Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

  • Upload
    joreli

  • View
    220

  • Download
    4

Embed Size (px)

Citation preview

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    1/62

    1

    Multiphase Flow in Pipes

    © Copyright 2006 iPoint LLC. Prepared for iPoint Clients only. All rights reserved. This work contains proprietary presentation of iPoint LLC and may not be copied or stored in an informational

    retrieval system, transferred, used, distributed, translated or retransmitted in any form or by any means, electronic or mechanical, in whole or part, without the express written permission of the

    copyright owner.

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    2/62

    2

    Outline

    1. Components of pressure loss for

    multiphase flow in pipes.

    2. Liquid holdup.

    3. Shape of the tubing curve.

    4. Correlation for oil and gas wells

    5. Critical rate to unload a well

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    3/62

    3

    Single-phase Flow

    q L

    q L

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    4/62

    4

    Pressure Loss Components

    dL

    dv

    g

    v

    d g

    v f 

    g

    g

    dL

    dP

    ccctot 

     ρ  ρ θ  ρ    ++=

    2

    sin

    2

    Elevation

    Friction

     Acceleration

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    5/62

    5

    Single Phase Flow

    Fluid occupies 100% cross section of the pipe:

    q = Phase rate in bpd, cubic meters per day

    A = Area of cross section of pipe, ft2 or m2

    v = q/A, Velocity in ft/sec or m/sec

    f = Friction Factor = f (NRe)

    ρ = Density of fluid (lbm/ft3)

    µ = Viscosity of fluid, cp

    σ = Surface Tension, dynes/cm

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    6/62

    6

    Moody Friction Factor Diagram

    Laminar Critical Zone Transition Zone

    Complete Turbulence, Rough Pipes

    Pipe Rel.

    Roughness

    Smooth Pipe

    FrictionFactor

    Reynolds Number

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    7/627

    Reynolds Number 

    Where,

    v = q/A, Velocity in ft/sec

    d = Pipe diameter, ft

    ρ = Density of fluid (lbm/ft3)µ = Viscosity of fluid, cp

    µ  ρ vd  N  488,1Re  =

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    8/628

    Friction Factor 

    For Laminar Flow, NRe

    < 2000 and 

    f  = 64/NRe

    For Turbulent Flow , 3000

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    9/629

    Pipe Roughness

    Normally inside wall of a pipe is not smooth In non corrosive environment oil or gas wells tubing may

    behave like smooth pipe

     Absolute Roughness ε, is the mean protruding height of piperoughness

    • Measured with mean protruding height of uniformly distributed, sized,tightly packed sand grains giving same pressure gradient behavior as theactual pipe.

     Absolute Roughness = ε in.

    Relative Roughness = ε / d  Diameter of pipe = d in.

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    10/6210

    Friction Factor Rough Pipe:

    “ In turbulent flow the effect of wall roughness on pressureloss in pipes depends on both the relative roughness andthe Reynolds number”

    If a thick laminar sublayer of l iquid exists in the boudary layeradhering to the pipe wall, the pipe behaves as a Smooth

    pipe.

      

      −=

    d  f ε 2log274.11

    Based on his Sand Grain Experiments, Nikuradse Suggested,

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    11/6211

    Friction Factor in Transition Region

    Transition Region, where friction factor varies

    both with relative roughness and Reynolds

    number 

    Colebrook (1938) proposed (Iterative),

     

     

     

     +−=

     f  N d  f  Re

    7.182log274.1

    1   ε 

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    12/6212

    Friction Factor in Transition Region

     A simpler equation explicit in friction factor‘f’ was

    proposed by Jain (1976) - reproduces Colebrook

    equation over the entire range of relative

    roughness and Reynolds Number and is

    presented as follows:

      

       +−=

    9.0

    Re

    25.21log214.11 N d  f 

    ε 

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    13/6213

    Single Phase Pressure

    Loss

    dL

    dv

    g

    v

    d g

    v f 

    g

    g

    dL

    dP

    ccctot 

     ρ  ρ θ  ρ    ++=

    2

    sin

    2

    Elevation

    Friction

     Acceleration

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    14/6214

    Single Phase Calculations

    Calculate Velocity from rate

    Calculate friction factor from Reynolds

    Number 

    Calculate pressure losses in smallsegments assuming average fluid physical

    properties in case of compressible flow

    Use single phase pressure loss equations

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    15/6215

    Single Phase Gas

     pT TZ  p B Bqq

     ZRT  pM Where

    Sc

    ScggSc   === ;;, ρ 

    v f g

    dL

    dP   gggg

    gas   2sin

    2 ρ θ  ρ    +=

    dpC g

     ZT 

     p

     ZT 

     p

    dL R

     M   wf 

    tf 

     p

     p

     L

    +

     

      

     = ∫∫ θ sin2

    0

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    16/6216

    Single-Phase gas Flow

    dp

     ZT 

     p

     ZT 

     p

     I where

    +

     

      

     =

    2

    2

    sin001.

    ,

    θ 

    ,75.18   dp I  L

    wf 

    tf 

     p

     p

    g   ∫=γ 

     ft andLind  MMscfDq RT  psia p

     fq

    F and 

    sc

    o

    sc

    ======.;;;;

    ,

    667.0

    , 5

    22

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    17/6217

    Cullender and Smith Ex.

    Calculate the flowing bottom hole pressure

    in a gas well (γg=0.75),Well Depth,L = 10,000 ft

    BH Temp.,T = 245 oF

    Wellhead Pressure, ptf  = 2,000 psia

    Wellhead Temp., Ts = 110oF

    ε = 0.00007 ft

    d = 2.441 in.

    q sc = 4.915 MMscfd 

    Assume f =0.015 and the first pressure estimate,

     p(est) = p(known)(1+2.5x10-5xL/2 Sinθ)

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    18/6218

    Multiphase Flow

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    19/6219

    Pressure Loss Components

    dL

    dv

    g

    v

    d g

    v f 

    g

    g

    dL

    dP m

    c

    mm

    c

    mmmm

    ctot 

     ρ  ρ θ  ρ    ++=

    2sin

    2

    Elevation

    Friction

     Acceleration

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    20/6220

    Multiphase Flow

    q L ,q g

    q L ,q g

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    21/6221

    Multi phase Flow

    Characteristic

    More than one phases flow through every-cross section of the pipe

    Cross section occupied by a fluid phase

    continuously change in the direction offlow due to slippage between phases

    Ratio of this cross section for any phase,

    over the whole pipe cross section isdefined as the Holdup (HL) for the liquidphase

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    22/6222

    Holdup??

    q L ,q g

    q L ,q g

    G

    LHL = 0.5

    HL = 0.25

    HG = 1 - HL

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    23/6223

    Definition of Variables

    In multi-phase flow calculations,

    Single-phase flow equations are modified• To account for the presence of second or third phase

    • Involves mixture expressions for velocity, fluid properties

    with weighting factors» Based on in-situ volume or mass fraction - holdup

    • Weighting factors are flow pattern dependent

    • Example: For Liquid-Gas flow, if HL is the weighting factor

    for liquid,

    ( ) LG L Lm   H  H    −+= 1 ρ  ρ  ρ 

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    24/6224

    No-Slip Holdup

    In oil-water flow,

    watercut f w is defined

    as,

    Where, f 0

    = 1- f w

    Under no-slip

    condition, volume

    fraction of liquid, λL Where, λL = 1- λG G L

     L

     L qq

    q

    +=λ 

    ow

    ww

    qq

    q f 

    +=

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    25/62

    25

    Note!!

    For Holdup: HL + Hg = 1

     No-slip Holdup: λL + λg = 1Watercut: f O + f w = 1

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    26/62

    26

    Velocities

    Superficial Velocity (vSL): Assumes a given phaseoccupies the entire pipe area, Ap

    Mixture Velocity (vm): Sum of phase superficial

    velocities

     p

    g

    Sg A

    qv   =

     p

     LSL

     A

    qv   =

    SgSL p

    g L

    m

      vv A

    qqv   +=

    +=

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    27/62

    27

     Actual Phase Velocity

    No-Slip flow: Gas and liquid flows at the mixture velocity

    Because of the slippage between phases, liquid velocity

    will slow down compared to gas in uphill flow and the vice

    versa in downhill flow.

     Actual velocities vL,vg and slip velocity vs are,,

     L

    SL L

     H 

    vv   =

    g

    Sg

     L

    Sg

    g H 

    v

     H 

    vv   =

    −=

    1

     Lgs   vvv   −=

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    28/62

    28

    wwoo L   f  f    ρ  ρ  ρ    +=

    wwoo L   f  f    σ σ σ    +=

    wwoo L   f  f    µ µ µ    +=

    Mixture Properties

    Oil/water mixture flow No Slip condition

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    29/62

    29

    Mixture Properties

    Gas/Liquid mixture flow Slip or No-Slip condition

    Numerous weighting rules used by different

    authors, eg. For mixture viscosity,

    )1(  Lg L Ls   H  H  −+=   µ µ µ 

    )1(

    ,  L L   H 

    g

     H 

     Lsor 

      −

    ×=   µ µ µ 

    )1(,  Lg L Lnor    λ µ λ µ µ    −+=

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    30/62

    30

    Mixture Properties

    Gas/Liquid mixture flow

    Slip or No-Slip condition

    Numerous weighting rules used by different

    authors, eg. For mixture density,)1(  Lg L Ls   H  H    −+=   ρ  ρ  ρ 

    )1(, Lg L Ln

    or    λ  ρ λ  ρ  ρ    −+=

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    31/62

    31

    Multiphase Flow

    Mixture Properties:

    • Holdup Weighting or Dependence

    Flow Regime Actual phase velocities Affected

    by Slippage between phases

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    32/62

    32

    Flow RegimesDuns and Ros (Vertical Uphill)

    BubbleBubble Slug Annular Mist MistTaylor BubblePlug

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    33/62

    33

    Stratified Flow - Downhill

    q l , q gq l , q g

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    34/62

    34

    Flow Regimes in Two Phase Flow

    Bubble flow: (can be present in both upflow or

    downflow)

    • Slug flow: (can be present in both upflow ordownflow)

    • Annular/mist flow: (can be present in both

    upflow or downflow)• Stratified flow: (only possible in downflow or

    Horizontal well)

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    35/62

    35

    Pressure Traverse- Segmentation

    Pressure drops arecalculated for each

    calculation increments

    (i=1,-----,m) in each

    segments (j=1,----,n).

    Uses pressure

    gradient equation for

    each increments and

    segments.

    Iterative calculation

    Segments

    1

    2

    3

    4

    Calc.increments

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    36/62

    36

    Computing Algorithm

    Marching Algorithm

    Known Wellhead

    pressure, pi

    Calculate pi+1 in thecalculation increment

    iteratively

     A complete traverse is

    calculated bysequentially marching

    through the traverse.

    dLdL

    dp p

     L

    ∫     

     

     =∆

    0

     ji

     ji

    m

    i

    n

     j

     L

    dL

     pd  p ,

    ,11

     

     

     

     =∆   ∑∑

    ==

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    37/62

    37

    Marching Algorithm

    1.  Assume a rate and calculate the pwf from IPR2. Start from the bottom segment L(more accurate ?) – Why?? And

    estimate the end of segment pressure

    3. Estimate avg. p and T in the segment

    4. Calculate Fluid props in the segment at this avg. p & T

    5. Calculate the end of segment pressure, if i t is not the same as theassumed one in step 2

    1. Continue the iteration using standard methods such as Newton-

    Raphson or Wagstein’s till it converges w ithin acceptable

    tollerance

    6. Now assume the second segment end pressure and repeat steps 2-5

    7. When the surface terminal segment is reached, the calculated

    pressure must match this given terminal pressure.

    8. If not, either fol low the steps 1-7 till a match is obtained or

    graphically solve like in the with systems approach

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    38/62

    38

    Tubing Curve

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    0 500 1000 1500 2000 2500 3000 3500 4000 4500

    Production rate, STB/D

       F   l  o  w

       i  n  g   b  o   t   t  o  m   h  o   l  e

      p  r  e  s  s  u  r  e ,  p  s   i

    Tubing Curve

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    39/62

    39

    Dimensionless Numbers

    4Lv  N Number,VelocityLiquid 

     L

     LSL

    gv

    σ 

     ρ =

    4gv  N Number,VelocityGas

     L

     LSg

    gv

    σ  ρ =

     L

     Lgd σ 

     ρ = N Number,DiameterPipe d 

    43L

      N Number,ViscosityLiquid  L L

     L

    g

    σ  ρ µ =

    T Ph Fl R i M

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    40/62

    40

    Two-Phase Flow Regime Map

    - Duns and Ros

    .

    1 10 102 103

    1

    10

    102

    10-1

    BUBBLE FLOW

    PLUG FLOWSLUG FLOW

    MIST FLOW

    REGION IIIREGION II

    REGION I

    GAS VELOCITY Number, Ngv

       L   I   Q   U   I

       D   V   E   L   O   C   I   T   Y   N  u  m   b

      e  r ,   N   L  v

    Vertical upflow

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    41/62

    41

    Multiphase Flow

    Determine Flow Regime• Phase Velocities

    • Phase physical properties

    • Pipe inclination• Production and injection

    Determine Holdup - Dependence on

    • Pipe inclination

    • Flow Regime

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    42/62

    42

    Multiphase Flow Calculation

    Superficial Velocities

    Flow Regime Maps

    Holdup Slippage Velocity

    Two Phase Flow pressure gradients

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    43/62

    43

    Pressure Gradient Prediction

    Vertical Upflow• Duns and Ros (1963)

    • Hagedorn and Brown (1965)

    • Orkiszewski (1967)

    • Mechanistic Models: Ansari et al. (1994) Inclined Flow

    • Beggs and Brill (1973)

    • Mukherjee and Brill (1980)

    Horizontal Flow• Dukler (1964)

    Important Dimensionless

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    44/62

    44

    Important Dimensionless

    Variables

    In multiphase flow calculations differentempirical equations for flow regimes and

    liquid holdup are correlated with

    dimensionless variables first proposed byDuns and Ros.

    Knowing Phase rates and pipe inclination,

    calculate Flow regime and liquid Holdup

    Calculate pressure gradient (Ref. Note)

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    45/62

    45

    Two-Phase Friction Gradient

    Two phase friction factoris defined differently by

    different authors as it is

    no more analytically

    predictable as in singlephase flow.

    d g

    v f 

    dL

    dP

    c

    SL L L

     Bubbleflow   2

    2 ρ =

    d g

    v f 

    dL

    dP

    c

    Sggg

    mistflow 2

    2 ρ =

    ;2

    2

    d g

    v f 

    dL

    dP

    c

    m f tp

    twophase

     ρ 

    =

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    46/62

    46

    Two-Phase Hydrostatic Gradient

    Two phase hydrostatic gradient is defined as,

    θ  ρ   sinscc Hydrostati   g

    g

    dL

    dP

    =

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    47/62

    47

    Tubing gradients

    9,810 ft at top perf.

    0

    2000

    4000

    6000

    8000

    10000

    12000

    0 500 1000 1500 2000 2500 3000 3500

    Press ure (psig)

       <  -  -  -  -  -

       D  e  p   t   h

       (   f   t   )

     Ansari

     Aziz

    BB

    HB

    Muk BR

    ORK

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    48/62

    48

    Gradient Curves

    0 1000 2000 3000 40000

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    Pressure, psig

       D  e

      p   t   h ,

       f   t

    Gradient (A) Case 2 (B)

    Case 3 (C) Case 4 (D)

    Case 5 (E) Not Used

    ABCDE

    Inflow

    Outflow

    Inflow Outflow

    Gas/Liq Ratio, scf/bbl

    Gas/Liq Ratio, scf/bbl

    (1) 100.0 (A) 100.0(2) 200.0 (B) 200.0(3) 400.0 (C) 400.0(4) 1500.0 (D) 1500.0(5) 3000.0 (E) 3000.0

    Reg: Authorized User - Dowell Schlumberger 

    WHP= 200 psi

    Rate = 2000 bpd 27/8”;350 API; 2000 F

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    49/62

    50

    Hagedorn and Brown

    Published in 1963

    Widely accepted throughout industry

    Based on data from 1500’ test “well”

    Tubing size: 1”, 1 1/4”, and 1 1/2” nominal

    Different liquids: water, oil: 10 - 110 cp

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    50/62

    52

    Beggs and Brill

    Published in 1973

    Based on experimental data from inclined

    90’ long acrylic pipe

    Pipe size: 1” and 1 1/2”

    Gas flow rate: 0-300 Mscf/D

    Liquid flow rate: 30-1000 bbl/D

    Inclination: ±90, 85, 75, 55, 35, 20, 15, 10,5, 0°

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    51/62

    53

    Mukherjee and Brill

    Published in 1983

    Based on data from 1 1/2” ID inclined pipe

    Developed three separate correlations

    • Uphill and horizontal flow

    • Downhill stratified flow

    • Other downhill flow regimes

    Wellbore Correlations

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    52/62

    55

    Wellbore Correlations

    High GLR Gas Wells

    Cullender and Smith (1956)• Dry gas only. GLR > 100,000 scf/bbl

    Fundamental Flow

    • Dry gas only. GLR > 50,000 scf/bbl. Shallow depth,low pressure

    Fundamental Flow adj

    •  Adjusts gas density for GLR > 50,000

    Wellbore Correlations

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    53/62

    56

    Wellbore Correlations

    Low GLR Gas Wells

    Gray (1974)• Wet gases, gas condensates

    Ros and Gray (1961)

    Oil well correlations may also be useful• Duns and Ros (1963)

    • Hagedorn and Brown (1963)

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    54/62

    57

    Pressure Balance

    )()()()()()(   q pq pq pq pq p pq p acc f cht  flhsepwf    ∆+∆+∆+∆+∆+=

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    55/62

    58

    Liquid Holdup

    Vg

    VL

    g L

     L L

    V V 

    V  H 

    +≡

    ( )   g L L Lm   H  H    ρ  ρ  ρ    −+= 1

    Determination Of Liquid

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    56/62

    59

    Determination Of Liquid

    Holdup

    Oil/Water Flow

    Gradiomanometer 

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    57/62

    60

    ρtool

    Water

    Holdup

    ρwater ρoil

    0%

    100%100%

    water

    point

    In this example

    Hw = 40%

    100%

    oil

    point Gradio

    DensityError In

    Measurement

    Error In Expected

    Downhole Oil Density

    Uncertainty in

    Water Origin and

    Salinity

    ρ= ρo Ho + ρw Hw

    1 = Ho + Hw

    ow

    o H 

    w

     ρ  ρ 

     ρ  ρ 

    −=

    ow

    w

    o H  ρ  ρ  ρ  ρ 

    −−=

    Hold-Up Determination

    C f

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    58/62

    61

    Critical Rate To Lift Liquid

    Most gas wells produce some liquids

    Liquids may be

    • Vaporized in reservoir gas

    • Free liquid in reservoir 

    Liquids will accumulate if not lifted to surface

     Accumulated liquids will reduce productivity

    For a given set of conditions, there is a minimumflow rate to lift liquids

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    59/62

    62

    Models for Liquid Transport

    Continuous film model Entrained drop model

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    60/62

    63

    Critical Velocity

    ( )

      −

    =21

    4141

    912.1

    g

    g Lt v

     ρ 

     ρ  ρ σ 

    vt = terminal velocity of liquid droplet, ft/sec

    ρL = liquid density, lbm/ft3

    ρg = gas density, lbm/ft3

    σ = interfacial tension, dynes/cm

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    61/62

    64

    Critical Rate

    Tz

     A pvq   t c

    3060=

    A = area open to flow, ft2

    p = flowing pressure, psia

    qc = critical rate, Mscf/DT = flowing temperature, ºR

    vt = terminal velocity of liquid droplet, ft/sec

    z = real gas deviation factor, dimensionless

  • 8/20/2019 Multiphase Flow in Pipes, 2006, Critical Velocity, Presentacion

    62/62

    Examples : Perform