80
Multivariable Control Multivariable Control Systems Systems Ali Karimpour Assistant Professor Assistant Professor Ferdowsi University of Mashhad

Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

  • Upload
    others

  • View
    39

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Multivariable Control Multivariable Control SystemsSystems

Ali KarimpourAssistant ProfessorAssistant Professor

Ferdowsi University of Mashhad

Page 2: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2Chapter 2Introduction to Multivariable ControlIntroduction to Multivariable Control

Topics to be covered include:

Multivariable Connections

Multivariable Poles and zeros

Transmission zero assignment

Smith-McMillan Forms

M t i F ti D i ti (MFD) Matrix Fraction Description (MFD)

Scaling

Performance Specification

Bandwidth and Crossover Frequency

Ali Karimpour Feb 2012

2

Bandwidth and Crossover Frequency

Page 3: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Introduction to Multivariable Control

Topics to be covered include: Multivariable Connections

M lti i bl P l d Multivariable Poles and zeros

Transmission zero assignment

Smith-McMillan Forms

Matrix Fraction Description (MFD) Matrix Fraction Description (MFD)

Scaling

Performance Specification

Bandwidth and Crossover Frequency

Ali Karimpour Feb 2012

3

Bandwidth and Crossover Frequency

Page 4: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Connections

• Cascade (series) interconnection of transfer matrices( )

)(su )(sy )()()()()()( 12 susGsusGsGsy ==)(1 sG )(2 sG

)()()( 12 sGsGsG = )()( 21 sGsG≠

• Parallel interconnection of transfer matricesGenerally

)(1 sG)(su+

)(sy )()()())()(()( 21 susGsusGsGsy =+=

)(2 sG

++

)()()())()(()( 21y

)()()( 21 sGsGsG +=

Ali Karimpour Feb 2012

4

21

Page 5: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Connections

• Feedback interconnection of transfer matrices

)(1 sG )(2 sG)(sy)(su

+

− ( ))()()()()( 12 sysusGsGsy −= ( ))()()()()( 12 yy

)()()()()())()(()( 121

12 susGsusGsGsGsGIsy =+= −

)()())()(()( 121

12 sGsGsGsGIsG −+=

A useful relation in multivariable is push-through rule

12122

112 ))()()(()())()(( −− +=+ sGsGIsGsGsGsGI

Ali Karimpour Feb 2012

5Exercise 1: Proof the push-through rule

Page 6: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Connections

MIMO rule: To derive the output of a system, start from the output and write down the blocks as you meet them whenmoving backward (against the signal flow) towards the inputmoving backward (against the signal flow) towards the input.If you exit from a feedback loop then include a term ( ) 1−− LI

or according to the feedback sign where L is the transfer function around that loop (evaluated against the

( ) 1−+ LI

transfer function around that loop (evaluated against the signal flow starting at the point of exit from the loop). Parallel branches should be treated independently and their contributions added together.

Ali Karimpour Feb 2012

6

g

Page 7: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Connections

Example 2-1: Derive the transfer function of the system shown in figurp y g

( )ω211

221211 )( PKPIKPPz −−+=

Ali Karimpour Feb 2012

7

Page 8: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Introduction to Multivariable Control

Topics to be covered include:

Multivariable Connections

l i i bl l d Multivariable Poles and zeros

Transmission zero assignment

Smith-McMillan Forms

Matri Fraction Description (MFD) Matrix Fraction Description (MFD)

Scaling

Performance Specification

Bandwidth and Crossover Frequency

Ali Karimpour Feb 2012

8

Bandwidth and Crossover Frequency

Page 9: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Poles ( State Space Description )

Definition 2 1: The poles of a system with state space descriptionipDefinition 2-1: The poles of a system with state-space description are eigenvalues of the matrix A.

i i i i i fi

niAi ,...,2,1,)( =λ),,,( DCBA

ip

The pole polynomial or characteristic polynomial is defined as

)det()( AsIs −=φ

Thus the system’s poles are the roots of the characteristic polynomial

0)det()( =−= AsIsφ

Note that if A does not correspond to a minimal realization then the poles by this definition will include the poles (eigenvalues)

Ali Karimpour Feb 2012

9

p y p ( g )corresponding to uncontrollable and/or unobservable states.

Page 10: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Poles ( Transfer Function Description )

Theorem 2-1The pole polynomial corresponding to a minimal realization of a system with transfer function G(s) is the least common denominator

)(sφ

of all non-identically-zero minors of all orders of G(s).A minor of a matrix is the determinant of the square matrix obtained byq ydeleting certain rows and/or columns of the matrix.

Ali Karimpour Feb 2012

10

Page 11: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Poles ( Transfer Function Description )

Example 2-4

⎥⎦

⎤⎢⎣

+−+−++−−+−

−++=

)1)(1()1)(1()2)(1()1(0)2)(1(

)1)(2)(1(1)(

2

sssssssss

ssssG

⎦⎣ ))(())(())(())()((

The non-identically-zero minors of order 1 are11111

21,

21,

11,

)2)(1(1,

11

++−−

++−

+ ssssss

s

Th id ti ll i f d 2The non-identically-zero minor of order 2 are

2)2)(1()1(,

)2)(1(1,

)2)(1(2

++−−

++++ sss

ssss )2)(1()2)(1()2)(1( ++++++ ssssss

By considering all minors we find their least common denominator

Ali Karimpour Feb 2012

11)1()2)(1()( 2 −++= ssssϕ

Page 12: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Poles

Exercise 2: Consider the state space realization BuAxx +=&

DuCxy +=

⎤⎡⎤⎡⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

−−

0001021010321

002.24.0004.08.2

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡=

⎥⎥⎥

⎦⎢⎢⎢

=

⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−−

=000000

00111021

100111010

0.108.06.700.36.18.0002.24.0

DCBA

a- Find the poles of the system directly through state space form.

b- Find the transfer function of system ( note that the numerator and the denominator of each element must be prime ).

c- Find the poles of the system through its transfer function.

Ali Karimpour Feb 2012

12

Page 13: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros

Importance of multivariable zeros

• Dynamic response. • Stability of inverse system.

• Closed loop poles are on the open loop zeros at high gain.

• Blocking the inputs. • Not affected by feedback.

p p p p g g

Different definition of multivariable zeros

• Element zeros. • Decoupling zeros (input and output).

• Transmission zero or blocking zero. • System zeros.

Ali Karimpour Feb 2012

13• Invariant zeros.

Page 14: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros

Element zeros

Decoupling zeros (input and output)

They are not very important in MIMO design.

Transmission ero or blocking eroThey are clearly subset of poles.

Transmission zero or blocking zero

They are the zeros that block the output in special condition.

System zero

zerosi.o.d.zeroso.d.zerosi.d.zerosonTransmissizerosSystem −++=

Invariant zero

zerosi.o.d.zeroso.d.zerosi.d.zeroson TransmissizerosSystem ++

Ali Karimpour Feb 2012

14Invariant zeros=System zeros (In the case of square plant)

Page 15: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros ( State Space Description )

⎥⎤

⎢⎡ −

⎥⎤

⎢⎡

⎥⎤

⎢⎡ BAsI

Px

P )(0

)(BuAxx +=& Laplace transform⎥⎦

⎢⎣ −

=⎥⎦

⎢⎣−

=⎥⎦

⎢⎣− DC

sPyu

sP )(,)(DuCxyBuAxx

+=+

Rosenbrock system matrix

The system zeros are then the values of s=z for which the polynomial system matrix P(s) (if P(s) is square) loses rank resulting in zero outputf ifor some nonzero input.

⎥⎤

⎢⎡

=⎥⎤

⎢⎡ −

=0I

IBA

MLet

⎥⎦

⎢⎣

=⎥⎦

⎢⎣ −

=00

, IDC

M g

Then the zeros are found as non trivial solutions of

0)( =⎥⎦

⎤⎢⎣

⎡− z

g ux

MzI

Ali Karimpour Feb 2012

15

⎦⎣ zu

This is solved as a generalized eigenvalue problem.

Page 16: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros ( State Space Description )

⎥⎤

⎢⎡ −

=BAsI

sP )(System zero⎥⎦

⎢⎣ − DC

sP )(

Rosenbrock system matrix

I t d li

) P(s) squarefor (just rank. losses )( that of valueThe sPs

Input decoupling zeros

[ ] rank. losses that of valueThe A BsIs −

Output decoupling zeros⎤⎡ − AsI

rank. losses that of valueThe ⎥⎦

⎤⎢⎣

⎡−C

AsIs

In ariant erosInvariant zeros

( ) ( ))()(min)(result that s of values thoseare zerosInvariant

CnBnsP ρρρ ++<

Ali Karimpour Feb 2012

16

( ) ( ))(),(min)( CnBnsP ρρρ ++<

)( of minorsgreatest all of gcdOr sP

Page 17: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros

Element zeros

Decoupling zeros (input and output)10001⎥⎤

⎢⎡

⎥⎤

⎢⎡− 655)4)(3)(2()( ++++ ssss

uxx

001

400003000020

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

+

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ −−

−=&

15

)4)(3)(2)(1())()(()(

+=+

++++=

ssssssg

s= -2 is output decoupling zero (o.d.z)

[ ] uxy 5010104000

+=⎦⎣⎦⎣ − s= -3 is input decoupling zero (i.d.z)

s= -4 is input-output decoupling zero (i.o.d.z)Transmission zero or blocking zeroTransmission zero or blocking zero

s= -6/5 is transmission or blocking zeroSystem zeros and invariant zeros

Ali Karimpour Feb 2012

17

System zeros and invariant zeross= -6/5, s=-2, s=-3 and s=-4 are system zero(invariant zeros)

Page 18: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros

Let00005 ⎤⎡⎤⎡− ⎥

⎤⎢⎡ + 00005s

[ ] [ ]

uxx

1210112

1000

300020005

⎥⎥⎥

⎢⎢⎢

−+

⎥⎥⎥

⎢⎢⎢

−−=&

⎥⎦⎤

⎢⎣⎡

+−−

++

=34

382)(

ss

sssG

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

−++

=

1210112300

10020)(

ss

sP

[ ] [ ]uxy 12101 −+=

Element zeross= -4, -4

⎦⎣ −12101

Decoupling zeros (input and output)s= -2 is output decoupling zero (o.d.z)s= -5 is input decoupling zero (i.d.z)

Transmission zero or blocking zero

s= -4 is transmission or blocking zeroInvariant zeros

s= -4 s=-5 are invariant zeros

Ali Karimpour Feb 2012

18

s 4, s 5 are invariant zeros.System zeros

s= -4, s=-5, s=-2 are system zeros.

Page 19: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros

Generally we have:

zeros i.o.d.zeros o.d.zeros i.d.zeroson Transmissizeros System −++=

S tI i tT i i zerosSystemzerosInvariant zeroson Transmissi ⊂⊂

System zerosInvariant zeros Decoupling zeros

Transmission zero

Ali Karimpour Feb 2012

19

Page 20: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros

For square systems with m=p inputs and outputs and n states limitsFor square systems with m p inputs and outputs and n states, limits on the number of transmission zeros are:

zerosCBrankmnmostAtDzerosDrankmnmostAtD

+−=+−≠

)(2:0)(:0

Ali Karimpour Feb 2012

20zerosmnExactlymCBrankandD −== :)(0)(

Page 21: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros ( State Space Description )

Example 2-5: Consider the state space realization BuAxx +=&

DuCxy +=

[ ] 001400

100010

==⎥⎥⎤

⎢⎢⎡

=⎥⎥⎤

⎢⎢⎡

= DCBA [ ] 001410

560100 ==

⎥⎥⎦⎢

⎢⎣

=⎥⎥⎦⎢

⎢⎣ −−

= DCBA

⎤⎡⎤⎡ 00010010

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

=⎥⎦

⎤⎢⎣

⎡=

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

−−−=⎥

⎤⎢⎣

⎡−−

=010000100001

000

156001000010

II

DCBA

M g

),( gIMeig

4

zerosDrankmnmostAtD +−≠ )(:0

⎥⎦

⎢⎣

⎥⎦

⎢⎣ 00000014 4−=z

zerosmnExactlymCBrankandDzerosCBrankmnmostAtD−==

+−=:)(0

)(2:0

Ali Karimpour Feb 2012

2110123 =−⋅−≤zerosofNumber

Page 22: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros ( Transfer Function Description )

Definition 2-2

zi is a zero (transmission zero) of G(s) if the rank of G(zi) is less than

the normal rank of G(s). The zero polynomial is defined as

)()( n zssz z −Π= )()( 1 ii zssz −Π= =

Where nz is the number of finite zeros (transmission zero) of G(s).z ( ) ( )

Ali Karimpour Feb 2012

22

Page 23: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros ( Transfer Function Description )

Theorem 2-2

The zero polynomial z(s) corresponding to a minimal realization of the

Theorem 2-2

The zero polynomial z(s) corresponding to a minimal realization of the

system is the greatest common divisor of all the numerators of allsystem is the greatest common divisor of all the numerators of all

order-r minors of G(s) where r is the normal rank of provided that

these minors have been adjusted in such a way as to have the pole

polynomial as their denominators.)(sφ

Ali Karimpour Feb 2012

23

Page 24: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Zeros ( Transfer Function Description )

Example 2-9

⎥⎦

⎤⎢⎣

+−+−++−−+−

−++=

)1)(1()1)(1()2)(1()1(0)2)(1(

)1)(2)(1(1)(

2

sssssssss

ssssG

⎦⎣ ))(())(())(())()((

according to example 2-4 the pole polynomial is:

)1()2)(1()( 2 −++= ssssϕ

)(φThe minors of order 2 with as their denominators are)(sφ

)1()2)(1()2)(1(2 2−−+−+− sssss)1()2)(1(

,)1()2)(1(

,)1()2)(1( 222 −++−++−++ sssssssss

The greatest common divisor of all the numerators of all order-2 minors is

Ali Karimpour Feb 2012

241)( −= ssz

Page 25: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Multivariable Poles

Exercise 4: Consider the state space realization BuAxx +=&

DuCxy +=

⎤⎡⎤⎡⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

−−

0001021010321

002.24.0004.08.2

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡=

⎥⎥⎥

⎦⎢⎢⎢

=

⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−−

=000000

00111021

100111010

0.108.06.700.36.18.0002.24.0

DCBA

a- Find the transmission zeros of the system directly through state space form.

b- Find the transfer function of system ( note that the numerator and the denominator of each element must be prime ).

c- Find the transmission zeros of the system through its transfer function.

Ali Karimpour Feb 2012

25

Page 26: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Directions of Poles and Zeros

Zero directions:

Let G(s) have a zero at s = z, Then G(s) losses rank at s = z and

there will exist nonzero vectors and such that zu zy

0)(0)( == zGyuzG Hzz

is input zero direction and is output zero directionzu zy

We usually normalize the direction vectors to have unit length

1 1

Ali Karimpour Feb 2012

26

12=zu 1

2=zy

Page 27: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Directions of Poles and Zeros

Pole directions:

Let G(s) have a pole at s = p. Then G(p) is infinite and we may

somewhat crudely write

)()( GG H ∞=∞= )()( pGyupG Hpp

is input pole direction and is output pole directionpu py

HH Hp

Hppp pqAqptAt ==

Ali Karimpour Feb 2012

27pH

ppp qBuCty ==

Page 28: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Directions of Poles and Zeros

Example:⎥⎤

⎢⎡ − 411)(s

G ⎥⎦

⎢⎣ −+

=)1(25.42

)(ss

sG

It has a zero at z = 4 and a pole at p = -2 . p pH

GsG ⎥⎦

⎤⎢⎣

⎡−⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡ −=⎥

⎤⎢⎣

⎡==

653.0757.0757.0653.0

271.000475.1

588.0809.0809.0588.0

45.442

51)3()( 0

⎦⎣⎦⎣⎦⎣⎦⎣ 653.0757.0271.00588.0809.045.45H

GzG ⎥⎦

⎤⎢⎣

⎡ −⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡ −=⎥

⎤⎢⎣

⎡==

60808.06.0

00050.1

55083083.055.0

65443

61)4()( ⎥

⎦⎢⎣⎥⎦

⎢⎣⎥⎦

⎢⎣

⎥⎦

⎢⎣ 6.08.00055.083.065.46

)()(

zuzyNo let the inp t as: Input zero directionOutput zero directionNow let the input as:

)()()( susGsy =tetu 4

6.08.0

)( ⎥⎦

⎤⎢⎣

⎡−= ⇒

41

608.0

)1(25441

21

−⎥⎦

⎤⎢⎣

⎡−⎥⎦

⎤⎢⎣

⎡−

−+

=ss

ss ⎥

⎤⎢⎣

⎡−+

=218.0

21

s

Ali Karimpour Feb 2012

28

6.0 ⎦⎣ 46.0)1(25.42 ⎦⎣⎦⎣+ sss ⎦⎣+ 2.12s

⎥⎦

⎤⎢⎣

⎡−=

t

t

ee

ty 2

2

2.18.0

)( which does not contain any component of the input signal e4t

Page 29: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Directions of Poles and Zeros

Example:⎤⎡⎥⎦

⎤⎢⎣

⎡−

−+

=)1(25.4

412

1)(s

ss

sG

⎤⎡It has a zero at z = 4 and a pole at p = -2 . ⎥⎦

⎤⎢⎣

⎡∞∞∞∞

=−= )2()( GpG

??!!

⎥⎦

⎤⎢⎣

⎡ +−=+−=+

)3(254431)2()(

εεε GpG

??!!

001.0 examplefor Let =ε⎥⎦

⎢⎣ +− )3(25.4 εε

H⎤⎡⎤⎡⎤⎡− 8.06.00901083.055.0

p

uy

G ⎥⎦

⎤⎢⎣

⎡−⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡=+−

6.08.08.06.0

00.0009010

55.083.083.055.0

)001.02(

Ali Karimpour Feb 2012

29

pu

Input pole direction

py

Output pole direction

Page 30: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Minimality

A state space system (A,B,C,D) is minimal if it is a system with the least number of states giving its transfer function.

If there is another system (A1,B1,C1,D1) with fewer states having the y ( 1 1 1 1) gsame transfer function, the given system is not minimal.

For SISO systems, a system is minimal iff the transfer functionFor SISO systems, a system is minimal iff the transfer function numerator polynomial and denominator polynomial have no common roots.

For MV systems one must use the definition of MV zeros.

Theorem. A system (A,B,C,D) is minimal iff it has no input decoupling zeros and no output decoupling zeros.

Ali Karimpour Feb 2012

30

p g p p g

Page 31: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Introduction to Multivariable Control

Topics to be covered include:

Multivariable Connections

Multivariable Poles and zeros

Transmission zero assignment

Smith-McMillan Forms

M t i F ti D i ti (MFD) Matrix Fraction Description (MFD)

Scaling

Performance Specification

Bandwidth and Crossover Frequency

Ali Karimpour Feb 2012

31

Bandwidth and Crossover Frequency

Page 32: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Transmission zero assignment

Zeros position depends on the location of sensors and actuators.

Theorem: Transmission zeros cannot be assigned by state feedback.

Proof ⎤⎡ − BAsIProof ⎥⎦

⎤⎢⎣

⎡−

=DC

sP )(by definedisSystem

⎤⎡ + BBKAsI⎥⎦

⎤⎢⎣

⎡+−+−

=DDKCBBKAsI

sPf )( :isfeedback with System

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−−

=⎥⎦

⎤⎢⎣

⎡+−+−

=IK

IsP

IKI

DCBAsI

DDKCBBKAsI

sPf

0)(

0)(

( ) ( ))()( sPsPf ρρ =

Ali Karimpour Feb 2012

32Theorem: Transmission zeros cannot be assigned by output feedback.

Page 33: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Transmission zero assignment

What about following structures?

⎩⎨⎧

=−+=

CxyurBAxx

sG)(

)(&

⎩⎨⎧

+=+=

DyHwuGyFww

sK&

)(⎩ Cxy

Theorem: Transmission zeros cannot be assigned by dynamic feedback.

⎩ ywu

⎥⎤

⎢⎡ −− 0GCFsI

⎥⎤

⎢⎡

+−− 0

)( BBDCAIBHGCFsI

P

⎥⎥⎥

⎦⎢⎢⎢

⎣ −+−=

00)(

CBBDCAsIBHsPf

)()( sPFsIsP −=⎥⎥⎥

⎦⎢⎢⎢

⎣ −+−=

00)(

CBBDCAsIBHsPf

)()( sPFsIsPf =

⎥⎥⎤

⎢⎢⎡

−⎥⎥⎤

⎢⎢⎡ −

= 0000BAsI

IBDIBHGFsI

Ali Karimpour Feb 2012

33⎥⎥⎦⎢

⎢⎣ −⎥⎥⎦⎢

⎢⎣ 0000 CI

Page 34: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Transmission zero assignment

What about following structures?

⎩⎨⎧

=+=

CxyBuAxx

sG&

)(⎩⎨⎧

+=+=

uDHwuuGFww

sKˆˆ

)(&

⎩ Cxy

Theorem: Transmission zeros cannot be assigned by dynamic feedback.

⎥⎥⎤

⎢⎢⎡

−−−

=0

)( BDAsIBHGFsI

sP ⎥⎥⎤

⎢⎢⎡

−−−

= BDAsIBHGFsI

sP0

)(⎥⎥⎦⎢

⎢⎣ −

=00

)(C

BDAsIBHsPs

)()()( sPsPsP ′=⎤⎡⎤⎡

⎥⎥⎦⎢

⎢⎣ −

GFII

CBDAsIBHsPs

000

00)(

)()()( sPsPsPs =

⎥⎥⎥⎤

⎢⎢⎢⎡ −

⎥⎥⎥⎤

⎢⎢⎢⎡

−= IGFsI

BAsII

000

000

Ali Karimpour Feb 2012

34⎥⎦⎢⎣ −⎥⎦⎢⎣ − DHC 000

Page 35: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Transmission zero assignment

Ali Karimpour Feb 2012

35

Page 36: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Introduction to Multivariable Control

Topics to be covered include:

Multivariable Connections

Multivariable Poles and zeros

Transmission zero assignment

Smith-McMillan Forms

M t i F ti D i ti (MFD) Matrix Fraction Description (MFD)

Scaling

Performance Specification

Bandwidth and Crossover Frequency

Ali Karimpour Feb 2012

36

Bandwidth and Crossover Frequency

Page 37: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Smith Form of a Polynomial Matrix

)(sΠSuppose that is a polynomial matrix.)(pp p y

Smith form of is denoted by , and it is a pseudo diagonali th f ll i f

)(sΠ )(ssΠ

in the following form

⎥⎤

⎢⎡Π

=Π0)(

)(s

s ds⎥⎦

⎢⎣

=Π00

)(ss

)(,,........)(,)()( Where 21 sssdiags rds εεε=Π

)(siε )(1 si+εis a factor of and1

)(−

=i

ii s

χχ

ε

Ali Karimpour Feb 2012

37

Page 38: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Smith Form of a Polynomial Matrix

)(,,........)(,)()( Where 21 sssdiags rds εεε=Π

)(sε )(sεis a factor of and )( = isχ

ε)(siε )(1 si+εis a factor of and1

)(−

=i

i sχ

ε

10 =χ

=1χ gcd all monic minors of degree 1

=χ gcd all monic minors of degree 2=2χ gcd all monic minors of degree 2

………………………………………………………..

=rχ gcd all monic minors of degree r

………………………………………………………..

Ali Karimpour Feb 2012

38

rχ g g

Page 39: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Smith Form of a Polynomial Matrix

The three elementary operations for a polynomial matrix are usedThe three elementary operations for a polynomial matrix are used to find Smith form.

• Multiplying a row or column by a constant;

• Interchanging two rows or two columns; andInterchanging two rows or two columns; and

• Adding a polynomial multiple of a row or column to another lrow or column.

)().....()()()()().......()( 121122 sRsRsRssLsLsLs nns Π=Π

)()()()( sRssLss Π=Π

Ali Karimpour Feb 2012

39

Page 40: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Smith Form of a Polynomial Matrix

Example 2-11⎤⎡ +− )2(4 s

⎥⎥

⎢⎢

−+

+=Π

21)2(2

)2(4)(

s

ss

⎦⎣

10 =χ 11,2,2,1gcd1 =++= ssχ

)3)(1(34gcd 22 ++=++= ssssχ

χ χ1)(

0

11 ==

χχ

ε s )3)(1()(1

22 ++== sss

χχ

ε

⎥⎦

⎤⎢⎣

⎡++

=Π)3)(1(0

01)(

ssss

Ali Karimpour Feb 2012

40

⎦⎣Exercise 5: Derive R(s) and L(s) that convert to)(sΠ )(ssΠ

Page 41: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Smith-McMillan Forms

Theorem 2-3 (Smith-McMillan form)

Let be an m × p matrix transfer function, where

are rational scalar transfer functions G(s) can be represented by:

)]([)( sgsG ij= )(sgij

)()(

1)( sd

sG Π=

are rational scalar transfer functions, G(s) can be represented by:

)(sd

Where Π(s) is an m× p polynomial matrix of rank r and d(s) is the least

common multiple of the denominators of all elements of G(s) .

)(~GTh i S ith M Mill f f G( ) d b d i d di tl b)(sGThen, is Smith McMillan form of G(s) and can be derived directly by

⎥⎤

⎢⎡

⎥⎤

⎢⎡Π

Π0)(0)(1)(1)(~ sMs

ssG ds

Ali Karimpour Feb 2012

41⎥⎦

⎢⎣

=⎥⎦

⎢⎣

=Π=0000)(

)()(

)(sd

ssd

sG s

Page 42: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Smith-McMillan Forms

Theorem 2-3 (Smith-McMillan form)

)()(

1)( ssd

sG Π= ⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡Π=Π=

000)(

000)(

)(1)(

)(1)(~ sMs

sds

sdsG ds

s)( ⎦⎣⎦⎣)()(

⎭⎬⎫

⎩⎨⎧

=)()(,,........

)()(,

)()()( 21 sssdiagsM r

δε

δε

δε

⎭⎬

⎩⎨ )(

,,)(

,)(

)(21 sss

grδδδ

~ )()()()(~ sRsGsLsG = )(~)(~)(~)( sRsGsLsG =

11 )()(~)()(~ RRLL

and unimodular are )( and )(~,)(,)(~ matrices The sRsRsLsL

Ali Karimpour Feb 2012

42

11 )()(,)()( −− == sRsRsLsL

Page 43: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Smith-McMillan Forms

Example 2-13⎤⎡ 14

⎥⎥⎥⎤

⎢⎢⎢⎡

−+−

++= 12)1(

1)2)(1(

4

)( ssssG

⎥⎥⎦⎢

⎢⎣ +++ )2)(1(2)1( sss

))(()()2(4

)()(1)(⎤⎡ +−

ds

)2)(1()(,5.0)2(2

)()(,)(

)(1)( ++=⎥

⎤⎢⎣

⎡−+

=ΠΠ= sssds

sssd

sG

⎤⎡ 01⎥⎦

⎤⎢⎣

⎡++

=Π)3)(1(0

01)(

ssss

⎥⎥⎤

⎢⎢⎡

++=Π=

0)2)(1(

1

)(1)(~ ssssG

Ali Karimpour Feb 2012

43⎥⎥⎥

⎦⎢⎢⎢

⎣ ++

Π

230

)()(

)(

ss

ssd

sG s

Page 44: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Smith-McMillan Forms

Example 2-14⎥⎤

⎢⎡ −

Π 82411

1)(1)( 22G⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−−−+

++=Π=

824824

)2)(1()(

)()(

22

22

ssssss

sss

sdsG

⎤⎡ ⎤⎡ ⎤⎡

⎥⎥⎥

⎢⎢⎢

−−−−−+

−=Π

824824

11)(

22

22

sssssss

⎥⎥⎥

⎢⎢⎢

−−

−=Π

)4(30)4(30

11)(

2

21

sss

⎥⎥⎥

⎢⎢⎢

⎡−

−=Π

00)4(30

11)( 2

2 ss

⎦⎣ ⎦⎣ ⎦⎣

⎥⎤

⎢⎡

Π )4(3001

)( 2 ⎥⎤

⎢⎡

ΠΠ )4(001

)()( 2

⎥⎥⎥

⎦⎢⎢⎢

−=Π00

)4(30)( 23 ss

⎥⎥⎥

⎦⎢⎢⎢

−=Π=Π00

)4(0)()( 24 sss s )()()()()()( 4312 sRsRssLsLss Π=Π

⎤⎡ 01

)(~)(~)(~)(~)()(~)(

1)()(

1)( sRsGsLsRssLsd

ssd

sG s =Π=Π=⎥⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎢⎡

+−

++

=120

0)2)(1(

)(~ss

ss

sG

Ali Karimpour Feb 2012

44

)()( sdsd

⎥⎥

⎦⎢⎢

⎣ 00

Page 45: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Introduction to Multivariable Control

Topics to be covered include: Multivariable Connections

M lti i bl P l d Multivariable Poles and zeros

Transmission zero assignment

Smith-McMillan Forms

Matrix Fraction Description (MFD) Matrix Fraction Description (MFD)

Scaling

Performance Specification

Bandwidth and Crossover Frequency

Ali Karimpour Feb 2012

45

Bandwidth and Crossover Frequency

Page 46: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

function transferSISOan is 1)(Let 2

+=

ssg65

)( 2 ++ ssg

( )( ) 12 651)(can writeWe −+++= ssssg ( )( )651)( can write We +++= ssssg

polynomial polynomialp y p y

This is a Right Matrix Fraction Description (RMFD)

( ) ( )165)( writealsocan We 12 +++=− ssssg

polynomial polynomial

Ali Karimpour Feb 2012

46This is a Left Matrix Fraction Description (LMFD)

Page 47: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

A model structure that is related to the Smith-McMillan form isA model structure that is related to the Smith-McMillan form is matrix fraction description (MFD).

• Right matrix fraction description (RMFD)

• Left matrix fraction description (LMFD)Left matrix fraction description (LMFD)

Let is a matrix and its the Smith McMillan is )(sG mm× )(~ sG)( )(

( )0,...,0,)(,...,)()( 1 ssdiagsN rεε∆

= ( )1,...,1,)(,...,)()( 1 ssdiagsD rδδ∆

=Let define:

or)()()(~ 1−= sDsNsG )()()(~ 1 sNsDsG −=

Ali Karimpour Feb 2012

47

Page 48: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

)()()(~ 1−DNG )()()(~ 1 NDG −or)()()( 1= sDsNsG )()()( 1 sNsDsG =

We know thatWe know that

)(~)(~)(~)( sRsGsLsG = )(~)()()(~ 1 sRsDsNsL −= 1)()( −= sGsG DN( ) 1)()()()(~ −= sDsRsNsL

This is known as a right matrix fraction description (RMFD) whereg p ( )

~ )()()(,)()(~)( sDsRsGsNsLsG DN ==

Ali Karimpour Feb 2012

48

Page 49: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

)()()(~ 1−DNG )()()(~ 1 NDG −or)()()( 1= sDsNsG )()()( 1 sNsDsG =

We know thatWe know that

)(~)(~)(~)( sRsGsLsG = )(~)()()(~ 1 sRsNsDsL −= )()( 1 sGsG ND−=( ) )(~)()()( 1 sRsNsLsD −=

This is known as a left matrix fraction description (LMFD) wherep ( )

)(~)()(,)()()( sRsNsGsLsDsG ND ==

Ali Karimpour Feb 2012

49

Page 50: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

We can show that the MFD is not unique, because, for any nonsingularq y g

mm× )(sΩmatrix we can write G(s) as:

( ) ( )( ) 111( ) ( )( ) 111 )()()()()()()()()( −−− ΩΩ=ΩΩ= ssGssGsGsssGsG DNDN

Where is said to be a right common factor. When the only right )(sΩ g y gcommon factors of and is unimodular matrix, then, weSay that the RMFD is irreducible

)(

)(sGN )(sGD

( ))()( sGsGSay that the RMFD is irreducible. ( ))(),( sGsG DN

It is easy to see that when a RMFD is irreducible, then

zssGsGzs N ==∗ at rank losses )( ifonly and if )( of zero a is

zssGsGps atsingularis)(ifonlyandif)(ofpoleais ==∗

Ali Karimpour Feb 2012

50( )(s)Gφ(s)zssGsGps

D

D

det is G(s) of polynomial pole that themeans This at singular is )( ifonly and if )(ofpolea is

===∗

Page 51: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

Example 2-16 ⎥⎤

⎢⎡ −

)2)(1(1

)2)(1(1

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

++−−

++−+

++++

=)2)(1(

82)2)(1(

4)2)(1()2)(1(

)(22

ssss

ssss

ssss

sG

⎥⎥

⎦⎢⎢

⎣ +−

+−

)1(42

)1(2

ss

ss

⎥⎤

⎢⎡ 01

=⎥⎦

⎤⎢⎣

⎡ −

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+−

++

⎥⎥⎥⎤

⎢⎢⎢⎡

−+==3011

120

0)2)(1(

114014001

)(~)(~)(~)(2

2

ss

ss

sssRsGsLsG⎦⎣

⎥⎥⎥

⎦⎢⎢⎢

⎥⎦⎢⎣ −

00

1142s

11

2

21

2

2

10

31)1)(2(

2424

01

3011

100)1)(2(

0020

01

114014001

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

+

+++

⎥⎥⎥

⎢⎢⎢

−−+=⎥⎦

⎤⎢⎣

⎡ −⎥⎦

⎤⎢⎣

⎡+

++

⎥⎥⎥

⎢⎢⎢

⎡−

⎥⎥⎥

⎢⎢⎢

−+s

sss

sssss

sss

ss

ss

Ali Karimpour Feb 2012

513

02400114 ⎥⎦⎢⎣⎥⎦⎢⎣ −−⎥⎦⎢⎣⎥⎦⎢⎣ − sss

)(sGN )(sGDRMFD:

Page 52: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

Example 2-16 ⎥⎤

⎢⎡ −

)2)(1(1

)2)(1(1

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

++−−

++−+

++++

=)2)(1(

82)2)(1(

4)2)(1()2)(1(

)(22

ssss

ssss

ssss

sG

⎥⎥

⎦⎢⎢

⎣ +−

+−

)1(42

)1(2

ss

ss

⎥⎤

⎢⎡ 01

=⎥⎦

⎤⎢⎣

⎡ −

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+−

++

⎥⎥⎥⎤

⎢⎢⎢⎡

−+==3011

120

0)2)(1(

114014001

)(~)(~)(~)(2

2

ss

ss

sssRsGsLsG⎦⎣

⎥⎥⎥

⎦⎢⎢⎢

⎥⎦⎢⎣ −

00

1142s

1

⎥⎥⎥

⎢⎢⎢

⎡−

⎥⎥⎥

⎢⎢⎢

−+−−+

++

=⎥⎦

⎤⎢⎣

⎡ −

⎥⎥⎥

⎢⎢⎢

⎡−

⎥⎥⎥

⎢⎢⎢

⎡+

++

⎥⎥⎥

⎢⎢⎢

−+

−−

00)2(30

11

1101)4)(1(00)1)(2(

3011

0020

01

10001000)1)(2(

114014001 1

2

1

2

2 ss

ssssss

ssss

sss

Ali Karimpour Feb 2012

52)(sGN)( sG DLMFD:

⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣ 114s

Page 53: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

Example 2-17 Consider⎥⎤

⎢⎡ +

⎥⎤

⎢⎡ +−

− )()()(212

1 sssssssGsGsG ⎥

⎦⎢⎣ ++⎥

⎦⎢⎣ +−

==2222

)()()(ssss

sGsGsG ND

? eirreducibl )( and )( Are sGsG ND

⎤⎡⎤⎡⎥⎦

⎤⎢⎣

+++

=⎥⎦

⎤⎢⎣

⎡+

+⎥⎦

⎤⎢⎣

⎡=

221111

110

)(2

sssss

sss

sGN⎥⎦

⎤⎢⎣

+−+−

=⎥⎦

⎤⎢⎣

⎡+−

−⎥⎦

⎤⎢⎣

⎡=

221111

110

)(2

sssss

sss

sGD

Now let:

⎥⎦

⎤⎢⎣

⎡+−

−=

1111

)(~s

ssGD ⎥

⎤⎢⎣

⎡+

+=

1111

)(~s

ssGN

Now let:

? eirreducibl )(~ and )(~ Are sGsG ND

⎥⎤

⎢⎡ −

=⎥⎤

⎢⎡ −⎥⎤

⎢⎡

=11111

)(~ sssGD ⎥

⎤⎢⎡ +

=⎥⎤

⎢⎡ −⎥⎤

⎢⎡

=11111

)(~ sssGN⎥

⎦⎢⎣ +−⎥

⎦⎢⎣ +−⎥⎦

⎢⎣ 111110

)(ss

sGD ⎥⎦

⎢⎣ +⎥

⎦⎢⎣ +⎥⎦

⎢⎣ 111110

)(ss

sGN

Now let:⎥⎤

⎢⎡ −11

)(G ⎥⎤

⎢⎡ −11

)(ˆ sG

Ali Karimpour Feb 2012

53? eirreducibl )(ˆ and )(ˆ Are sGsG ND

but why? Yes

⎥⎦

⎢⎣ +−

=11

)(s

sGD ⎥⎦

⎢⎣ +

=11

)(s

sGN

Page 54: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

Checking irreducibility:

Form:[ ] ⎥

⎤⎢⎣

⎡+−+−−

=1111

1111)(ˆ)(ˆ

sssGsG DN

Do preliminary transformation to make right part zero:

1) Add C on C ⎤⎡ − 0111 2) Add -C1 on C3 ⎤⎡ − 00111) Add -C2 on C4 ⎥⎦

⎤⎢⎣

⎡−+ 0111

0111s

2) Add C1 on C3

3) Add C1 on C2

⎥⎦

⎤⎢⎣

⎡−+ 0211 s

⎥⎤

⎢⎡ 00013) Add C1 on C2

4) Add 0.5(s+2)C3 on C2

⎥⎦

⎢⎣ −+ 0221 s

⎥⎤

⎢⎡ 0001) ( ) 3 2

5) Change C3 and C2 ⎥⎤

⎢⎡

=Ω01

)(:isfactorCommon s

⎥⎦

⎢⎣ − 0201

⎥⎤

⎢⎡ 0001

Ali Karimpour Feb 2012

54

⎥⎦

⎢⎣ −

Ω21

)( :isfactor Common s

e.irreducibl are )(ˆ and )(ˆ so unimodular is (s) Since sGsG NDΩ

⎥⎦

⎢⎣ − 0021

Page 55: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Matrix Fraction Description (MFD)

Deriving common factor:

Form:[ ] ⎥

⎤⎢⎣

+−+++−+

=2222

)()(22

ssssssssss

sGsG DN

Do preliminary transformation to make right part zero:

1) Add C on C ⎤⎡ −+ 02 ssss 2) Add C1 on C3 ⎤⎡ + 002 sss1) Add -C2 on C4 ⎥⎦

⎤⎢⎣

−+++

02220

sssssss 2) Add C1 on C3

⎥⎦

⎤⎢⎣

+++

022200

ssssss

3) Add –(s+1)C1 on C2 ⎥⎤

⎢⎡ 000s3) Add (s+1)C1 on C2 ⎥

⎦⎢⎣ +−+ 02)2(2 ssss

4) Add 0.5(s+2)C3 on C2 ⎥⎤

⎢⎡ 000s) ( ) 3 2 ⎥

⎦⎢⎣ + 0202 ss

5) Change C3 and C2 ⎥⎤

⎢⎡ 000s

⎥⎤

⎢⎡

=Ωs

s0

)(:isfactorCommon

Ali Karimpour Feb 2012

55

⎥⎦

⎢⎣ + 0022 ss ⎥

⎦⎢⎣ +

=Ωss

s22

)( :isfactor Common

reducible. are )( and )( so unimodularnot is (s) Since sGsG NDΩ

Page 56: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Introduction to Multivariable Control

Topics to be covered include: Multivariable Connections

M lti i bl P l d Multivariable Poles and zeros

Transmission zero assignment

Smith-McMillan Forms

Matrix Fraction Description (MFD) Matrix Fraction Description (MFD)

Scaling

Performance Specification

Bandwidth and Crossover Frequency

Ali Karimpour Feb 2012

56

Bandwidth and Crossover Frequency

Page 57: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Scaling

ryedGuGy d ˆˆˆ;ˆˆˆˆˆ −=+= ryedGuGy d ;+

rDreDeyDyuDudDd eeeud ˆ,ˆ,ˆ,ˆ,ˆ 11111 −−−−− =====

rDyDeDdDGuDGyD eeeddee −=+= ;))

yy eeeddee

ddedue DGDGDGDG ˆ,ˆ 11 −− == ryedGGuy d −=+= ;ddedue , yy d ;

Ali Karimpour Feb 2012

57

Page 58: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Introduction to Multivariable Control

Topics to be covered include: Multivariable Connections

M lti i bl P l d Multivariable Poles and zeros

Transmission zero assignment

Smith-McMillan Forms

Matrix Fraction Description (MFD) Matrix Fraction Description (MFD)

Scaling

Performance Specification

Bandwidth and Crossover Frequency

Ali Karimpour Feb 2012

58

Bandwidth and Crossover Frequency

Page 59: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Performance Specification

• Nominal stability NS: The system is stable with no model• Nominal stability NS: The system is stable with no model uncertainty.

• Nominal Performance NP: The system satisfies the performance specifications with no model uncertainty.

• Robust stability RS: The system is stable for all perturbed plants about the nominal model up to the worst case model uncertaintyabout the nominal model up to the worst case model uncertainty.

• Robust performance RP: The system satisfies the performance p y pspecifications for all perturbed plants about the nominal model up to the worst case model uncertainty.

Ali Karimpour Feb 2012

59

Page 60: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Performance Specification

• Time Domain PerformanceTime Domain Performance

• Frequency Domain Performance

Ali Karimpour Feb 2012

60

Page 61: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Time Domain Performance

Although closed loop stability is an important issue,Although closed loop stability is an important issue,

the real objective of control is to improve performance, that is, to make the output y(t) behave in a more desirable manner.

Actually, the possibility of inducing instability is one of the disadvantages of feedback control which has to be traded off against performance improvement.

The objective of this section is to discuss ways of evaluatingclosed loop performance.

Ali Karimpour Feb 2012

61

closed loop performance.

Page 62: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Time Domain Performance

Step response of a system

• Rise time, tr , the time it takes for the output to first reach 90% of i fi l l hi h i ll i d b llits final value, which is usually required to be small.

• Settling time, ts , the time after which the output remains withing , s , p5% ( or 2%) of its final value, which is usually required to be small.

O ershoot P O th k l di id d b th fi l l hi h

Ali Karimpour Feb 2012

62

• Overshoot, P.O, the peak value divided by the final value, whichshould typically be less than 20% or less.

Page 63: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Time Domain Performance

Step response of a system

• Decay ratio, the ratio of the second and first peaks, which should typically be 0.3 or less.

• Steady state offset, ess, the difference between the final value and the desired final value, which is usually required to be small.

Ali Karimpour Feb 2012

63

y q

Page 64: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Time Domain Performance

Step response of a system

E i ti th t t l i ti (TV) di id d b th ll• Excess variation, the total variation (TV) divided by the overall change at steady state, which should be as close to 1 as possible.

The total variation is the total movement of the output as shown.

/i tiE TVTV ∑Ali Karimpour Feb 2012

640/variationExcess vTVvTV

ii ==∑

Page 65: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Time Domain Performance

• ISE : Integral squared error ττ deISE 2

0)(∫

∞=

• IAE : Integral absolute error ττ deIAE ∫∞

=0

)(

• ITSE : Integral time weighted squared error τττ deITSE 2)(∫∞

=• ITSE : Integral time weighted squared error τττ deITSE0

)(∫=

• ITAE : Integral time weighted absolute error τττ deITSE )(0∫∞

=

Ali Karimpour Feb 2012

65

Page 66: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Frequency Domain Performance

Let L(s) denote the loop transfer function of a system which isLet L(s) denote the loop transfer function of a system which is closed-loop stable under negative feedback.

Bode plot of )( ωjL

1G

180)( 180 =∠ ωjL

)(1

180ωjLGM =

1)( =cjL ω

180)( +∠= cjLPM ω

Ali Karimpour Feb 2012

66cPM ωθ /max =

Page 67: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Frequency Domain Performance

Let L(s) denote the loop transfer function of a system which isLet L(s) denote the loop transfer function of a system which is closed-loop stable under negative feedback.

1G

180)( 180 =∠ ωjLNyquist plot of )( ωjL

)(1

180ωjLGM =

1)( =cjL ω

180)( +∠= cjLPM ω

Ali Karimpour Feb 2012

67cPM ωθ /max =

Page 68: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Frequency Domain Performance

Stability margins are measures of how close a stable closed-loop system is to instability.

From the above arguments we see that the GM and PM provide stabilityFrom the above arguments we see that the GM and PM provide stabilitymargins for gain and delay uncertainty.

More generally, to maintain closed-loop stability, the Nyquist stability condition tells us that the number of encirclements of the critical point-1 by must not change. )( ωjL

Thus the actual closest distance to -1 is a measure of stability

Ali Karimpour Feb 2012

68

Page 69: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Frequency Domain Performance

One degree-of-freedomconfiguration

nGKIGKdGGKIrGKIGKsy d111 )()()()( −−− +−+++=

Complementary sensitivity function )(sT

Sensitivity function )(sS

The maximum peaks of the sensitivity and complementary sensitivity functions are defined as

Ali Karimpour Feb 2012

69)(max)(max ωωωω

jTMjSM Ts ==

Page 70: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Frequency Domain Performance

( ) ( ) 11 )()()()( −− +=+= ωωωω jLIjKjGIjS ( ) ( )

sM1

)(max ωω

jSM s =

Thus one may also view Ms as a robustness measure.

Ali Karimpour Feb 2012

70

y s

Page 71: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Frequency Domain Performance

There is a close relationship between MS and MT and the GM and PM.

][12

1sin2;1

1 radMM

PMM

MGM s ≥⎟

⎞⎜⎜⎝

⎛≥≥ −

21 MMM sss ⎠⎜⎝−

For example, with MS = 2 we are guaranteed GM > 2 and PM >29˚.

⎞⎛

For example, with MS 2 we are guaranteed GM 2 and PM 29 .

][12

1sin2;11 1 radMM

PMM

GMTTT

≥⎟⎟⎠

⎞⎜⎜⎝

⎛≥+≥ −

For example, with MT = 2 we are guaranteed GM > 1.5 and PM >29˚.

Ali Karimpour Feb 2012

71

Page 72: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Trade-offs in Frequency Domain

One degree-of-freedomconfiguration

nGKIGKdGGKIrGKIGKsy d111 )()()()( −−− +−+++=

Complementary sensitivity function )(sT

Sensitivity function )(sS

)(sT

IsSsT =+ )()(

TdSGS + KSdKSGKSAli Karimpour Feb 2012

72

TndSGSrrye d −+−=−= KSndKSGKSru d −−=

Page 73: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Trade-offs in Frequency DomainTndSGSrrye + KSndKSGKSru =

IsSsT =+ )()(TndSGSrrye d −+−=−= KSndKSGKSru d −−=

( ) 1)()( −+= sLIsS

• Performance, good disturbance rejection ∞→→→ LITS or or 0

• Performance, good command following ∞→→→ LITS or or 0

• Mitigation of measurement noise on output 0oror0 →→→ LIST• Mitigation of measurement noise on output 0or or 0 →→→ LIST

• Small magnitude of input signals 0Tor0or0 →→→ LKSmall magnitude of input signals 0Tor 0or 0 →→→ LK

• Physical controller must be strictly proper 0Tor 0or 0 →→→ LK

• Nominal stability (stable plant) small be L

Ali Karimpour Feb 2012

73• Stabilization of unstable plant ITL →or large be

Page 74: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Introduction to Multivariable Control

Topics to be covered include:

Multivariable Connections

Multivariable Poles and zeros

Transmission zero assignment g

Smith-McMillan Forms

M i F i D i i (MFD) Matrix Fraction Description (MFD)

Scaling

Performance Specification

Bandwidth and Crossover Frequency

Ali Karimpour Feb 2012

74

Bandwidth and Crossover Frequency

Page 75: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Bandwidth and Crossover Frequency

Definition 2-3

below. from db 3- crossesfirst )S(j wherefrequency theis , ,bandwidth The B

ωω

40

60g

L

Definition 2-4 0

20

L

TDefinition 2 4

bfdb3)T(jt hi hfrequency highest theis , ,bandwidth The BTω

-40

-20S

above. from db3-crosses )T(jat which ω

Definition 2-510

010

110

210

3-60

Frequency (rad/sec)

bfdb0)L(jh frequency theis , ,frequency crossover gain The cω

Ali Karimpour Feb 2012

75above. from db0crosses )L(j where ω

Page 76: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Bandwidth and Crossover Frequency

Specifically, for systems with PM < 90˚ (most practical systems) we have

BTcB ωωω ≤≤60

g

20

40

60

L

-20

0T

S

100

101

102

103

-60

-40

S

In conclusion ωB ( which is defined in terms of S ) and also ωc

10 10 10 10Frequency (rad/sec)

Ali Karimpour Feb 2012

76( in terms of L ) are good indicators of closed-loop performance, while ωBT ( in terms of T ) may be misleading in some cases.

Page 77: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Bandwidth and Crossover Frequency

Example 2-18: Comparison of and as indicators of performance.BTωBω

1,1.0;1

1;)2(

Let ==++

+−=

+++−

= ττττ

zszs

zsTzss

zsL1)2( ++++ τττ szszss

036.0=Bω054.0=cω 1=BTω 1.0 zero RHPan is There =zc BT

Ali Karimpour Feb 2012

77

Page 78: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Bandwidth and Crossover Frequency

Example 2-17: Comparison of and as indicators of performance.BTωBω

1,1.0;1

1;)2(

Let ==++

+−=

+++−

= ττττ

zszs

zsTzss

zsL1)2( ++++ τττ szszss

036.0=Bω054.0=cω 1=BTω 1.0 zero RHPan is There =zc BT

Ali Karimpour Feb 2012

78

Page 79: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Exercises

Ali Karimpour Feb 2012

79

Page 80: Multivariable Control Systems - ???????? - FUMcpanelprofsite.um.ac.ir/~karimpor/multi/Multivariable_lec2.pdfMultivariable Zeros Importance of multivariable zeros • Dynamic response

Chapter 2

Exercises(Continue)( )

Ali Karimpour Feb 2012

80