16
Bollettino di Geofisica Teorica ed Applicata Vol. 57, n. 1, pp. 43-58; March 2016 DOI 10.4430/bgta0168 43 Multivariate geostatistics based on a model of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. ASGHARI 1 , S. SHEIKHMOHAMMADI 1 , M. ABEDI 2 and G.H. NOROUZI 2 1 Simulation and Data Processing Laboratory, School of Mining Engineering, College of Engineering, University of Tehran, Iran 2 School of Mining Engineering, College of Engineering, University of Tehran, Iran (Received: June 17, 2013; accepted: December 28, 2015) ABSTRACT In projects involving reserves estimation, a principal aim is to reduce the variance of the estimation and related uncertainty. This requires extensive and costly drilling. Among the variety of geostatistical-based techniques used to reduce the variance of the estimation in mineral reserves modelling, multivariate geostatistical methods can be appropriate tools when a sparse pattern of drilling boreholes exist. The present work introduces collocated cokriging and kriging with an external drift as multivariate geostatistical methods to incorporate sulphide factor as a secondary correlated variable to estimate Cu grade distribution. The study area is one of the potential zones of porphyry Cu occurrences, located in the Kerman province of southern Iran. To estimate the Cu grade distribution in this region, sulphide factor data as a dense correlated geophysical variable with the primary variable was used because this incurs less cost than drilling holes. Application of these multivariate geostatistical techniques to a specific exploration such as Seridune Copper Deposit in interpolating Cu grade measurements (primary data) using weakly correlated sulphide factor (secondary data) suggests that when Cu grade is undersampled, the secondary data can contribute substantially to identifying primary data. The results show that incorporating a secondary variable leads to better results than ordinary kriging (as a univariate method) that does not incorporate sulphide factor data. The validation of leave-out samples was used to compare the performance of the methods. Based on mean absolute error, root mean square error and the correlation coefficient of the observed and estimated values, the methods of the collocated cokriging and the kriging with an external drift outperformed grade estimation in comparison with ordinary kriging. Key words: sulphide factor, ordinary kriging, collocated cokriging, kriging with external drift, Seridune copper deposit, Iran. © 2016 – OGS 1. Introduction In some engineering and industrial fields, interpolation methods are widely used to predict a spatial variable in an unknown region, and most times, multiple variables are sampled in addition to the one used to quantify the main phenomenon under study. That variable may be

Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

Bollettino di Geofisica Teorica ed Applicata Vol. 57, n. 1, pp. 43-58; March 2016

DOI 10.4430/bgta0168

43

Multivariate geostatistics based on a model of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran

O. AsghAri1, s. sheikhmOhAmmAdi1, m. Abedi2 and g.h. NOrOuzi2

1 Simulation and Data Processing Laboratory, School of Mining Engineering, College of Engineering, University of Tehran, Iran2 School of Mining Engineering, College of Engineering, University of Tehran, Iran

(Received: June 17, 2013; accepted: December 28, 2015)

ABSTRACT In projects involving reserves estimation, a principal aim is to reduce the varianceoftheestimationandrelateduncertainty.Thisrequiresextensiveandcostlydrilling.Amongthevarietyofgeostatistical-basedtechniquesusedtoreducethevarianceoftheestimationinmineralreservesmodelling,multivariategeostatisticalmethodscanbe appropriate tools when a sparse pattern of drilling boreholes exist.The presentworkintroducescollocatedcokrigingandkrigingwithanexternaldriftasmultivariategeostatisticalmethodstoincorporatesulphidefactorasasecondarycorrelatedvariabletoestimateCugradedistribution.ThestudyareaisoneofthepotentialzonesofporphyryCuoccurrences,locatedintheKermanprovinceofsouthernIran.ToestimatetheCugradedistributioninthisregion,sulphidefactordataasadensecorrelatedgeophysicalvariable with the primary variable was used because this incurs less cost thandrilling holes. Application of these multivariate geostatistical techniques to a specific explorationsuchasSeriduneCopperDepositininterpolatingCugrademeasurements(primarydata)usingweaklycorrelatedsulphidefactor(secondarydata)suggeststhatwhenCugrade isundersampled, the secondarydatacancontribute substantially toidentifying primary data. The results show that incorporating a secondary variableleads to better results than ordinary kriging (as a univariate method) that does notincorporate sulphide factor data. The validation of leave-out samples was used tocomparetheperformanceofthemethods.Basedonmeanabsoluteerror,rootmeansquare error and the correlation coefficient of the observed and estimated values, the methodsofthecollocatedcokrigingandthekrigingwithanexternaldriftoutperformedgradeestimationincomparisonwithordinarykriging.

Key words: sulphide factor,ordinarykriging, collocatedcokriging,krigingwithexternaldrift,Seridunecopperdeposit,Iran.

© 2016 – OGS

1. Introduction

Insomeengineeringand industrial fields, interpolationmethodsarewidelyused topredicta spatial variable in an unknown region, and most times, multiple variables are sampled inaddition to theoneused toquantify themainphenomenonunderstudy.Thatvariablemaybe

Page 2: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

44

Boll. Geof. Teor. Appl., 57, 43-58 Asghari et al.

correlated with the principal variable of interest, being especially useful when sampled ona larger support.Then, the main attribute can be estimated from measures of itself (primaryvariable) and from the additional correlated secondary variable. Incorporating a secondaryvariableleadstomoreconsistentmodelsofthephenomenonunderstudy(Boezioet al.,2006a).Various geostatistical methods have been developed for incorporating a dense secondaryvariable.Among these methods are COllocated CoKriging (COCK) and Kriging with anExternalDrift(KED).OrdinaryKriging(OK)asaprevalentunivariategeostatisticaltechniqueusesonlyonevariableof interest tomakeestimatesatunsampled locations.Whensecondarydataareavailable,cokrigingisthenaturalextensionofkriginginthecaseofmultiplevariables.It presents several theoretical advantages over kriging a single variable. Its major advantagesappearwhensecondarydataaresampledona largersupport thantheprimarydata(Boezioet al.,2006b).However,highsamplingdensityleadstoinstabilityofthecokrigingsetofequationsin the inversionprocess (Wenlonget al., 1992).Consequently, cokrigingcanbe simplified toCOCKbyretainingonly thesecondarydatumcollocatedwith the locationwhere theprimaryvariable is being estimated. COCK also has the advantage over other methodologies in thatit incorporates a secondary variable while accounting for spatial correlation. However, theprincipal disadvantage of this methodology comes from modelling of the coregionalisation,wheredirectandcrosscovariancesmustbeinferred.Theclassicapproachisbasedonthelinearmodelofcoregionalisation(LMC)wherealldirectandcrosscovariancesarecalculatedaslinearcombinationsofthesamebasicstructures.Aspositivedefinitenessmustbeobserved,modellingLMCisnotstraightforward(Boezioet al.,2006b).

AnalternativemethodologytakenintoaccountforanexhaustivearrayofsecondaryvariablesisKED(Boezioet al.,2006b).KEDisappliedincasesinwhichthemainvariableiscorrelatedwith the dependent external variable (Fernandes and Rocha, 2010). In general, KED is usedtomerge twosourcesofvariables:aprimaryvariable that isprecisebutonlyknownata fewlocations;andasecondaryvariablethatisnotprecisebutisavailableeverywhereinthespatialdomain.Thesecondvariableisrelatedstatisticallytotheprimaryvariable(Grimeset al.,1999).Finally, thismethodcanbeused if:1) thespatial trend in thesecondary(external)variable isrelatedtothatoftheprimarypropertyofinterest;2)theresidualsfromthetrendoftheprimarypropertycanbemodeledgeostatistically;and3)thepropertyofinterestandthevariablefromthemoreintensivesamplingsitesarelinearlyrelated(BoxterandOliver,2005).

In this paper, the results of the aforementioned methods, OK, KED, and COCK, arecomparedinlatersections.Themainobjectiveof thepresentworkis tooutperformthegradeestimationmapsobtainedsolelyfromaprimaryvariable.Inthisframework,thispaperpresents,through a case study, howadense secondaryvariable acquired fromgeo-electrical properties(sulphidefactor)canbeusedtoimprovetheestimationoftheprimaryattribute(Cugrade)viaCOCKandKED.ComparisonwiththemethodologyofOK,whichmakesnouseofasecondaryvariable,isalsopresented.

2. Methodologies

Themethodologiesappliedinthepresentwork(OK,KED,andCOCK)arebrieflydescribedinthissection.

Page 3: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

Multivariate geostatistics based on a model of geo-electrical properties Boll. Geof. Teor. Appl., 57, 43-58

45

2.1. Ordinary Kriging (OK)OKisoneofthemostcommonlyusedformsofthegeneralizedkrigingestimator.Krigingis

amethodthatisoftenassociatedwiththebestlinearunbiasedestimator.OKislinearbecauseitsestimatesareweighted linearcombinationsof theavailabledata; it isunbiasedsince it tries tohavethemeanofpredictionerrorsequalto0;itisbestbecauseitaimsatminimizingthevarianceoferror(NoshadiandSepaskhah,2005).Assumingthestationarycharacteristicsofthedomainof interest in reserves modelling (i.e., same statistical properties are applicable on the entiredomain),thegeneralequationoftheOKestimatorforthestationaryrandomvariableZ(x)is:

(1)

where wi is the weighting factor, Z is the measured (or random) variable, and Z *OK is theestimatedvariablebyOK.Inordertoachieveunbiasedestimatorsinkriging,thefollowingsetofequationsshouldbesolvedsimultaneously:

(2)

andtheminimalpredictionvarianceis:

(3)

whereμistheLagrangemultiplier,CovandVarstandforcovarianceandvariance,respectively,whichareinferredfromthesemi-variogrammodelswhilewehave:Cov(Z, Z)=Var(Z).

Two assumptions are needed to use kriging, namely stationarity and isotropy. Stationaritymeansthatstatisticalpropertiesdonotdependonexactlocations.Therefore,themean(expectedvalue)ofavariableatonelocationisequaltothemeanatanyotherlocation.Isotropymeansthatdatavarianceisconstantintheareaunderinvestigationandthecorrelation(covarianceorsemi-variogram)betweenanytwolocationsdependsonlyonthevectorthatseparatesthem,nottheirexactlocations.

2.2. Kriging with External Drift (KED)Inordinarykriging,theassumptionoflocalstationarityismade,i.e.,themeanvalueofthe

variableover thesearcharea isassumedconstant.But insomesituations,a trend isobservedinthedatasuchthat themeanvariesover thesearchareaandit is thereforenolongerlocallystationary.Innonstationarycases,asecondaryvariablecanbeincorporatedtospecifythetrendasalinearfunctionofthisexternalvariable,usingkrigingwithanexternaldrift.

KEDenables the randomvariableZ, knownat relatively fewpoints, tobeestimated fromanothervariable,S,thatvariessmoothlyandisknownatallpointswhereanestimateisrequired.Thesmoothvariability(trend)ofthesecondaryvariableisassumedtoberelatedtothatoftheprimaryor targetvariable,Z(x),beingestimated.Themethodmergesbothvariablesources; itusesS(x)asanexternaldriftfunctiontoestimateZ(x).Theaimis toincreasetheprecisionofthepredictionsofZ(x).Thesecondaryvariablemustbeknownatallthesamplelocationsofthe

Page 4: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

46

Boll. Geof. Teor. Appl., 57, 43-58 Asghari et al.

primaryvariableandatallplaceson thepredictiongrid (BoxterandOliver,2005).KEDisaparticulartypeofuniversalkriging.ItallowsthepredictionofarandomvariableZ,knownonlyatasmallsetofpointsofthestudyarea,throughanothervariableS,exhaustivelyknowninthesamearea.WechoosetomodelZwitharandomfunctionZ(x)andSasadeterministicvariableS(x). Thetwoquantitiesareassumedtobelinearlyrelated,i.e.,itisassumedthattheexpectedvalueofZ(x) is equal toS(x) up to a constanta0 anda coefficientb1 (BourennaneandKing,2003):

(4)

Here,thelocalmeanoftheprimaryvariableE [Z (x)]isassessedlocally,modelledasalinearfunction of a smoothly varying and exhaustively sampled secondary variable S(x) and withcoefficientsa0 andb1consideredconstantinthelocalneighbourhood.Then,simplekrigingisperformedon the residuals from the localmean.Thepredictor is a linear combinationof thesamplevaluesatlocationxi (i = 1, . . ., n):

with (5)

The kriging weights wi are obtained by the solution of the following system of equations(BourennaneandKing,2003):

(6)

where n is the number of points in the search neighbourhood, Cov is the covariance of theresidue,andμ1andμ2aretheLagrangemultipliersthataccountfortheunbiasednessconstraintswiththeminimalpredictionvariance

. (7)

Theexternaldriftmethod thusconsistsof incorporating into thekriging systemadditionaluniversality conditions about one or several external drift variables, S(xi),i=1,2,...,M,measured exhaustively in the spatial domain. The function S(xi) needs to be known at alllocations xi of the samples of Z(xi), as well as at nodes of the prediction grid (Bourennaneet al.,2000).Tobeable touse theKED, it isnecessary tocalculate the residualbetween theprimary and secondary data in order to construct the variogram used in estimating the mainvariable. In other words, theoretically, the variogram for KED needs to be inferred from theresidualsZ(x) -m(x),wherem(x) is thedrift between theprimaryand secondaryvariable (orthelocalsmoothvariationoftherandomvariableZ(x) at thescaleofobservation).Butthis isnot simple,becauseneither the residualsnor the trendm(x) isknowna priori.A solution for

Page 5: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

Multivariate geostatistics based on a model of geo-electrical properties Boll. Geof. Teor. Appl., 57, 43-58

47

this problem can be obtained by inferring the residual component variogram (or covariancefunction)frompairs thatarenotoronlyslightlyaffectedbythe trend.Thiscanbeperformedby computing the directional variograms and retaining only the directional variogram thatshowstheleastevidenceofthetrend(Goovaerts,1999;BoxterandOliver,2005;Boezioet al.,2006b;Haberland,2007).Anotherapproachinvolvesdeterminingtheexperimentalresidualsbyremoving,fromthedatavalues, thedriftdeterminedbythelinearregressionof thesecondaryvariable.Then, simplekriging is performedon these residuals, and adrift locallydeterminedthroughtheKEDsystemisthenadded(Boezioet al.,2006b;Haberland,2007).Inkrigingwithexternaldrift,thesecondaryvariableneedstobeknownatallpointsascolocalizationdata.So,thesecondaryparameterswereestimatedbyordinarykriging,beforethekrigingwithexternaldriftfortheprimaryvariablewasapplied.

2.3. COllocated CoKriging (COCK)COCKisareducedandmodifiedformofcokriging,inwhichthesecondaryvariableusedfor

estimationisreducedsoastoretainonlythesecondarydatuminthelocationwheretheprimaryvariableisbeingestimated.

The COCK estimator is given by the following expression (Kay and Dimitrakopoulos,2000),

(8)

whereaiandb arekrigingweights,S isthevalueofthesecondarydatasetatthelocationwhereZ* is being estimated and Z–, S– are mean values of the primary and the secondary data.TheCOCKweightsai andbareobtainedbysolvingthefollowingsetofequations,

(9)

Here,theS*(x0)isthevalueofthesecondaryvariableatthelocationwhereZ*(x0)isbeingestimated.InthissystemweonlyrequiretheinferenceofCov(Z,Z),asCov(S,S)isnotrequired,andCov(Z,S),Cov(S,Z)canbeevaluatedby,

(10)

whereVar(S),Var(Z)arethevariancesoftheS andZ setsofdataandρZS isthelinearcorrelationcoefficientofthecollocatedZ andS datasets(KayandDimitrakopoulos,2000).

Itisnecessarytomodelthecovariancefunctionfortheprimaryvariable,andwhenthereislowcorrelationbetweenthesecondaryandprimarydata,theresultingZwillnotbecompelledto be similar to the secondary S variable map.A significant disadvantage of the mentionedalgorithm is thatallnoncollocatedsecondarydataare ignoredwhenestimating theZvariableat a given location (Kay and Dimitrakopoulos, 2000).When performing ordinary collocated

Page 6: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

48

Boll. Geof. Teor. Appl., 57, 43-58 Asghari et al.

cokriging in attendance of non-stationarity, the trend can be considered constant within alimitarylocalneighbourhood.

3. Background geology

ThestudyareaispartoftheUrumieh-Dokhtar(Sahand-Bazman)magmaticarcassemblagethatrunsfromNWtoSEofIran.ThisbeltisclassifiedasanAndeantypemagmaticarcshowninFig.1(Alavi,1980;Berberianet al.,1982;Johnet al.,2010).Thenorth-westernpartoftheUrumieh-Dokhtar magmatic arc is the product ofTethys oceanic plate subducted under theIranian microplate followed by continent-to-continent collision of theArabian and Eurasianplates (Regard et al., 2004; John et al., 2010). Seridune porphyry copper deposit is in agranodiorite-quartzmonzonitepluton.TwolargedepositsbelongedtothisareaareSarcheshmehandDarrehzar(Abediet al.,2013).

The detailed lithological map of the Seridune prospect is shown in Fig. 2a.This depositconsistsofEoceneandesiteandtrachyandesiteintrudedbyupperMiocenegranodiorite,which

Fig.1-LocationmapofthestudyareainIran(a),thegeneral geological map (b) of the Seridune area (modified fromHuber,1969;Johnet al.,2010;Abediet al.,2013).

iscutbyquartzmonzoniteandgranodioriteporphyrydikes(Barzegar,2007;Johnet al.,2010).Post mineralization Pliocene dacite and Quaternary gravels cover parts of the andesite andintrusive rocks.The granodiorites, monzonites, and andesites adjacent to the intrusive rocks

a

b

Page 7: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

Multivariate geostatistics based on a model of geo-electrical properties Boll. Geof. Teor. Appl., 57, 43-58

49

containcomplexlyintermixedargillicandsericiticalterationzonesandanareaofpropyliticallyalteredrocksinthesouth-easternpartoftheprospect.North-trendingsilicalithocapscutargillic,sericitic,andpropyliticalterationzones.Azoneofadvancedargillic-alteredrocksborders thelithocaps,andquartzstockworkveinsareinthecentralpartoftheprospect,Fig.2b(Barzegar,2007;Johnet al.,2010;Abediet al.,2013).

4. Case study

Previous studies show that the Seridune copper deposit located in the Kerman provinceof Iran has high potential of copper occurrences.A fuzzy knowledge-based method whichintegratedvariousgeophysicaldata inorder toprepareamineralprospectivitymapgeneratedamap inwhichhigh-potential zonescorrespond tohigher fuzzyvalues.Toprepare thismap,shown in Fig. 3, different geophysical layers which derived from magnetic and electrical

Fig.2-a)DetailedlithologicalmapoftheSeriduneprospect;b)hydrothermalalterationmapoftheSeriduneprospect(reproducedfromBarzegar,2007;Johnet al.,2010;KazemiMehrniaet al.,2011).

(a) (b)

Page 8: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

50

Boll. Geof. Teor. Appl., 57, 43-58 Asghari et al.

surveyswereused toevaluate theSeridunecopperdeposit (Abediet al.,2013).Basedon themineral potential map, a sparse pattern of drilling was recommended. In the following, sincemultivariatekrigingofa sparsepatternofdrillingyields loweruncertainty inmineraldepositmodelling, a model of geo-electrical property (i.e., the sulphide factor) as a second variablewhichhasanacceptablelevelofcorrelationwiththefirstvariable,Cu,isusedtomakeamodelofCugrade.

Fig. 3 - Mineral prospectivity map generated by fuzzyknowledge-basedmethod,whichindicateshigh-potentialzonesofmineraloccurrenceswithhigher fuzzyvalues.Drilled boreholes are shown by symbols on the map(Abediet al.,2013).

4.1. Data and methodsTheprimarydatausedinthisstudywasCugradeofboreholesandsulphidefactorusedas

the secondary variable.The most common geophysical methods for exploration of sulphidedeposits are electrical techniques. In this study, first Induced polarization (IP) “chargeabilitymap”and resistivity (RS) surveyswith rectangle array and twopole-dipole electricalprofileswere implemented, and then with available resistivity and chargeability data, sulphide factorcouldbeapproximatedby(Loke,2010):

, (11)

whereMischargeability,ρaiselectricalresistivity,andSFissulphidefactor.Thechargeabilityand resistivity are in terms of ms and Ω·m. Here, the 2D electrical data are inverted using RES2DINV Software as in Loke (2010). Fig. 4 shows the sulphide factor maps of rectangle

Page 9: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

Multivariate geostatistics based on a model of geo-electrical properties Boll. Geof. Teor. Appl., 57, 43-58

51

(a)

(b)

(c)

Fig. 4 - Sulphide factor maps of: a) rectangle array; b) and c) two pole-dipole profiles.

array and two pole-dipole profiles. Here a rectangular array with 1200-m space as currentelectrode was used such that distances between profiles and stations were 100 and 20 m.Electrodespacingforbothpole-dipoleprofilesis40m.

Inthissurvey,CudatawerecompositedfromthesparsedrilledboreholeswhichareshowninFig.5.Thelengthofthecompositedboreholesis5matthreedimentionsx,y,andz.AgridwithspecificdimensionshasbeendesignedtointerpolateCugradeforanundersampledpatternofboreholes.Thisgridcontainsallprimaryandsecondarydata(Fig.5).Sincethesemi-detailedexploration drilling has been done in this study, the drilling grid is sparse and undersampledtocreatea3DmodelofCugradeinthedesiredarea.Thelengthoftheboreholesvariesfrom250upto360mfor9drilledboreholes,whichcertainlyyieldshighuncertaintywhenapplyingkriging.Therefore, incorporating a secondary variable can decrease the uncertainty of theconstructed Cu grade model.The point should be noted that a high correlation between theprimaryvariable(Cugrade)andthesecondaryone(SF)shouldexisttoallowtheapplicationofamultivariategeostatisticalapproachlike theCOCKandKED.Theestimationof theSFwasperformedbyordinarykriging.SFat the locationsofmeasuredCuwasalsodetermined.Thiscollocated data configuration allows verification of the correlation and the linear relationshipbetween the primary and the secondary variables.The scatter plot shows that the correlationcoefficient exceeds 0.466 (Fig. 6). Since the correlation coefficient is a bit low, we used thecollocatedvaluesofSFratherthanusingalldata.Oneofthemainadvantagesofthistechniqueisthereductionoftheeffectofthesecondaryvariablewhenthiscorrelationislow(Abediet al.,2015).

Twocompulsoryassumptionsofstationarityandisotropyarerequiredtoapplyanykrigingmethods. Here, to demonstrate that the data satisfy the “isotropy assumptions”, Fig. 7 isprovided, showing the regional variable (SF) has isotropic behaviour in different directions(variograms are provided for four 0, 45, 90, 135 azimuths).As illustrated, the variograms in

Page 10: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

52

Boll. Geof. Teor. Appl., 57, 43-58 Asghari et al.

differentazimuthshaveapproximatelythesamerangesandsills.Itisworthmentioningthatincomparisonwithanisotropyinlayereddeposits,itcanbeignored.

To address the stationarity of the data, scatter plots of the SF variable are plotted versuscoordinatesofX andY, respectively.Fig.8 indicates that there isnotanysignificant trend ineitherXorYdirections.Therefore,itcanbeassumedthatthereisnomeaningfultrendinanydirection,indicatingstationarityofthestudieddomain.

To apply three methods, i.e., COCK, KED, and OK, we need to have information aboutsemi-variogram models of both the primary and the secondary variable.The Experimental

Fig.5-GridforestimationofCugradebasedontheprimaryvariablederivedfromcompositeddrilledboreholesandthesulphidefactorasacorrelatedsecondaryvariable.

Fig.6-ScatterplotofCuandSFvariables,whichshows linear correlation between the compositedCu grade data and the SF. Here, the correlationcoefficient is equal to 0.466.

Page 11: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

Multivariate geostatistics based on a model of geo-electrical properties Boll. Geof. Teor. Appl., 57, 43-58

53

Fig. 7 - Similar variogramcurvesofsecondaryvariableSF for four azimuths of 0,45, 90, and 135, showingthe isotropic behaviour ofthestudieddomain.

Fig.8-ScatterplotofSFversuscoordinatesofX (a),andY (b),showingthestationaritybehaviourof thestudieddomain.

(a)

(b)

Page 12: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

54

Boll. Geof. Teor. Appl., 57, 43-58 Asghari et al.

omni-directionalsemi-variogramsmodelsforboththecompositedCugradedataandtheSFareshowninFigs.9aand9b,respectively.Sincethekrigingsetofequationsshouldbeappliedtoavariablewithnormalizeddistribution,thenormalizedtransformwasappliedforbothvariables.Therangesofthesemi-variogrammodelsforthecompositedCugradeandtheSFare300and200 m, respectively.The experimental semi-variogram of the composited Cu grade has beenmodelledwithasphericalvariogramwhichhasanuggetandsillvaluesequalto0.37and0.63,respectively.The spherical model has also been used to fit a model which has a nugget andsillvaluesequalto0.3and0.7,respectively,fortheSFdata.Here,wehaveusedtheStanfordGeostatisticalModelingSoftware(SGeMS),whichisfreeforallusers.

AtfirsttheKEDandtheCOCKwerecarriedouttoestimatedistributionofCugrade.ThekrigingmapsarepresentedinFigs.10band10c.Tocompare,theCugradeswerealsoestimated

(a)

(b)

Fig.9-Experimentalomni-directionalsemi-variogramsandthemodelsof:a)thecompositedCugradedata;b)theSF.

Page 13: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

Multivariate geostatistics based on a model of geo-electrical properties Boll. Geof. Teor. Appl., 57, 43-58

55

byOK(Fig.10a).Theobtainedmapsof theCugradesshowthedifferencebetweenthethreeestimators, but it is clear that estimates by the COCK and the KED are less influenced byboreholes thanordinarykriging.Themapsobtainedusing theCOCK(Fig.10c)and theKED(Fig. 10b) reveal a greater influence of the sulphide factor compared with the excessivelysmoothOKestimates.

Table1-Statisticalparametersforthemethodsappliedinthisstudy.

COCK KED OK

Standard deviation of the estimates 0.035 0.148 0.166

Mean Cu 0.05 0.059 0.062

Standard deviation of Cu 0.045 0.046 0.052

Minimum 0.001 0.001 0.001

Maximum 0.542 0.45 0.35

Range 0.541 0.449 0.349

Fig.10-3DinterpolationofCugradeusing:a)OK;b)KED;c)COCK.

(a) (b)

(c)

Table 1 summarizes the statistical parameters for methods that were used in this study.StandarddeviationoftheestimateswiththeminimumandmaximuminterpolatedvaluesofCuandstandarddeviationofCuwitha rangeof interpolatedvaluesofCuareshowninTable1.ThehistogramsoftheestimatesarepresentedinFig.11.TherangeofchangesforCuinCOCKandKEDisgreaterthanwithOK.Itshowsthatthesemethodscanestimatelow/highvaluesofCugradesbetter thantheOK.ButtheOKshowsgreaterdispersioninthedistributionaroundthemeanvalue.

Page 14: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

56

Boll. Geof. Teor. Appl., 57, 43-58 Asghari et al.

4.2. ValidationA survey validation was performed by leaving out 20% of the samples that were selected

randomly from the data set and then estimated using the remaining data and methods. Usingthe real datavalue and the estimatedvalue, basedonmeanabsolute error (MAE), rootmeansquareerror(RMSE),andthecorrelationcoefficientofrealandestimatedvalues(R),validationwas performed. Scatter plots of real and estimated values of all methods that were used arepresentedinFig.10.ThecomparisonoftheresultsshowsthattheCOCKandtheKEDmethodsbyincorporatingthesecondaryvariable,i.e.,SF,havebetterresults.ResultsforvalidationsarepresentedinTable2.

(a)

Fig.11-HistogramsoftheestimatedCugradeobtainedby:a)OK;b)KED;c)COCK.

(b)

(c)

Table2-Validationresultsforthemethodsappliedinthisstudy.

MAE RMSE R

OK 0.0309 0.00488 0.8025

KED 0.02806 0.00439 0.84897

COCK 0.03218 0.00470 0.82116

Page 15: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

Multivariate geostatistics based on a model of geo-electrical properties Boll. Geof. Teor. Appl., 57, 43-58

57

5. Conclusions

Thispaperdescribedtheapplicationofthreewell-knowngeostatisticalapproachesknownasordinarykriging,collocatedcokriging,andkrigingwithanexternaldriftinordertoestimateCugradedistribution.Toreducetheuncertaintyarisingfromasparsepatternofdrilledboreholesin a studied area, sulphide factor (SF) as a correlated auxiliary geophysical variable wasincorporated in Cu grade estimation, showing its effectiveness when information is lacking.Collocated cokriging and kriging with an external drift that incorporate a secondary variablebasedonSFleadtobetterresultsthanordinarykrigingthatdoesnotincorporateSFdata.TheresultantmapsoftheCugradesshowthatestimatesbythecollocatedcokrigingandthekrigingwithexternaldriftarelessinfluencedbydrilledboreholesthanordinarykriging.Basedonthestatistical values of the mean absolute error, the root mean square error, and the correlationcoefficient of the real and the estimated values acquired from the leave-out-samples, twomultivariategeostatisticalmethodscould substantiallyoutperformCuestimates in the studiedporphyrydepositlocatedinIran.

(a)

Fig.12-ScatterplotsofCuestimatesversusrealvalues:a)OK;b)KED;c)KED.

(b)

(c)

Page 16: Multivariate geostatistics based on a model of geo ... · of geo-electrical properties for copper grade estimation: a case study in Seridune, Iran O. AsghAri1, s. sheikhmOhAmmAdi1,

58

Boll. Geof. Teor. Appl., 57, 43-58 Asghari et al.

Acknowledgements. Theauthorsgratefullyacknowledge theSchoolofMiningEngineering,UniversityofTehran,foralloftheirsupport.WewouldliketothankD.Slejko,Editor-in-ChiefoftheBollettinodiGeofisica Teorica ed Applicata, P. Holota, Associate Editor of this journal, and two anonymous referees who contributedconstructiveandvaluablecomments,whichhelpedustoimprovethequalityofourwork.

REFERENCESAbediM.,TorabiS.A.andNorouziG.H.;2013:Application of fuzzy AHP method to integrate geophysical data in a

prospect scale, a case study: Seridune copper deposit.Boll.Geof.Teor.Appl.,54,145-164.AbediM.,AsghariO.andNorouziG.H.;2015:Collocated cokriging of iron deposit based on a model of magnetic

susceptibility: a case study in Morvarid mine, Iran.ArabianJ.Geosci.,8,2179-2189.AlaviM.;1980:Tectonostratigraphic evolution of the Zagrosides of Iran.Geol.,8,144-149.BarzegarH.;2007:Geology, petrology and geochemical characteristics of alteration zones within the Seridune pros-

pect, Kerman, Iran.Ph.D.thesis,UniversityofShiraz,Iran,31pp.(unpublished).BerberianF.,Muir I.D.,PankhurstR.J. andBerberianM.;1982:Late Cretaceous and Early Miocene Andean-type

plutonic activity in northern Makran and central Iran.J.Geol.Soc.(London,U.K.),139,605-614.BoezioM.N.M.,CostaJ.F.C.L.andKoppeJ.C.;2006a:Accounting for extensive secondary information to improve

watertable mapping. Nat.Resour.Res.,15,33-48.BoezioM.N.M.,CostaJ.F.C.L.andKoppeJ.C.;2006b:Kriging with an external drift versus collocated cokriging for

water table mapping.Appl.EarthSci.,115,103-112.BourennaneH.andKingD.;2003:Using multiple external drifts to estimate a soil variable.Geoderma,114,1-18.BourennaneH.,KingD.andCouturierA.;2000:Comparison of kriging with external drift and simple linear regres-

sion for predicting soil horizon thickness with different sample densities.Geoderma,97,255-271.BoxterS.J.andOliverM.A.;2005:The spatial prediction of soil mineral N and potentially available N using eleva-

tion.Geoderma,128,325-339.FernandesJ.A.B.andRochaM.M.;2010:Kriging with external drift applied to evaluation of mineral resources of

limestone and lateritic ore.In:Proc.14thAnnu.Conf.Int.Assoc.Math.Geosci.,Budapest,Hungary,pp.1-20.GoovaertsP.;1999:Using elevation to aid the geostatistical mapping of rainfall erosivity.Catena,34,227-242.GrimesD.I.F.,Pardo-Igu´zquizaE.andBonifacioR.;1999:Optimal areal rainfall estimation using raingauges and

satellite data.J.Hydrol.,222,93-108.HaberlandtU.;2007:Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale

extreme rainfall event.J.Hydrol.,332,144-157.HuberH.;1969:Geological map of Iran sheet, n. 5, south-central Iran.NationalIranianOilComp.,scale1:1000000.John D.A.,Ayuso R.A., Barton M.D., Blakely R.J., Bodnar R.J., Dilles J.H., Gray F., Graybeal F.T., Mars J.C.,

McPheeD.K.,SealR.R.,TaylorR.D.andVikreP.G.;2010:Porphyry copper deposit model,chap. B of mineral deposit models for resource assessment.U.S.GeologicalSurvey,ScientificInvestigations,Report2010–5070–B,169pp.

Kay M. and Dimitrakopoulos R.; 2000: Integrated interpolation methods for geophysical data. Nat. Resour.Res.,9,53-63.

KazemiMehrniaA.,Rasa I.,AlirezaeiS.,AsadiHarooniH.andKaramiJ.;2011:Alteration mapping at Saridoon porphyry copper prospect using short wave infrared spectrometry (PIMA), ASTER satellite image and XRD.Geosci.Sci.QuarterlyJ.,79,3-12.

LokeM.H.;2010:RES2DINV Software, Version 3.59, Rapid 2-D Resistivity & IP inversion using the least-squares method.GeotomoSoftware,Penang,Malaysia,149pp.

NoshadiM.andSepaskhahA.R.;2005:Application of geostatistics for potential evapotranspiration estimation.Iran.J.Sci.Tech.,Trans.B,Eng.,29,343-355.

RegardV., Bellier O.,Thomas J.C.,Abbassi M.R., Mercier J., Shabanian E., Feghhi K. and Soleymani S.; 2004:Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran - a transition between collision and subduction through a young deforming system.Tectonics,23,TC4007.

WenlongXu.,TranT.T.,StanfordU.,SrivastavaR.M.andJournelA.G.;1992:Integrating seismic data in reservoir modeling: the collocated cokriging alternative. In: Proc. 67thSPEAnnu.Technol. Conf. Exhibition, Soc. Pet.Eng.,Washington,DC,USA,pp.833-842.

Corresponding author: Omid Asghari Simulation and Data Processing Laboratory, School of Mining Engineering, College of Engineering, University of Tehran, Iran North Kargar street, Amirabad, Tehran, Iran Phone: +98 21 82084229; fax: +98 21 88008838; e-mail: [email protected]