61
GD&T GEOMETRICAL DIMENSIONING AND TOLERENCE

My Preparation gd&t

Embed Size (px)

DESCRIPTION

catia

Citation preview

Page 1: My Preparation gd&t

GD&TGEOMETRICAL DIMENSIONING

AND TOLERENCE

Page 2: My Preparation gd&t

GD&TOVERVIEW

1. Geometric dimensioning and tolerancing is an international language used on drawings to accurately describe a part. The language consists of a well-defined set of symbols, rules, definitions, and conventions that can be used to describe the size, form, orientation, and location tolerances of part features.

2. Geometric Dimensioning and Tolerancing (GD&T) is a language used on mechanical engineering drawings composed of symbols that are used to efficiently and accurately communicate geometry requirements for associated features on components and assemblies.

3. GD&T is, and has been, successfully used for many years in the automotive, aerospace, electronic and the commercial design and manufacturing industries.In today's modern and technically advanced design, engineering and manufacturing world, effective and accurate communication is required to ensure successful end products.

Page 3: My Preparation gd&t

History of GD&T

Geometric Dimensioning and Tolerancing symbols have been in use since at least the turn of the century. GDT was especially important during the Second World War in relation to extremely high volume production of Liberty Ships, aircraft, and ground vehicles. The automotive industry, with its high volumes, has also benefited from GDT. The computer industry, in particular mass storage manufacturers, have used GDT extensively to increase their yields of high-volume and low-margin hard disk drives. However, as with most engineering and scientific methodologies, GDT was not rigorously established and documented until later in the twentieth century. The American National Standards Institute publication in 1982 of ANSI Y14.5M-1982 was a turning point in the rigorous, unambiguous standardization of the methodology.

Page 4: My Preparation gd&t

ADVANTAGES

1. Standardized, international system.2. Provides a clear and concise technique for defining a

reference coordinate system (datum's) on a component or assembly to be used throughout the manufacturing and inspection processes.

3. Geometric dimensioning dramatically reduces the need for drawing notes to describe complex geometry requirements on a component or assembly by the use of standard symbology that accurately and quickly defines design, manufacturing and inspection requirements.

4. More flexibility, particularly for complex shapes.5. Eliminates the need for many notes.6. Based on the fit and function of a part or assembly.

Page 5: My Preparation gd&t

TOLERANCE

Allowance for a specific variation in the size and geometry of part.

It is the variation, positive or negative, by which a size is permitted to depart  from the design size.

Types of tolerance: 1.Limit tolerance 2.Plus/Minus Toleraces a. Unilateral Tolerances b. Bilateral Tolerances

Page 6: My Preparation gd&t

When does Tolerances become important

• Assemblies: Parts will often not fit together if their dimensions do not fall with in a certain range of values.• Interchangeability: If a replacement part is used it must be a duplicate of the original part within certain limits of deviation.

Page 7: My Preparation gd&t

Tolerence Level in Mechanism

Page 8: My Preparation gd&t

Limit Tolerance

Page 9: My Preparation gd&t

Unilateral tolerace

It is the tolerance in which variation is permitted in on direction only from the design size.

Page 10: My Preparation gd&t

Bilateral Tolerance

 It is the tolerance in which variation is permitted in both directions from the design size.

Page 11: My Preparation gd&t

Placement of dimensions

Page 12: My Preparation gd&t
Page 13: My Preparation gd&t
Page 14: My Preparation gd&t
Page 15: My Preparation gd&t

Never dimension hidden lines

Page 16: My Preparation gd&t
Page 17: My Preparation gd&t
Page 18: My Preparation gd&t
Page 19: My Preparation gd&t
Page 20: My Preparation gd&t
Page 21: My Preparation gd&t
Page 22: My Preparation gd&t
Page 23: My Preparation gd&t
Page 24: My Preparation gd&t
Page 25: My Preparation gd&t

Avoid over Dimensioning

Page 26: My Preparation gd&t
Page 27: My Preparation gd&t
Page 28: My Preparation gd&t
Page 29: My Preparation gd&t
Page 30: My Preparation gd&t
Page 31: My Preparation gd&t

MMC(Maximum material condition)

Maximum Material Condition (MMC) a conditionin which the feature contains the maximum amount ofmaterial relative to the associated tolerances. Examples aremaximum shaft diameter and minimum hole diameter.Examples, Largest pin diameter Smallest hole size.

M

Page 32: My Preparation gd&t

LMC(Least Material Condition)

Least Material Condition (LMC). A condition of af e a t u re in which it contains the least amount of materiarelative to the associated tolerances. Examples are maximum hole diameter and minimum shaft diameter.Examples, Smallest pin diameter Largest hole size

L

Page 33: My Preparation gd&t

Allowance

Allowance is defined as an intentional difference between the maximum material limits of mating parts. Allowance is the minimum clearance (positive allowance), or maximum interference (negative allowance) between mating parts.Calculation formula isALLOWANCE = MMC HOLE – MMC SHAFT.

Page 34: My Preparation gd&t

Clearance

Clearance is defined as the loosest fit or maximum intended difference between mating parts.

The calculation formula for clearance is:CLEARANCE = LMC HOLE – LMC SHAFT

Page 35: My Preparation gd&t

FIT

Fit is generally term used to signify the range of tightness or looseness which may result from the application of a specific combination of allowance and tolerance in the design of mating part features.

Fits are of generally three types a.Clearance fit b.Interference fit c.Transition fit

Page 36: My Preparation gd&t

Clearance Fit

The parts are toleranced such that the largest shaft is smaller than the smallest hole.

The allowance is positive and greater than zero.

In here allowance>0

Ex-Clutches,Bearing covers,Oil seals with metal housing.

Page 37: My Preparation gd&t

Interference Fit

Considerable pressure is required to assemble these fits and the parts are considered more or less permenently assembled.

In here allowance=0

Examples-gear wheels,couplings,valve seats.

Page 38: My Preparation gd&t

Transition Fit

The parts are toleranced such that the allowance is negative and the max.

In here allowance<0

Examples-belt pulleys,bushes,fit bolts.

Page 39: My Preparation gd&t

Sample Calculation

Page 40: My Preparation gd&t

Given:MMC of hole=dia 1.2500MMC of shaft=dia 1.2509LMC of hole=dia 1.2506LMC of shaft=dia 1.2503

Allowance=MMC hole-MMC shaft 1.2500-1.2509= -0.0009Clearance=LMC hole-LMC shaft 1.2506-1.2503= 0.0003Allowance= -0.0009Clearance= 0.0003Type of fit= Transition fit

Page 41: My Preparation gd&t

GD&T SYMBOLS

Page 42: My Preparation gd&t

Datums

A datum is a theoretical exact point, axis or plane from which the location or geometric characteristic of a part feature are established. It's a starting point or origin.

Example: A flat surface may be used to establish a datum plan. A cylindrical feature, such as a shaft, may be used to establish a datum axis. A slot may be used to establish a datum center plane.

Page 43: My Preparation gd&t

How to select datum features?

Datum features are selected to meet design requirements. When selecting datum features, the designer should consider the following characteristics: Functional surfaces Mating surfaces Readily accessible surfaces Surfaces of sufficient size to allow

repeatable measurements

Page 44: My Preparation gd&t
Page 45: My Preparation gd&t

Figure shows a part with four holes. The designer

selected the back of the part as the primary datum, datum A, because the back of the part mates with another part, and the parts are bolted together with four bolts. Datum A makes a good primary datum for the four holes because the primary datum controls orientation, and it is desirable to have bolt holes perpendicular to mating surfaces. The hole locations are dimensioned from the bottom and left edges of the part. Datum B is specified as the secondary datum, and datum C is specified as the tertiary datum in the feature control frame. Datum surfaces for location are selected because of their relative importance to the controlled features. The bottom edge of the part was selected as the secondary datum because it is larger than the left edge. The left edge might have been selected as the secondary datum if it were a mating surface.

Page 46: My Preparation gd&t

Basic symbols and abriviations

Page 47: My Preparation gd&t

Position

Page 48: My Preparation gd&t

Flatness

Page 49: My Preparation gd&t

Concentricity

Page 50: My Preparation gd&t

Circularity

Page 51: My Preparation gd&t

Symmetry

Page 52: My Preparation gd&t

Straightness

Page 53: My Preparation gd&t

Parallelism

Page 54: My Preparation gd&t

Profile of a surface

Page 55: My Preparation gd&t

Profile of a line

Page 56: My Preparation gd&t

Perpendicularity

Page 57: My Preparation gd&t

Angularity

Page 58: My Preparation gd&t

Cylindricity

Page 59: My Preparation gd&t

Circular Runout

Page 60: My Preparation gd&t

Total Runout

Page 61: My Preparation gd&t

THANK YOU

Prepared by VASUDEVAN