7
Lecture 19 Geometric modular forms Dec 21 Theorem X N GINN parametrizes all elliptic curves over together with an N torsion point Explicitly for 2 Efg Ito Zz f C Ee Proof Note if Ezi E q zz Ez E 2 2z the map must be given by multiplication by some WEE then 1 1 Ctd Z w c dz E Z't a be ctdz Yet Tv fu mod 2 7Lz i e F mod I Iz adz 1 mud NI NIE 1 D o mod N D Theorem Yoln b ToCN parametrizes all elliptic curves over 1C together with acyclic subgpof order N Explicitly for 2 c try Ee 6 2 02 z 742 Eez Fact We have a universal family of elliptic curves E YEE silly.cn is locally free of rank 1 over E I jezewsutin w t Ryy EEREH.cn Y.CN bhHn 2 has the differential sheaf on Et is thetrivial sheaf w is a line bundle on Yi N Geometric interpretation f modular forms Version 1 Ez On each Ez there's a canonical differential fan de

N Explicitly for Efg Ito Zz CEe if Ezibicmr.pku.edu.cn/~lxiao/2020fall/Lecture19.pdf · 2020. 12. 20. · Lecture 19 Geometricmodularforms Dec21 Theorem X N GINN parametrizesallellipticcurves

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Lecture 19 Geometricmodularforms

    Dec 21Theorem X N GINN parametrizesall elliptic curves over togetherwith

    an N torsionpoint

    Explicitly for 2Efg Ito Zz f CEeProof Note if Ezi E q zz Ez E 2 2z

    themapmustbegivenbymultiplicationbysome WEEthen 1 1 CtdZ w c dz E

    Z't a be ctdz

    Yet Tv fumod 2 7Lzi e F mod I Izadz 1 mud NI NIE1 D o mod N D

    Theorem Yoln b ToCN parametrizesallellipticcurves over1CtogetherwithacyclicsubgpoforderN Explicitly for 2 ctry Ee 6 2 02 z 742Eez

    Fact Wehavea universalfamilyofellipticcurvesE

    YEEsilly.cn is locallyfreeofrank1 over E

    I jezewsutin w t Ryy EEREH.cnY.CN bhHn 2 hasthedifferentialsheafon Etisthetrivialsheaf

    w is a linebundle on Yi N

    Geometricinterpretationf modularformsVersion 1 Ez OneachEz there's a canonicaldifferentialfan de

  • ferenhalfamdEt 7 2e

    Y N As we usetheisomorphism Ez EzT Ii w adz c et

    For amodularformfofweightb levelTIN we defineEz 1 1 ftz de kItsEei sifczgxodeixok_tlEEIdbtdIjIfczsdexokS.oL Sectionof REGI.hu is equivariantforT.CN action

    Z 1 of DEOK

    fxodiok fetffy.CN k

    Version2 whenhis even note fC dzkkonly is invariantunderh N actionIndeed ffafzt.IT dfaIIbYhk Ccztdshfczs.f jdtbIDoI Ih f d k

    So a modularform fmaybeviewedasaseetinfczsdEHZEHYYCN.rf.cn kBmt Kodaira Spencerisomorphism w 2 Ryfµy

    Extensionto cusps X ftp.yfnlufcusps b nmuPkQYifn11

    puniversalellipticaureC

    Then E YE ZE sit over cusps wehave generalizedellipticcurvesat Je t Je for 2EC Ez lookslike or

    UIYin XinEsg Gm or Em eafstairrepdi.com

    Esmis a groupvariety overXelN

  • gray elywon YilN extends to wi erfsnyx.cn

    Kodaira Spencerisomorphism w2 Nµy logcusp

    differentialsheafwithlogpoleatthecusp

    i e if 9 isthelocalparametuatacuspafflog has localbasisdftasopposedtdg

    As Xin isawweidx.qylbg4 rx.cn ink

    Geometricinterpretation Mahim H X N wh

    Ul vanishingatcuspsshkilND HYX.CN w hfd

    whenk z KS Isom MATCH HYXi N R'xWkycUl

    szkilND HOCX.CN asHeckeoperators SayptN if cyclicsubgpoforderp

    XftolpN Z Ez.subgptv74z.EE

    x It I tX N X N Z Pt Estate Ek Cutch

    9Version1 Consider E Ez isogenyI

    E e

    XIN

    OnXoCpN we havetwolinebundles Tfw wza naturalmap wz q w

    1naive youwww.IEEHYxcni wxok 9 isHYxCn wxok

  • Ip H XIN W I H XolpN bWz DH XopN h W

    T H x n wit

    Define tp p pai.sk ToND aSkToCNDExercise Verifythatthis is thesame astheearlierdefinitionRmtForNN level weusethesamesetup butthemap it is a littledifficult

    towrite in termsof zh anettofECNofexaetorderNVersion2 whenh 2 E PnCptfEYffff

    IT TE order

    p.aeX CERT ftp.pntcpkpRealizing f Tim HYX.CN as

    ThenTp HYX.CN.sh.cn E sHYxfNnhtoCpD.N E tifx.ln Nx.im

    lls

    tilxim.ci2 E.tifxaiiniiiocpi.wEgEIoEtiCx.iii.wioy

    Forweightk z we alsohavethefollowingconstruction

    ftp.tifx.lnl.sh.cnv

    tifxfinhtocpD.ITIsHofx.Cns.Nx.cmYHifxIniiajE.tHxa

    intropisia thx said

    ftp.Y J.CN JATIN nTolp J.CNUpshot

    Softy Jj abelianvarietywithHeckeations

  • HodgeTheoryForanysmoothproj came X la H x 2 CI HIX HKxSo H x 2 Cl thx HKX.IT

    In particular H X N 2 a SktCNN SKITCorollary EigenvaluesofTp are algebraicintegers whenh

    This is because Tpv H x N 2 th x N 2

    hascharpolynomial in 21 1Cansimilarlydefine forplN Up HYX.CN in i HYX.CN ng

    X NN nToGoND E 9 E

    Y ti I tX 1N Xi N E E

    na J N J N

    f de 74Na Sd X N X N

    EP B E d P

    na Ld J N Ji NMoregenerally considerthenaturalmap

    If II I End Jim End Hain acommutativealgebra finiterankover 2

    Let h.IN imagefthismap whichisfinite12

    TheoremThere is a perfectpairing h Nic x SKIN Eh fl a a Chefs

    Proof nondegeneracy at Sa If fesdr.cm sit thekiln a chefsYetforh Tu a TnLlp an f o f o

  • f f f fHereTn is def'dby Tnm Tn Tm whengcdcn.in 1

    Tph TpTph i XCpl.ph phzifptNTpkUphifpNnondegeneraeyathilNa If Teh.CN a is suchthat a Tf o tf

    Then a Tnf a TnTfl anTfTf off 7 o D

    Corollary H X Maio Cl Salman SachN1T u v

    h.lnlxoqflatofrkzh.CN xoCh.ln xoEfreeofrk t feeofranktfinited.milArtinian

    So HfXdn5Q isfeeofrankzoverh.CN QRmt Theintegralversionmightbebad

    normalized eigencuspfoms f Eangf in SCN X

    Ibijection Ihomomorphisms tfftp.fapptNdfih.IN sQlf 1C HCUp applN

    f HkdXCd def74ve

    eigensparequotientsof J.IN LetIf kerlhfihilN ilQlfi 1

    Salt D tfDefineAg JdNYIfIµ H xcnn.tl IfH

    Then Ag is an abelianvariety over ofdim IQlfi.IQTheGala'srep'sassociated tof is VelAf XiyuRemark f is always atotallyrealoracMfieldm

  • f ay lolally fat'otallginaginagguadratriextaofatotally

    realfield