18
Femtosecond Laser Structuring of Metal Surfaces 1

Nano Structuring

  • Upload
    amdodeh

  • View
    228

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 1/18

Femtosecond Laser Structuring of 

Metal Surfaces

1

Page 2: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 2/18

Lotus Effect 

2

Page 3: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 3/18

Outline

• Introduction

• Metal Interactions with fs Pulses.

•Self-organised structures: LIPSS.

•Setup and results on Al

Next Steps

3

Page 4: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 4/18

Introduction: Micromachining with laser

4

Page 5: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 5/18

Two Temperature Model (TTM)

( )ee e i

T  Q Q QC T T S

t x y z

 

)( ie

i

i T T t 

T C 

 

)exp(**)( z At  I S   

Femtosecond Laser Heating

Lattice

Electrons

Laser

Electrons

Lattice

Laser

Transfer of heat from electrons to material takes time.Electron and material temperature treated separately during “pulse-on” time. 

Pulse is over before heat diffusion in material lattice can occur.

5

Page 6: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 6/18

Time for

equilibrium γX1016 

W/m3 K Metal 

7.7 ps 10 Cu 16.5 ps 3.6 Ag 27.4 ps 2.1 Au 

Calculated time evolution of surface electron and

lattice temperature in Cu, Ag and Au. 

J. Wang and C. Guo, J. Appl. Phys. 102, 053522 (2007) 

Temperature Evolutions of Electrons and Lattice 

Materials with long delay for

coupling of energy from electron

to lattice system melt more than

those with fast coupling

6

Page 7: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 7/18

Light Penetration in Metals

Laser light is strongly reflected, penetration is limited to small skin depth of evanescent wave.

Optical absorption depths for several materials over a range of wavelengthsD.R. Lide, CRC Handbook of Chemistry and Physics, 82nd edn. (CRC, Boca Raton, 2001) 

  

2

c

c = light speed, = conductivity,

= permeability, = frequency

For metals, ~ 20 nm at 1 m 

7

Page 8: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 8/18

Femtosecond Pulses Absorbed Within Skin Depth

fs laser:•Skin depth is small

•Thermal penetration within theskin depth.

Result:•fast ionization and evaporation

•ablation of the material beforesignificant heat conduction

(non- thermal ablation).

1

10

100

1000

Nanos econd Fem tos econd

   D  e

  p   t   h   (  n  m   )

Skin Depth

Thermal Depth

Thermal penetration depth t d  T T   

skin depth   

2

c

8

Page 9: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 9/18

300 nm

LIPSS= Laser Induced periodic surface structures.

Self-organised structures

M.Huang et al, Opt. Express 16(23), 19354- (2008) 

E E 

9

Page 10: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 10/18

Origin of LIPSS 

Laser light

polarization

Distortions

couple the light

with surface

plasmons

Distortions are

sources of wavesWaves propagates

in both directions

Λ 

10

Page 11: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 11/18

Direct Interference

Origin of LIPSS 

e e’+ie’’ 

<l 

11

Page 12: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 12/18

800 nm

70 fs, 0.7 mJ/pluse, 1kHz

D=300 μm

Experimental Setup 

Laser Processed Aluminum

Φ=50mm,thickness=5mm

Laser Processed Gold

30 m gold coated on Copper plate

12

Page 13: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 13/18

Colours on Aluminum

Uniform colour

Λ=570 nmE 

Angle-dependant

colour13

Page 14: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 14/18

Application: Colorizing Metals by Nanostructuring

Marking on 316L Stainless steel

sampleAluminium samples

Y. Vorobyev and C. Guo.

Appl. Phys. Lett. 92, 041914 2008 

B. Dusser, Z. Sagan, H. Soder, N. Faure, J.P.

Colombier, M. Jourlin, and E. Audouard.

Optics Express, Vol. 18, Issue 3, pp. 2913-2924 (2010) 

14

Page 15: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 15/18

E=244 mJ/cm2 E=137 mJ/cm2  E=975 mJ/cm2 

Polarisation 

Laser scan

direction 

100 μm  100 μm  100 μm 

10 μm  10 μm  10 μm 

Scanning step=25μm

Number of pass/line=1

Scanning speed=5 mm/s. 

Laser Fluence Effect

15

Page 16: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 16/18

Enhanced Absorption Of Aluminium

Golden Al

Polished Al

Gray Al

Black Al

16

Page 17: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 17/18

Enhanced Absorption Of Aluminium

Influence on reflectivityFeature size

Light trapping due to multiple reflections enhances coupling into

the material.

>> l 

Small features can successively scatter light, increasing the

effective optical path length and enhancing absorption.

≈ l 

??

Antireflection effect of random surface textures in terms of 

graded refractive index at air/solid interface.

Broadening of SPs absorption spectra induced by various sizes

and shapes.

<< l 

17

Page 18: Nano Structuring

8/3/2019 Nano Structuring

http://slidepdf.com/reader/full/nano-structuring 18/18

Ti:Sapphire

Oscillator  Amplifier 

Pump Laser  Pump Laser 

BS 

NF 

Chopper 

Optical Delay line

-100ps to 2.5 ns

M1 

M2 

M3 L1 

L2 

L3 

Shutter 

WLC

PM1 

PM1 

Sample NF 

Spectrometer

with CCD 

Data acquisition

Computer 

Femtosecond Laser system 

l=800nm 

l=800nm 

l=340-700nm 

Next step:Time-resolved reflectivity setup 

18