to carry the weight 

of the cables.  Cables should never be kinked; all cables have a minimum bending radius, if it is 

known adhere to it, if it is not known use common sense.  Do not run cables in a manner that they 

will become safety hazards on the vessel, causing personnel to trip or be caught on them.  Avoid 

running cables along voltage carrying lines. 

It is important to mark the cables at both ends to denote what they are and to where they go. 

The connection to the antenna may be required to be completely water proofed (depending on the 

manufacturer’s recommendations) using electrical tape, with a secondary covering of self‐

amalgamated tape.  Ensure that there are no air gaps in the tape; they will become a channel for 

water.  If a cable is to be run upwards from the antenna, form a drip loop by leaving slack in the 

cable that will hang below the antenna connector.  This will allow any water that flows down the 

cable to collect and drip from the slack loop instead of running into the connector. 

The cables, connectors and antennae should be inspected regularly for signs of damage, corrosion or 

abuse.  Any abrasions on the cable should be securely taped; if possible, a waterproof coating should 

also be applied. 

1.1.2 GPSCalibrationPrior to commencing survey operations, the accuracy of the Differential GPS position and 

transformation to local datum should be determined.  There are two main methods to determine 

the accuracy of the DGPS position and data transformation.  For both methods, a local land survey 

benchmark is required. 

1.1.2.1 PositionAccuracyDeterminationMethod1The GPS antenna is physically placed over the survey benchmark.  The surveyor will ensure that the 

antenna has a clear view. This is particularly important if the benchmark being used is in a dock area.  

The surveyor will also ensure that, if a separate antenna is used to receive differential corrections, 

that it is not blocked.  

The GPS position data should be logged, in the data collection software, for not less than 15 minutes.  

The collected data can then be averaged, standard deviations determined, and compared to the 

published position of the survey benchmark.   

The two main causes of error, in this area, are: 

Wrong geodetic transformations being applied to the WGS‐84 position derived from GPS. 

Erroneous coordinates for the Differential reference station. 

1.1.2.2 PositionAccuracyDeterminationMethod2This method is most easily accomplished during the gyrocompass calibration.  The antenna remains 

mounted on the vessel.  The surveyor will set up on the known survey benchmarks; using standard 

land survey techniques, the exact absolute position of the antenna can be determined.  During the 

period that the surveyor is ‘shooting in’ the GPS antenna, the GPS position will be logged on board, 

the averaging and statistical analysis will be as above. 

Page 3: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 3 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

The surveyor will need to take numerous shots to also obtain an average, due to the possible 

movement of the vessel while alongside. 

1.2 GyrocompassUtmost care is required for the installation of the gyrocompass.  The gyrocompass is a sensor that 

cannot be situated randomly.  The purpose of the gyrocompass is to measure the vessel’s heading.  

In order to do this the gyrocompass should be placed on the centre line running from the bow stem 

to the midpoint of the stern.  If it is not possible to place the gyrocompass on the centreline of the 

vessel, it can be mounted on a parallel to the centre line. 

All survey grade gyrocompasses will be plainly marked for alignment on the centre line.  This 

marking may be an etched line fore and aft on the mounting plate, or possibly metal pins on the 

front and the back of the housing that point down.  If no marking exists, then measuring the fore and 

aft faces and finding the centre may be sufficient. 

No matter how well the gyrocompass is placed, there exists a possible error between the true 

vessel’s heading and the gyrocompass derived heading.  Any new installation of a gyrocompass 

should include a gyrocompass calibration.  There are various methods to perform a gyrocompass 

calibration; the best method employed will be determined by the location of the vessel, the time 

allotted for the calibration and the resources at hand.  

1.2.1 GyrocompassCalibrationMethodsAfter the installation of gyrocompass (henceforth termed gyro) on a vessel, that gyro should be 

calibrated to ensure that the heading it determines is the true heading of the vessel. 

If the error is large, the gyro can be physically rotated to align itself with the true vessel heading. 

Small errors can be corrected, either by internal adjustment to the gyro, or in the software that 

receives the gyro reading. 

1.2.1.1 StandardLandSurveyTechnique One  of  the  most  accurate  methods  to  determine  the  gyro  error  involves  the  use  of  standard 

recognised  land  survey  techniques.   The  time and equipment  involved  requires  that a  substantial 

period be allotted for such a calibration. 

If  possible  the  vessel will  be berthed  alongside  a quay or  dock  that has  a  survey benchmark located in close proximity. 

If a survey benchmark is not located close to the berth, then the surveyor will have to  run a  transit  from  the nearest,  suitable,  local  survey bench mark  to establish a point on  the quay  that has a well defined position. From  this point another point should be established along the quay to form a baseline. 

When the vessel comes alongside, all lines should be made as taut as possible.  The gyro should be allowed 2 hours to settle down after the vessel has come alongside. 

The  stern of  the vessel  should be measured, with a metal  tape,  to determine  the centre point of the stern.  A survey reflector will be placed at this position. Another survey  reflector  will  be  placed  exactly  at  the  bow.    It  will  be  verified  that  the reflectors  are  accurately  placed  on  the  centre  line  of  the  vessel  by  either measurements or survey techniques. 

The surveyor will set up on one benchmark; a round of readings will be taken from the  benchmark  to  the  fore  and  aft  reflectors.  Simultaneous  to  this,  the  survey 

Page 4: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 4 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

personnel will  record  the  gyro heading  as  it  is  read by  the  survey  computer. Any variation  between  the  digital  output  and  the  physical  gyro  reading  should  be remedied  prior  to  the  commencement  of  readings.  It  is  recommended  that  the personnel  on  the  vessel  and  the  surveyors  on  the  quay  be  in  constant communication to assist in coordinating the measurements. 

One round of readings will be considered to be not less than 30 sets, a set being one reading each from the bow and stern reflectors. 

Upon  completion  of  the  round  from  benchmark  one,  the  surveyor will move  to benchmark two and repeat the process. 

Upon  the  completion of  all  rounds  from  the  two benchmarks  the  vessel will  turn about.   With  the  vessel, now heading on  the  reciprocal heading,  the  gyro will be allowed at least 1 hour to settle down. 

When  the  gyro  has  been  given  sufficient  time  to  settle  down  a  further  series  of range  and  bearing measurements  will  be made  in  exactly  the  same manner  as before. 

 

When all readings are completed, the surveyor will calculate the azimuth between the two survey 

reflectors for each set of readings.  The azimuth readings will be compared with the headings taken 

on board the vessel from the gyro, itself.   If there has been  little or no movement of the vessel, an 

average can be taken of the azimuths and  for the gyro readings and compared.   By calculating the 

standard deviation of the readings, the surveyor can determine the degree of movement during the 

recording process.   If the deviation  is greater than the stated accuracy of the gyro, the comparison 

readings should be based on simultaneous time. 

If physical adjustments are required, they should be made and the calibration process repeated.   If 

the  adjustment  is determined  to be minor  and  can be  accounted  for  in  the  survey  software,  the 

correction value should be entered and then verified using the calibration process.  This check of the 

calibration value can be an abbreviated version of the calibration process detailed above. 

 

Figure 1: Gyrocompass Calibration method 1 

Page 5: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 5 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

Quayside Benchmarks have known geodetic positions. 

Measure Range and Bearing to reflectors on vessel centre line 

Using Range and Bearing to reflectors, determine geodetic position for reflectors 

Calculate bearing from stern reflector to bow reflector will give the true heading of the vessel 

True heading of vessel is then compared to gyrocompass reading taken at the same time as the Range and Bearing measurements  

Benchmarks do not have to be on the quay, but should be in a position to give accurate Range and Bearing to the reflectors 

 

   

Page 6: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 6 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

1.2.1.2 TapeandOffsetMethodofGyroCalibrationThis method relies on measuring the offset distance from a baseline on the quay, with a known 

azimuth, to a baseline that is established on the vessel.  There are greater areas for error when using 

this method, particularly in establishing a baseline with known azimuth. 

A baseline is established on the quay as close as possible to the vessel's side.  It is very important 

that the azimuth of this baseline be as accurately determined as possible. The baseline should be of 

a length that will exceed the baseline that is established on the vessel. 

A baseline is established on the vessel that is parallel to the centre line of the vessel.  It should not 

be assumed that the side of the vessel is parallel to the centre line.  This baseline should be on the 

deck that faces the dock.  The baseline on the vessel should be as long as possible, the longer the 

better. 

With the vessel secured alongside the quay, the vessel baseline will be compared to the quayside 

baseline.  Two points will be established on the quayside baseline that corresponds exactly to the 

fore and aft positions on the vessel baseline.  That is: the points that are established on the quayside 

baseline should be normal to the points on the vessel baseline. 

 

Figure 2: Gyro Calibration Method 2 

 

 

 

 

 

 

 

 

 

 

Page 7: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 7 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

The example, below, will illustrate the math involved. 

 

Figure 3: Gyro Calibration Method 2 example 

 

A to A'  1.0 metres  B to B'  1.5 metres 

Side a  5.0 metres  Side b  1.5 – 1.0 = 0.5 metres

Angle b'  Arctan 0.5/5.0 = 5.7

Ship Azimuth = 270 + 5.7 = 275.7 

Table 1: Gyro Calibration Method 2 computation 

 

 

Figure 4: Idealised concept of Gyro Calibration Method 2 

 

In this example the vessel heading for this set of readings is 275.7; this would be compared to the gyro reading recorded at the same time the offsets were measured.  In the above example,  if the bow was further out from the quay than the stern, the angle b' would 

be subtracted from the azimuth of the quay, i.e. 270 ‐ 5.7 = 264.3.  

Page 8: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 8 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

1.3 TheMotionSensorThe motion sensor is used to determine the attitude of the vessel in terms of pitch, roll and heave. 

Pitch is the movement of the bow going up and down.  Roll is the movement of the port and 

starboard side going up and down.  Heave is the vessel going up and down. 

The sonar head is physically attached to the vessel; as the vessel moves, so does the sonar head.  

The motion sensor reports the movements of the vessel to the data collection software; the data 

collection software, using the offsets to the motion sensor and to the sonar head, computes the 

movement at the sonar head to correct the multibeam data for pitch, roll and heave.  

One important aspect of the motion sensor is the sign convention used by the motion sensor as 

compared to the sign convention used in the collecting software.    The surveyor must be aware of 

the convention that is used and what adjustments are necessary, if any, to ensure that the 

convention is consistent with the data collection computer.  

There exist two major areas of thought as to where the motion sensor should be situated.  One 

group believes that the motion sensor should go as close to the multibeam as possible, even if the 

multibeam is mounted on an over‐the‐side pole.  The second group believes the motion sensor 

should be placed as close to the centre of rotation for the vessel as possible. 

Placing the motion sensor on the hydrophone pole would seem to solve for all movement of the 

pole itself, but in fact the motion sensor, mounted in this fashion, can provide false attitude 

measurements.  This is particularly true when there is significant roll; the motion sensor on the pole 

can interpret a portion of this roll as heave, which is not true.  By placing the motion sensor as close 

to the centre of rotation (also called the centre of gravity) as possible, only the real heave of the 

vessel will be measured.  All software will solve for the motion of the sonar head, based on the 

offsets that have been entered into the setup files for the vessel configuration; this is called a lever 

arm adjustment.  The other consideration is that the motion data is usually applied to the GPS 

antenna.  The GPS antenna is usually mounted high on the vessel, so any pitch or roll will induce a 

large amount of movement in the GPS antenna thus providing a false position due to the antenna 

movement.  If the motion sensor is mounted on the hydrophone pole it is reporting an exaggerated 

motion because it is far from the centre of motion of the vessel; this exaggerated motion then would 

be applied to the GPS antenna position and the vessel position computation would be in error.  

The other consideration is that the alignment of the motion sensor must be on or parallel to the 

centre line of the vessel; it is essential to prevent ‘bleed‐over’ of pitch and roll. If the motion sensor 

is not aligned with the centre line, when the vessel rolls some of the roll will be seen as pitch as the 

motion sensor’s accelerometers and gyros are not aligned with the axes of the vessel it is mounted 

on.  It is more difficult to obtain this precise alignment if the motion sensor is placed on the pole. 

Mount the motion sensor as close to the centre of rotation (or centre of gravity as possible) and 

perfectly aligned to the centre line of the vessel.  

The motion sensor should be mounted on as level a platform as possible.  After mounting the 

motion sensor, the actual 'mounting angles' should be measured.  Some motion sensors contain 

internal programs that can measure the mounting angles.  Some data collection software packages 

also include the capability to measure mounting angles. The mounting angles are the measured 

Page 9: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 9 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

degrees of the actual physical mounting of the motion sensor.  This is to compensate for sloping or 

warped decks.   Many decks have some slope to them and this should be accounted for to ensure 

that the pitch and roll values that the motion sensor derives is for vessel movement and not for its 

physical mounting on the deck.  The mounting angles should be measured prior to any multibeam 

calibration and not changed after the calibration. 

Prior to measuring the mounting angles, the vessel should be put in good trim by the engineer.  On a 

small vessel it is important that the angles be measured without undue influence from people 

standing around.  A false measurement can be induced by two people sitting on the gunwale having 

a conversation while the measuring process is being completed.  It is usually a good idea to have all 

personnel leave a small vessel during the measuring process. 

If the motion sensor mounting angles have been entered in the motion sensor or the data collection 

software they can only be changed prior to the multibeam calibration (patch test); they are not to be 

changed after the patch test. 

It is important to keep the motion sensor in mind when surveying.  A motion sensor takes time to 

'settle down' after a turn or a speed change and most of the settling down will depend on the heave 

bandwidth that is entered into the motion sensor.  Some motion sensors can take in position, speed 

and heading data to assist them in the settling process.  Depending on the degree of the turn or the 

amount of the speed change a practical period of 2 minutes should be allowed for the motion sensor 

to settle.  It is prudent to plan the survey such to allow for this time via the 'run in' to the start of 

data collection; thus allowing the motion sensor time to settle and the heave normalise.  If this is not 

done, many times motion artefacts or erroneous depths will be seen at the beginning of line and the 

processed data will not be correct. 

Monitor the motion sensor (all data collection software provides a time series window to monitor 

individual data) to ensure that it is operating properly.   

1.4 SoundVelocityProbesThere are two basic types of sound velocity probes.  One type measures the parameters of sound 

velocity in water; those being Conductivity (Salinity), Temperature, and Depth (Pressure), these are 

normally referred to as CTD probes.  The other type of probe contains a small transducer and has a 

reflecting plate, at a known distance from the transducer that reflects the sound, the time is 

measured for this transmission and the sound velocity determined by that measurement; these are 

called Time of Flight probes. There is third type, known as the Expendable Bathythermograph (XBT) 

which is launched and as it passes through the water column sends back temperature readings 

(through two very thin wires); it is not recovered, it is expendable. 

The CTD and Time of Flight probes store the data internally.  The data is downloaded to a computer 

after the probe is recovered. 

1.4.1 CTDProbesThe CTD probe type of sound velocity probe has instruments to measure the conductivity of the 

water, water temperature, and a pressure sensor to measure depth.  The CTD probe is a good choice 

if any of this information is also required; to obtain a velocity a formula must be used. 

Page 10: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 10 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

There are various formulae available that are based on the parameters that are recorded by the CTD.  

The UNESCO algorithm is considered a universal standard and was put forth by C‐T. Chen and F.J. 

Millero in 1977.  The Chen‐Millero (and Li) equation is complex as is Del Grosso’s (1974) and have 

been termed Refined. Simple formula, such as Mackenzie’s (1981), also yields good results. 

When using a CTD, it is very important that the probe be allowed to sit, fully submerged, in the 

water for a few minutes prior to deploying it; this is to allow the probe to reach equilibrium with the 

water temperature   It is also important that the tube, through which the water flows pass the 

sensors, is checked for obstructions or marine growth. 

 

Figure 5: CTD Probe 

1.4.2 TimeofFlightProbeThe Time of Flight probe incorporates a transducer that transmits an acoustic pulse that reflects 

back from a plate that it is at a very precise distance from the transducer.  The two‐way travel time is 

measured, divided by 2, and the sound velocity determined.  The Time of Flight probe is usually 

considered more accurate for multibeam survey work.  

The sound velocity probe that is mounted close to the Sonic 2024 sonar head is a time of flight 

probe. 

 

Page 11: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 11 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

 

Figure 6: Time of Flight SV probe 

 

1.4.3 XBTProbesThe XBT is a probe which free falls through the water column at a more or less constant speed (the 

probe is designed to fall at a known rate so that the depth can be inferred) and measures the 

temperature as it passes through the water column. Inside the probe is the thermograph, which is 

attached to a spool of very fine wire. Two very small wires transmit the temperature data from the 

probe back to a computer.  The XBT is not recovered.  XBT probes can be launched whilst underway 

and are used extensively by Navy and Defence forces for rapid determination of the sound velocity 

without stopping the vessel. 

1.5 ThesoundvelocitycastThere are no set rules for when to take a measurement of the water column sound velocity.  

Common sense is a good guideline.  The conditions, detailed below, have a major influence as to 

when to take a sound velocity cast. 

1.5.1 TimeofDayThroughout the day the upper level sound velocity characteristic will change mainly due to solar 

heating or cooling due to cloud cover or precipitation.  Another main element of the time of day 

changes is tides.  

When working in tidally influenced areas, the sound velocity can change drastically due to a salt 

wedge that moves in and out with the tide.  The surveyor must be aware of the relationship of the 

time of the tide to the salt wedge. 

Transducer Pressure sensor 

for depth 

Reflecting 

Plate 

Page 12: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 12 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

1.5.2 FreshwaterinfluxAny river, stream or runoff will drastically change the sound velocity through the introduction of 

freshwater and also through a temperature difference. 

1.5.3 WaterDepthThe sound velocity cast should always be made in the deepest part of the survey area.  The sound 

velocity profile cannot be extrapolated to deeper depths as there are too many possible variables. 

1.5.4 DistanceIf the survey area is large, then it is quite possible that there will be differences across the range of 

the survey area even in open water. 

1.5.5 DeployingandrecoveringtheSoundVelocityProbeThe guide lines for deploying and recovering the sound velocity probe are based on common sense, 

but are sometimes ignored during the actual operation.  The guidelines, below, are for a hand cast in 

shallow water.  The softline, used for the cast, should be marked to provide an indication of the 

amount of line out. 

1.5.5.1 Shallowwatersoundvelocitycast/deploymentbyhand1. Plan where the cast is to be made 

a. In a small area, deploy in the deepest part of the survey area 

b. Always do a cast prior to starting the survey 

2. Liaise with the captain or office of the watch with the plan position and time of deployment 

and time required for the cast 

3. Prepare the probe for casting (some probes may need to be programmed prior to each 

launch) 

4. Secure the probe to the downline with a bowline knot or shackle 

5. Secure the bitter end of the downline to the vessel 

6. Request permission, from the bridge or helm, to deploy and await their OK to launch 

a. Bridge or helm to ensure that the vessel is out of traffic 

b. Bridge or helm to assess wind and sea conditions and advise as to which side of 

vessel the deployment should be made 

7. Put the probe in the water until it is totally covered and let it remain there for a period of 

time to acclimate to the sea temperature.  This is very important with a CTD type of probe, 

but  of less concern for a time‐of‐flight probe 

8. Verify the water depth 

9. Lower the probe at a constant rate; only the downcast should be used 

10. Try not to allow the probe to touch the bottom 

11. Recover the probe rapidly 

12. As soon as the probe is on deck, notify the bridge or helm that they are free to manoeuvre, 

but remain in the area 

13. Rinse the probe with fresh water and dry thoroughly 

14. Download the cast and verify that it looks good 

15. Load the cast into the data collection software 

Page 13: Multibeam Survey Suite Components · The purpose of the gyrocompass is to measure the vessel’s heading. In order to do this the gyrocompass should be placed on the centre line running

  

Page 13 of 13 ©2017, R2Sonic LLC  C.W. Brennan, Chief Hydrographic Engineer‐R2Sonic 

R2Sonic LLC Multibeam Training – Multibeam Survey Suite Components

1.5.5.2 DeepWaterCast/DeploymentbymechanicalmeansA cast in deeper water requires more preparation and planning.  A deep water cast can be 

considered to be any cast that is deployed via an ‘A’ Frame, winch, or other mechanical means.  Even 

a shallow water cast can fall under this definition when mechanical means are used. 

One of the main concerns, in a deep water cast, is that the probe will not go straight down due to 

the current flow or vessel drift due to wind and/or currents.  This being the case, weights must be 

used to ensure the cable (and probe) go as straight down as possible. 

Unless the sound velocity probe is designed to have additional weight attached to it, no weights 

should be attached to the sound velocity probe.  The weights, which enable deployment as straight 

as possible, are attached to the end of the cable.  The probe should be attached to the cable 

approximately 3 – 5 metres above the weights; if the weights hit the bottom this should provide 

enough scope for the probe to land clear of the weights. 

 

 

Figure 7: Deploying a sound velocity probe via a winch or A ‐ Frame 

The other major consideration when deploying a probe in deeper water is that the vessel must be 

stationary longer and will drift.  If there is a large variation in depths, the depth when the probe 

went in, may not be the same depth when the probe reaches the bottom.  It is essential that enough 

cable be deployed to ensure a full profile to the sea floor.