96
1 Multiscale Geometric Analysis: Theory, Applications, and Opportunities Emmanuel Cand ` es, California Institute of Technology Wavelet And Multifractal Analysis 2004, Cargese, July 2004

Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

1

Multiscale Geometric Analysis:Theory, Applications, and Opportunities

Emmanuel Candes, California Institute of Technology

Wavelet And Multifractal Analysis 2004, Cargese, July 2004

Page 2: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

2

Collaborators

David Donoho (Stanford) Laurent Demanet (Caltech)

Page 3: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

3

Classical Multiscale Analysis

• Wavelets: Enormous impact

– Theory

– Applications

– Many success stories

• Deep understanding of the fact that wavelets are not good for all purposes

• Consequent constructions of new systems lying beyond wavelets

Overview

• Other multiscale constructions

• Problems classical multiscale ideas do not address effectively

Page 4: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

4

Fourier Analysis

• Diagonal representation of shift-invariant linear transformations; e.g.solution operator to the heat equation

∂tu = a2∆u

Fourier, Theorie Analytique de la Chaleur, 1812.

• Truncated Fourier series provide very good approximations of smoothfunctions

‖f − Sn(f)‖L2 ≤ C · n−k,

if f ∈ Ck.

Page 5: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

5

Limitations of Fourier Analysis

• Does not provide any sparse decomposition of differential equations withvariable coefficients (sinusoids are no longer eigenfunctions)

• Provides poor representations of discontinuous objects (Gibbsphenomenon)

Page 6: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

6

Wavelet Analysis

• Almost eigenfunctions of differential operators

(Lf)(x) = a(x)∂xf(x)

• Sparse representations of piecewise smooth functions

Page 7: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

7

Wavelets and Piecewise Smooth Objects• 1-dimensional example:

g(t) = 1{t>t0}e−(t−t0)

2

.

• Fourier series:

g(t) =∑

ckeikt

Fourier coefficients have slow decay:

|c|(n) ≥ c · 1/n.

• Wavelet series:

g(t) =∑

θλψλ(t)

Wavelet coefficients have fast decay:

|θ|(n) ≤ c · (1/n)r for any r > 0.

as if the object were non-singular

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.5

0

0.5

1

1.5

Page 8: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

8

’Wavelets and Operators’

Calderon-Zygmund Operator

(Kf)(x) =∫K(x, y)f(y) dy

• K singular along the diagonal

• K smooth away from the diagonal

• Sparse representation in wavelet bases (Calderon, Meyer, etc.)

• Applications to numerical analysis and scientific computing (Beylkin,Coifman, Rokhlin)

Page 9: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

9

Our Viewpoint

• Sparse representations of point-singularities

• Sparse representation of certain matrices

• Simultaneously

• Applications

– Approximation theory

– Data compression

– Statistical estimation

– Scientific computing

• More importantly: new mathematical architecture where information isorganized by scale and location

Page 10: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

10

New Challenges

• Intermittency in higher-dimensions

• Evolution problems

• CHA has not addressed these problems.

Page 11: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

11

Agenda

• Limitations of existing image representations

• Curvelets: geometry and tilings in Phase-Space

• Representation of functions, signals

• Representation of operators, matrices

Page 12: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

12

Three Anomalies

• Inefficiency of Existing Image Representations

• Limitations of Existing Pyramid Schemes

• Limitations of Existing Scaling Concepts

Page 13: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

13

I: Inefficient Image Representations

Edge Model: Object f(x1, x2) with discontinuity along generic C2 smoothcurve; smooth elsewhere.

Fourier is awful

Best m-term trigonometric approximation fm

‖f − fm‖22 � m−1/2, m → ∞

Wavelets are bad

Best m-term approximation by wavelets:

‖f − fm‖22 � m−1, m → ∞

Page 14: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

14

Optimal Behavior

There is a ‘dictionary’ of ‘atoms’ with best m-term approximant fm

‖f − fm‖22 � m−2, m → ∞

• No basis can do better than this.

• No depth-search limited dictionary can do better.

• No pre-existing basis does anything near this well.

Page 15: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

15

(a) Wavelets (b) Triangulations

Page 16: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

16

II. Limitations of Existing Pyramids

Canonical Pyramid Ideas (1980-present)

• Laplacian Pyramid (Adelson/Burt)

• Orthonormal Wavelet Pyramid (Mallat/Meyer)

• Steerable Pyramid (Adelson/Heeger/Simoncelli)

• Multiwavelets (Alpert/Beylkin/Coifman/Rokhlin)

Shared features

• Elements at dyadic scales/locations

• FIXED Number of elements at each scale/location

Page 17: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

17

Wavelet Pyramid

Page 18: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

18

Limitations of Existing Scaling Concepts

Traditional Scaling

fa(x1, x2) = f(ax1, ax2), a > 0.

Curves exhibit different kinds of scaling

• Anisotropic

• Locally Adaptive

If f(x1, x2) = 1{y≥x2} then

fa(x1, x2) = f(a · x1, a2x2)

In Harmonic Analysis called Parabolic Scaling.

Page 19: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

19

x2

x4

Identical Copies of Planar Curve

Fine ScaleRectangle

Figure 1: Curves are Invariant under Anisotropic Scaling

Page 20: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

20

Curvelets

C. and Guo, 2002.

New multiscale pyramid:

• Multiscale

• Multi-orientations

• Parabolic (anisotropy) scaling

width ≈ length2

Earlier construction, C. and Donoho (2000)

Page 21: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

21

Philosophy (Slightly Inaccurate)

• Start with a waveform ϕ(x) = ϕ(x1, x2).

– oscillatory in x1

– lowpass in x2

• Parabolic rescaling

|Dj|ϕ(Djx) = 23j/4ϕ(2jx1, 2j/2x2), Dj =

2j 0

0 2j/2

, j ≥ 0

• Rotation (scale dependent)

23j/4ϕ(DjRθj`x), θj` = 2π · `2−bj/2c

• Translation (oriented Cartesian grid with spacing 2−j × 2−j/2);

23j/4ϕ(DjRθj`x− k), k ∈ Z2

Page 22: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

22

Parabolic Scaling

2-j

2-j/2

2-j/2

2-j

Rotate Translate1

Page 23: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

23

Curvelet Construction, I

Decomposition in space and angle

• ‘Orthonormal’ partition of unity (scale): smooth pair of windows (w0, w1)

w20(r) +

∞∑j=0

w21(2

−jr) = 1, r > 0.

• ‘Orthonormal’ partition of unity (angle):

∞∑`=−∞

v2(t− `) = 1, t ∈ R.

• For each pair J = (j, `), define the two-dimensional window

WJ(ξ) = w1(2−j|ξ|) · v(2bj/2c(θ − θj,`)), θj,` = π · ` · 2−bj/2c.

Note

Wj,`(ξ) = Wj,0(Rθj,`ξ)

Page 24: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

24

• WJ is an orthonormal partition of unity∑J

W 2J (ξ) = 1.

Interpretation

• Divide frequency domain into annuli |x| ∈ [2j, 2j+1)

• Subdivide Annuli into wedges. Split every other scale.

• Oriented local cosines on wedges

Page 25: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

25

Partition: Frequency-side Picture

2

2

j/2

j

Page 26: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

26

Curvelet Construction, II

Local bases

• Fix scale/angle pair (j, `)

suppWj,` ⊂ Dj,` = R−1θj,`Dj,0

where Dj,0 is a rectangle of sidelength 2π2j × 2π2j/2, say.

• Rectangular grid Λj of step-size 2−j × 2−j/2

Λj = {k : k = (k12−j, k22−j/2), k1, k2 ∈ Z}

• Local Fourier basis of L2(Dj,0)

ej,0,k(ξ) =1

2π23j/4eikξ, k ∈ Λj

and likewise local Fourier basis of L2(Dj,`)

ej,`,k = ej,0,k(Rθj,`ξ)

Page 27: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

27

• Curvelets (frequency-domain definition)

ϕj,`,k(ξ) = Wj,0(Rθj,`ξ)ej,0,k(Rθj,`ξ)

Page 28: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

28

Properties• Reproducing formula

f =∑J,k

〈f, ϕJ,k〉ϕJ,k

Why? Let g be the RHS and apply Parseval

g =∑J,k

〈f , ϕJ,k〉ϕJ,k

=∑J,k

〈f ,WJeJ,k〉WJeJ,k

=∑J

WJ

∑k

〈fWJ , eJ,k〉eJ,k

=∑J

fWJWJ = f∑J

W 2J = f

Conclusion g = f and, therefore, f = g.

• Parseval relation (similar argument)

‖f‖2 =∑J,k

|〈f, ϕJ,k〉|2

Page 29: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

29

Curvelet: Space-side Viewpoint

In the frequency domain

ϕj,0,k(ξ) =2−3j/4

2πWj,0(ξ)ei〈k,ξ〉, k ∈ Λj

In the spatial domain

ϕj,0,k(x) = 23j/4ϕj(x− k), Wj,0 = 2πϕj

and more generally

ϕj,`,k(x) = 23j/4ϕj(Rθj,`(x−R−1

θj,`k)),

All curvelets at a given scale are obtained by translating and rotating a single‘mother curvelet.’

Page 30: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

30

Further Properties

• Tight frame

f =∑j,`,k

〈f, ϕj,`,k〉ϕj,`,k ||f ||22 =∑j,`,k

〈f, ϕj,`,k〉2

• Geometric Pyramid structure

– Dyadic scale

– Dyadic location

– Direction

• New tiling of phase space

Page 31: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

31

• Needle-shaped

• Scaling laws

– length ∼ 2−j/2

– width ∼ 2−j

width ∼ length2

– #Directions = 2bj/2c

– Doubles angular resolution at every other scale

• Unprecedented combination

Page 32: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

32

Second Dyadic Decomposition

• Fefferman (70’s), boundedness of Riesz spherical means

• Stein, and Seeger, Sogge and Stein (90’s), Lp boundedness of FourierIntegral Operators.

• Smith (90’s), atomic decomposition of Fourier Integral Operators.

Page 33: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

33

Digital Curvelets

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Source: DCTvUSFFT (Digital Curvelet Transform via USFFT’s), C. and Donoho (2004).

Page 34: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

34

Digital Curvelets: Frequency Localization

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Time domain Frequency domain (modulus)

Source: DCTvUSFFT (Digital Curvelet Transform via USFFT’s), C. and Donoho (2004).

Page 35: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

35

Digital Curvelets: : Frequency Localization

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Time domain Frequency domain (real part)

Source: DCTvUSFFT (Digital Curvelet Transform via USFFT’s), C. and Donoho (2004).

Page 36: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

36

Curvelets and Edges

Page 37: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

37

Optimality

• Suppose f is smooth except for discontinuity on C2 curve

• Curvelet m-term approximations, naive thresholding

‖f − fcurvem ‖2

2 ≤ Cm−2(logm)3

• Near-optimal rate of m-term approximation (wavelets ∼ m−1).

Page 38: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

38

Idea of the Proof I

f(x,y)

∆ s

Edge fragment

Coefficient ~ 0

-sScale 2

Decomposition of a Subband

Page 39: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

39

Idea of the Proof II

Scale 2-s

Frequency 2s

Microlocal behavior

Page 40: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

40

Edge FragmentsParabolic edge

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Square root of the truncated absolute value of the FT

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Edge fragment FT of an edge fragment (abs)

Page 41: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

41

Curvelets and Warpings

C2 change of coordinates preserves sparsity (C. 2002).

• Let ϕ : R2 → R2 be a one to one C2 function such that ‖Jϕ‖∞ isbounded away from zero and infinity.

• Curvelet expansion

f =∑µ

θµ(f)γµ, θµ(f) = 〈f, γµ〉

• Likewise,

f ◦ ϕ =∑µ

θµ(f ◦ ϕ)γµ

The coefficient sequences of f and f ◦ ϕ are equally sparse.

Theorem 1 Then, for each p > 2/3, we have

‖θ(f ◦ ϕ)‖`p≤ Cp · ‖θ(f)‖`p

.

Page 42: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

42

µξ

ξµ(t)

(t)µx

2− j

2− j/2

Curvelets are nearly invariant through a smooth change of coordinates

Page 43: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

43

Curvelets and Curved Singularities

• f smooth except along a C2 curve

• fn, n-term approximation obtained by naive thresholding

‖f − fn‖2L2

≤ C · (logn)3 · n−2

• Why?

1. True for a straight edge

2. Deformation preservessparsity

• Optimal

φ

arbitrary singularity straight singularity

Page 44: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

44

Curvelets and Hyperbolic Differential Equations

Page 45: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

45

Representation of Evolution Operators

• Wave Equation

∂2t u = c2(x)∆u, x ∈ R2,R3, ...

• Evolution operator S(t;x, y) is dense!

• Modern viewpoint

– Basis ϕn of L2.

– Representation of S: A(n, n′) = 〈ϕn, Sϕn′〉

u0S−−−→ u = Su0

F

y yF

θ(u0) −−−→A

θ(u)

, θ(u) = Sθ(u0)

• Find a representation in which S is sparse

Page 46: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

46

Domain of Dependence

(x,t)

t

Range of Influence

x0

The solution operator S is a ‘dense’ integral.

Page 47: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

47

Potential for Sparsity

If the matrix A is sparse, potential for

• fast multiplication

• fast inversion

Example: convolutions and Fourier transforms

Page 48: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

48

Current Multiscale Thinking

• Traditional ideas:

– Multigrids

– Wavelets

– Adaptive FEM’s

– etc.

• Traditional multiscale ideas are ill-adapted to wave problems:

1. they fail to sparsify oscillatory integrals like the solution operator

2. they fail to provide a sparse representation of oscillatory signals whichare the solutions of those equations.

Page 49: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

49

Peek at the Results

• Sparse representations of hyperbolic symmetric systems

• Connections with geometric optics

• Importance of parabolic scaling

Page 50: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

50

Symmetric Systems of Differential Equations

∂tu+

∑i

Ai(x)∂iu+B(x)u = 0, u(0, x) = u0(x), x ∈ Rn,

u is m-dimensional and the Ai’s are symmetric

Examples

• Maxwell

• Acoustic waves

• Linear elasticity

Page 51: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

51

Example: Acoustic waves

System of hyperbolic equations: v = (u, p)

∂tu+ ∇(c(x)p) = 0

∂tp+ c(x)∇ · u = 0

• Dispersion matrix

∑j

Aj(x)kj = c(x)

0 0 k1

0 0 k2

k1 k2 0

• Eigenvalues (λν): λ± = ±c(x), λ0 = 0.

• Eigenvectors (Rν)

R0(k) =

k⊥/|k|0

, R±(k) =1

√2

±k/|k|1

.

Page 52: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

52

Geometric Optics: Lax, 1957

• High-frequency wave-propagation approximation

v(x, t) =∑

ν

eiωΦν(x,t)

(a0ν(x, t) +

a1ν(x, t)

ω+a2ν(x, t)

ω2+ . . .

)

• Plug into wave equation

– Eikonal equations

∂tΦν + λν(x,∇xΦ) = 0.

λν(x, k) are the eigenvalues of the dispersion matrix∑

j Aj(x)kj

– And ’transport’ equations for amplitudes

Turns a linear equation into a nonlinear evolution equation!

Page 53: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

53

Hamiltonian Flows

• Dispersion matrix ∑j

Aj(x)kj

• Eigenvalues λν(x, k), eigenvectors Rν(x, k)

• Hamiltonian flows (in general, m of them) in phase-space x(t) = ∇kλν(x, k), x(0) = x0,

k(t) = −∇xλν(x, k), k(0) = k0.

• Eikonal equations from geometric optics

∂tΦν + λν(x,∇xΦ) = 0.

Φ is constant along the Hamiltonian flow Φ(t, x(t)) = Cste. Problem:valid before caustics, i.e. before Φ becomes multi-valued (ray-crosses).

Page 54: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

54

Hyper-curvelets

• Frequency definition

Φνµ(k) = Eνϕµ(k).

• Hyper-curvelets build-up a (vector-valued) tight-frame, namely

‖u‖2L2

=∑ν,µ

|[u,Φνµ]|2,

and

u =∑ν,µ

[u,Φνµ]Φνµ

• Other possibilities:

Φνµ(k) = Rν(k)ϕµ(k), Φµν(x) =∫Rν(x, k)ϕµν(k)ei〈k,x〉 dk.

Page 55: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

55

Approximation

The action of the wave propagator on a curvelet is well- approximated by arigid motion.

• Initial data: Φνµ(x)

• Approximate solution

Φνµ(t, k) = Rν(k)ϕµ(t)(k)

where

ϕµ(t)(x) = ϕµ (Uµ(t)(x− xµ(t)) + xµ)

– Uµ(t) is a rotation

– xµ(t) is a translation

Page 56: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

56

θµ

Rays

θµ

'

'

θ µ'

θ µ

xµ'

(t)

(t)

(t)

(t)

Page 57: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

57

Main Result

Curvelet representation of the propagator S(t):

A(ν, µ; ν′, µ′) = 〈Φνµ, S(t)Φν′µ′〉

Theorem 2 (C. and Demanet) Suppose the coefficients of a generalhyperbolic system are smooth, i.e. C∞.

• The matrix is sparse. Suppose a is either a row or a column of A, and let|a|(n) be the n-largest entry of the sequence |a|, then for each r > 0,|a|(n) obeys

|a|(n) ≤ Crn−r.

• The matrix is well-organized. There is a natural distance over the curveletindices such that for each M ,

|a(ν, µ; ν′, µ′)| ≤ CM,t(ν, ν′)∑ν′′

(1 + d(µ, µν′′(t))−M

The constant is growing at most like C1eC2t, and for ν 6= ν′, C1 << 1.

Page 58: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

58

φ

φ

µ

(µ)t

Sketch of the curvelet representation of the wave propagatorA(ν′, µ′; ν, µ) = 〈Φνµ, S(t)Φν′µ′〉.

Page 59: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

59

Our Claim

Curvelets provide an optimally sparse representation of wave propagators.

• Fourier matrix is dense

• FEM matrix is dense

• Wavelet matrix is dense

Second-Order Scalar Equations

∂2t u−

∑i,j

aij(x)∂i∂ju = 0

Sparsity comes for free (in the scalar curvelet system)

Page 60: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

60

Why Does This Work?

“The purpose of calculations is insight, not numbers...”

(adapted from R. W. Hamming)

• Wave operator (constant coefficients)

∂2t u = c2∆u, u(x, 0) = u0(x), ∂tu(x, 0) = u1(x).

• Fourier transform

u(t, k) =∫u(t, x)e−ik·x dx.

• Solution

u(t, k) = cos(c|k|t)u0(k) +sin(c|k|t)

|k|u1(k)

u(t, k) = e±ic|k|tu0(k) +e±ic|k|t

|k|u1(k)

Page 61: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

61

• Set t′ = ct

ei|k|t′= eik1t′+δ(k)t′

, δ(k) = |k|−k1.

• Because of parabolic scaling

δ(k) = O(1)

• Frequency modulation is nearly linear

ei|k|t′= h(k) · eik1t′

.

h smooth and non-oscillatory

• Space-side picture:

1. modulation corresponds to a displace-ment of ±ct in the codirection.

2. multiplication by h: gentle convolution

cos(|k| t') ~ cos(k t')1

Displacement in the codirection

Page 62: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

62

µcos(|k| t) ~ cos(k t)

Displacement in the codirection

µk

Page 63: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

63

Warpings

• Variable coefficients: utt = c2(x)∆u.

• At small scales, the velocity field varies varies little over the support of acurvelet.

• Model the effect of variable velocity field as a warping g: φµ(g(x)).

• Warpings do not distort the geometry of a curvelet.

Page 64: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

64

µξ

ξµ(t)

(t)µx

2− j

2− j/2

Page 65: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

65

Importance of Parabolic Scaling

• Consider arbitrary scaling (anisotropy incresases as α decreases)

width ∼ 2−j, length ∼ 2−jα, 0 ≤ α ≤ 1.

– ridgelets α = 0 (very anisotropic),

– curvelets α = 1/2 (parabolic anisotropy),

– wavelets α = 1 (roughly isotropic).

• For wave-like behavior, need

width ≤ length2

• For particle-like behavior, need

width ≥ length2

• For both (simultaneously), need

width ∼ length2

• Only working scaling: α = 1/2

Page 66: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

66

Examples I

t = 0 t = T

2-j

Page 67: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

67

Examples II

Page 68: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

68

Examples III

t = 0 t = T

2-j

2-(1-α)j

2-αj

Page 69: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

69

Architecture of the Argument

1. Decoupling into polarized components: Decompose the wavefield u(t, x)into m one-way components fν(t, x)

u(t, x) =m∑

ν=1

Rνfν(t, x),

Rν : pseudo-differential operator (independent of time), maps scalar fieldsinto m-dimensional vector fields.

S(t) =m∑

ν=1

Rνe−itΛνLν + negligible,

Lν : pseudo-differential operator, maps m-dimensional vector fields intoscalar fields.

Page 70: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

70

Curvelet Splitting

=

∼ ( )∼− ( )

Page 71: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

71

S(t) ∼∑

ν

Sν(t), Sν(t) = Rνe−itΛνLν

2. Fourier Integral Operator parametrix. We then approximate for small timest > 0 each e−itΛν , ν = 1, . . . ,m, by an oscillatory integral or FourierIntegral Operator (FIO) Fν(t)

Fν(t)f(x) =∫eiΦν(t,x,k)σν(t, x, k)f(k) dk

Key issue: decoupling is crucial because this what makes it work for largetimes (not an automatic consequence of Lax’s construction)

Sν(nt) = Sν(t)n

3. Sparsity of FIO’s. General FIO’s F (t) are sparse and well-structured whenrepresented in tight frames of (scalar) curvelets ϕµ—a result ofindependent interest.

Page 72: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

72

Potential for Scientific Computing

• Transform this theoretical insight into effective algorithms

• Sources of inspiration

– Rokhlin

– Engquist & Osher

– Others

Page 73: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

73

Our Viewpoint

ut = e−P tu0

u0e−P t

−−−→ ut

F

y yF

θ0 −−−→A(t)

θt

For any t, A(t) is sparse

Background: Fast and accurate Digital Curvelet Transform is available (withD. Donoho).

Page 74: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

74

Preliminary Work

• Grid size N

• Accuracy ε

• Complexity

O(N1+δ · ε−δ), any δ > 0,

• Conjecture

O(N logN · ε−δ)

• Arbitrary initial data

• Works in any dimension

• General procedure

Page 75: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

75

Propagating curvelets is not geometric optics!

Page 76: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

76

Summary

• New geometric multiscale ideas

• Key insight: geometry of Phase-Space

• New mathematical architecture

• Addresses new range of problems effectively

• Promising potential

Page 77: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

1

Numerical Experiments, I

Page 78: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) Noisy Phantom

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) Curvelets

Page 79: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(c) Curvelets and TV

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(d) Curvelets and TV: Residuals

Page 80: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(e) Wavelets

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(f) Curvelets

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(g) Curvelets and TV

Page 81: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

10010 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

10010 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Page 82: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(l) Noisy

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(m) Curvelets & TV: Residuals

Page 83: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

0 50 100 150 200 250 300 350 400 450 500−0.5

0

0.5

1

1.5

(n) Noisy Scanline

0 50 100 150 200 250 300 350 400 450 500−0.5

0

0.5

1

1.5

(o) True Scanline and Curvelets and TV Re-

construction

Page 84: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

0 50 100 150 200 250 300 350 400 450 500−0.5

0

0.5

1

1.5

(a) Noisy Scanline

0 50 100 150 200 250 300 350 400 450 500−0.5

0

0.5

1

1.5

(b) Curvelets

0 50 100 150 200 250 300 350 400 450 500−0.5

0

0.5

1

1.5

(c) Curvelets and TV

0 50 100 150 200 250 300 350 400 450 500−0.5

0

0.5

1

1.5

(d) True Scanline and Curvelets and TV Re-construction

Figure 10: Scanline Plots

28

Page 85: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(p) Original

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(q) Noisy

Page 86: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(r) Curvelets

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(s) Curvelets and TV

Page 87: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

50 100 150 200 250

50

100

150

200

250

(t) Noisy Detail

50 100 150 200 250

50

100

150

200

250

(u) Curvelets

50 100 150 200 250

50

100

150

200

250

(v) Curvelets and TV

Page 88: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

2

Numerical Experiments, II: Work of Jean-Luc Starck (CEA)

Page 89: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)
Page 90: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)
Page 91: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

Wavelet

Curvelet

Curvelet

Page 92: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)
Page 93: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)
Page 94: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

a) Simulated image (Gaussians+lines) b) Simulated image + noise c) A trous algorithm

d) Curvelet transform e) coaddition c+d f) residual = e-b

Page 95: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

The separation task: decomposition of an image into a texture and a natural (piecewise smooth)scene part.

= +

Separation of Texture fromPiecewise Smooth Content

Page 96: Multiscale Geometric Analysis: Theory, Applications, and ...perso.ens-lyon.fr/paulo.goncalves/WAMA2004/lectures/Candes-lecture.pdfCalderon-Zygmund Operator` (Kf)(x) = Z K(x,y)f(y)

Data

Xn

Xt