27
Nanotechnology in NEC Fundamental and Environmental Research Laboratories NEC Corporation Jun’ichi Sone T.Baba : Nanoelectronics, CNT electronics K.Ohashi : Nanophotonics, Spintronics H.Kawaura : Nanoelectronics, Nanobio technology NEC Members

Nanotechnology in NEC - Stanford University

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nanotechnology in NEC - Stanford University

Nanotechnology in NEC

Fundamental and EnvironmentalResearch Laboratories

NEC Corporation

Jun’ichi Sone

T.Baba : Nanoelectronics, CNT electronicsK.Ohashi : Nanophotonics, SpintronicsH.Kawaura : Nanoelectronics, Nanobio technology

NEC Members

Page 2: Nanotechnology in NEC - Stanford University

NanoelectronicsNanoelectronics

World’s Smallest MOS TransistorsNanofabricationNanoBridgeCarbon Nanotube ApplicationsQuantum Bit Devices

Page 3: Nanotechnology in NEC - Stanford University

World’s Smallest Si MOS TransistorWorld’s Smallest Si MOS Transistor H.Kawaura, T.Sakamoto,

et.al.

Electron Micrograph of 8nm Gate Current -Voltage Characteristic

p-sub

Upper Gate

Gate Oxide Film

Intergate Oxide Film

n +

Ultra -shallow Junction

Lower Gate

0 0.5 1

0

2

4

6

Dra

in C

urre

nt(µ

A)

Drain Voltage (V)

300 K

Gate Voltage =0.9 V

0

Electron Micrograph of 8nm Gate Current -Voltage Characteristic

p-sub

Upper Gate

Gate Oxide Film

Intergate Oxide Film

n +

Ultra- shallow Junction

Lower Gate

0 0.5 1

0

2

4

6

Dra

in C

urre

nt(µ

A)

Drain Voltage (V)

300 K

Gate Voltage =0.9 V

0

Page 4: Nanotechnology in NEC - Stanford University

444

8nm8nm

NanofabricationNanofabrication

“10nm-EB lithography with Calix Arene resist”

SEM image of Calix Arene resist pattern

Molecular Structure forCalix Arene

Commercially available from Tokuyama Corp.

Nanofab. Group (Ochiai et.al.)

Page 5: Nanotechnology in NEC - Stanford University

CMOS devices show proper transistor operation by careful design and fabrication even when the gate length is reduced to 5nm. However, we encounter many problems. In particular,

Difficulties to suppress the fluctuation of device parametersgate length, impurity profile (number of impurities) and others

Difficulties of high-through-put production for small structureswith nm-scale or even atomic-scale accuracyDifficultiers of the transistor design due to appearance of quantum effect

To utilize self-assembled nanostructures,CNTs, metallic nano-pipe structures (NanoBridge),molecular devices and so on.

To utilize quantum effects as an operation principle,Quantum computing devices (Q-bits)

Page 6: Nanotechnology in NEC - Stanford University

Cu Cu+ + e- (oxidation)Cu+ + e- Cu (deoxidation)

Cu2S

Cu

Ti

Cu+

OFFON

−V +V−V

Atom (ion) transfer through solid electrolyteElectrochemical reaction on both electrodes

Principle of NanoBridge

ON

OFF

電流

(mA

)

-0.2 0 0.2

-10

1

-2

ON

OFF

電流

(mA

)

-0.2 0 0.2

-10

1

-2

Stretching ofmetal nanobridge

Compact (4F2)Low ON resistance (<50Ω)Scalable (<30nm) ~50ohmrepeatable (103~105 times)

Low switching voltage(0.05~0.2V)

Nonvolatile (>1 month)ON/OFF ratio (>105)

Voltage (V)

Cur

rent

(mA

)

T.Sakamoto et al. (APL, 2003)with NIMS Dr.Aono’s Group

Page 7: Nanotechnology in NEC - Stanford University

Programmable CBICConventional FPGA switch

(SRAM & pass Tr.)Huge (120F2)Resistive (2kΩ)In logic plane

NanoBridgeTiny (4F2)Low resistive (50Ω)On logic plane

Improvement ofsignal delay by

20~40%

FPGA ProgrammableCBIC

Replacementwith NanoBridge

~1/2 ~1/2

Logic cell

Xbar switches

Small scalecircuit cell

Circuit areareduction to

½~¼

T.Sakamoto et al. (ISSCC2004)with NIMS Dr.Aono’s Group

Page 8: Nanotechnology in NEC - Stanford University

4x4 Xbar switches

(X0, X1, X2, X3) = (0, 0, 1, 0)(Y0, Y1, Y2, Y3) = (–, 0, –, –)(C0, C1, C2, C3) = (0, 1, 0, 0)

X0 X1 X2 X3

Y1

Y2

Y0

OFF OFF OFFON

Xbar circuit on CMOS substrate

Xm

Yn

NanoBridge

Xm

Yn

NanoBridge

Extra Tr. is used for cell selection because of broad distribution of

switching voltage

Xm

Yn

CnNanoBridge

Xm

Yn

CnNanoBridge

ON/OFF stateat each Xpointis selectable. 2020µµmm2020µµmm

NanoBridge

SiO2Cu

Cu2SInsulatorAu/Pt/Ti

Page 9: Nanotechnology in NEC - Stanford University

Programming operationof 4X4 Xbar switches

X0 X1 X2 X3

Y1Y2Y3

Y0

Y1Y2

Y3

Y0

Output #1 Output #2

Pattern #1 Pattern #2X0 X1 X2 X3

Y1Y2Y3

Y0

Input (1.8V)

X0

X1

X2X3

10μsec

Page 10: Nanotechnology in NEC - Stanford University

Application of programmable CBIC学校

家庭

病院

自然

オフィス乗り物

工場

人工衛星

NEC

NEC

Any timeAny whereAnything Ubiquitous Society

Realization of electronic products with low cost and high performance to fulfill the market needsAdd-on new function later

Realization of many functions on a single chipby connection

reconfiguration

GPSmp3

Digital TV

movie

PatternRecognition

Page 11: Nanotechnology in NEC - Stanford University

Applications of Carbon Nanotubes

FED

トランジスタ

ナノテクノロジ(ナノ加工・部品)

バイオセンサー

量子デバイス トランジスタ

マイクロ波増幅管

Random

Large

Small

Catalysts

Composites

Biosensors

Quantum devices

Hydrogen Storage

Aligned

Nanotech.

LSI memory, logic, wiring

FED

Orientation

Qua

ntity

010708b

Fuel Cells

Transistor

Page 12: Nanotechnology in NEC - Stanford University

Single-walled Carbon Nanotubes

1.3 nm

Single-walled Carbon Nanotubes

1.3 nm

Single-walled Carbon Nanohorn AggregateSingle-walled Carbon Nanohorn Aggregate

Iijima, S. et al. Chem. Phys. Lett.309, 165 (1999).

Iijima, S. Nature (1993)

Page 13: Nanotechnology in NEC - Stanford University

Carbon Nanotube Transistor Structure Model, Scanning Probe Micrograph Image, Transistor Characteristics

–2 0 20

200

400

600

ゲート電圧(V )ドレイン電流

(nA)

ドレイン電圧:100 m V

gm=320 nSSource

Gate

DrainCarbon nanotube

S G G D

Gate

CNT TransistorsCNT Transistors

“Excelling present Sitransistors in performance”

F.Nihey et al.

Page 14: Nanotechnology in NEC - Stanford University

Fabrication of Single Wall Carbon Nanohorn

Laser Ablation (Iijima Group, JST)

ナノホーン:純度 90%以上

(700 Torr)

CO 2

3~5 kW, φ3mm500ms, 10 Hz

R.T.Nanohorn

Ar Gas(700 Torr)

CO 2 Laser

3~5 kW, φ3mm500ms, 10 Hz

Carbon

Iijima, Yudasaka,et.al.

Page 15: Nanotechnology in NEC - Stanford University

Principle Diagram of Portable Fuel Cell

Carbon Nanohorns

Platinum Catalyst

Fuel AirO2

Elec

trol

yte

Film

e

H2O

H+

Cat

alys

t Ele

ctro

deCO2

CH3OHe

e 10 1000100 1000010

1000

100

10000

Volume Energy Density (Wh/L)

Wei

ght E

nerg

y D

ensi

ty(W

h/kg

)

Fuel

NiHLead

Lithium

NiCd

Cat

alys

t Ele

ctro

de

Cell

Principle Diagram of Portable Fuel Cell

Carbon Nanohorns

Platinum Catalyst

Fuel AirO2

Elec

trol

yte

Film

e

H2O

H+

Cat

alys

t Ele

ctro

deCO2

CH3OHe

e 10 1000100 1000010

1000

100

10000

Volume Energy Density (Wh/L)

Wei

ght E

nerg

y D

ensi

ty(W

h/kg

)

Fuel

NiHLead

Lithium

NiCd

Cat

alys

t Ele

ctro

de

Cell

Carbon Nanotube Fuel CellsCarbon Nanotube Fuel Cells CNT Technologies Group(Y.Kubo et.al.)

Page 16: Nanotechnology in NEC - Stanford University

TEM images of Nanohorn with Pt catalyst

Carbon nanohornConventional carbon material

(acetylene black)

※ Black particles : Pt catalyst

・ Finer Pt catalyst is dispersed homogeneously on the surface of carbon nanohorns・ Finer particles have better catalyst capability

Page 17: Nanotechnology in NEC - Stanford University

Average Power 14WMaximum Power 24W

Note PC with DM-Fuel Cell insideNote PC with DM-Fuel Cell inside

Demonstration of the operation in 2003 World-PC in September, 2003.

CNT Technologies Gr.(Y.Kubo et.al.)

Page 18: Nanotechnology in NEC - Stanford University

Superconducting quantum bit

Ground Electrode Cooper-Pair Box

++++

- - - -

Tunnel Junction

Cooper-Pairs

Gate Electrode

1 extra cooper1 extra cooper--pair in a boxpair in a box

No extra cooperNo extra cooper--pair in a boxpair in a box

Mixed state of no extra and single extra cooperMixed state of no extra and single extra cooper--pair in a boxpair in a box

Quantum-Bit Device for Quantum ComputerQuantum-Bit Device for Quantum Computer

Quantum coherence control

A B A’ B’00

0 0 1

11

1

1

011

00

10+

A

B

A’

B’

Control bit

Target bit

Input Output

Logic operation truth tablefor C-NOT gate

Input Output

Tsai, Nakamura, Yamamoto, Pashkin*, Astafiev* (* RIKEN)

Possible highPossible high--speed computing speed computing Factoring, Date search, Quantum-simulation, NP problems

Nature, 30 Oct., 2003

Page 19: Nanotechnology in NEC - Stanford University

1 µm

Target bit

Inverting of target bit only when control bit is “0”SEM of C-NOT Gate

Scematics of the device

Connecting capacitor

When control bit is “0”,

Taget bit is not inverted

Taget bit is inverted

“0”

Cooper pair tunnelingCooper pair tunneling

“1”

When control bit is “1”,

Probe 2 Probe 1

Operation Principle of C-NOT Quantum BitsOperation Principle of C-NOT Quantum Bits

GroundElectrode 2

Target bit

GroundElectrode 1

Gate Electrode 2 Gate Electrode 1

Contrl bitDC Electrode 2

DC Electrode 1

Contrl bit

DC electrode 2

GateElectrode 2

DCElectrode 1

Gate electrode 1

GroundElectrode 1

Probe 2

Probe 1

Target bit

Gate electrode 2

Connectingcapacitor Control bit

Gate electrode 2

Target bit

Connectingcapacitor Control bit

GroundElectrode 2

Page 20: Nanotechnology in NEC - Stanford University

0 00 0

InputInput 0000 1100

0011 1100 0000 1111⟩⟩++⟩⟩ 1100||0011|| ββαα ⟩⟩++⟩⟩ 1111||0000|| ββαα

Experimental results of C-NOT gate operationExperimental results of C-NOT gate operation

When input target bit is “0” When input target bit is “1”

Control bit

Target bit

0011 111100 11α 0〉+ β 1〉

1 11 1

00

OutputOutput

Control bit Target bit

Contrpl bit Target bit

00

11

0000

111111

Entangled state Entangled state

Out

put c

urre

nt(pA

00 11α 0〉+ β 1〉

0 0

Number of measurement events

1

0

1

0Number of

measurement events

Page 21: Nanotechnology in NEC - Stanford University

Nanobio Technology& Nanophotonics

Nanobio Technology& Nanophotonics

DNA and Protein Separation by Nano-Pillar GelSurface Plasmon Technology

Page 22: Nanotechnology in NEC - Stanford University

High-resolution separation of DNAs and proteins by using artificial gel fabricated by nanotechnology health care chip

Nanobio TechnologyNanobio Technology

FeaturesHigh through-put, high resolution, and high reproducibilityControl of dynamic range and separation band by the design

natural gel (random) artificial gel (uniform)with 200nm diameter

DNA (100- or more several ten nm), and protein (several ten nm)

Kawaura et.al.

DNA and Protein separation by using nano-pillar gel

Page 23: Nanotechnology in NEC - Stanford University

GlassLiquid Pool

Micro Fluid Channel

Silicon

Artificial Nanostructure

Fluorescence Microscope

1µm

DNA Flow Direction

DNA Size-Separation Chip with Artificial Nanostructure

GlassLiquid Pool

Micro Fluid Channel

Silicon

Artificial Nanostructure

Fluorescence Microscope

1µm

DNA Flow Direction

DNA Size-Separation Chip with Artificial Nanostructure

Nanobio ChipNanobio Chip

Time(sec)

Sign

al

Fluorescently dyed DNA

Page 24: Nanotechnology in NEC - Stanford University

Nature, vol. 391, p. 641, 12 Feb. 1998

Surface Plasmon Technology

Ebbesen et.al.(presently, Leus Pastuer University)

Page 25: Nanotechnology in NEC - Stanford University

λ = 700 nm λ = 637 nm

d = 200 nm

P = 600 nm

t = 300 nm

Incident lightIncident light

FDTD simulation

Ohashi. et. al.Enhancement of photon tunneling

Enhancement of photon tunneling

Page 26: Nanotechnology in NEC - Stanford University

DVD Red

<10 Gbits/inch2

Blue

<100 Gbits/inch2

Nano-light

1 Tbits/inch2

Laser Light

Bit Size

Small aperture

Concept of Nano-light RecordingConcept of Nano-light Recording

Diffraction limit

Plasmon enhancement

Page 27: Nanotechnology in NEC - Stanford University

Near-Field Recording by Plasmon HeadNear-Field Recording by Plasmon Head

φ ~ 100 nm

Pits are recorded on a DVD medium (GeSbTe) by near-field light.HDD-Type Plasmon Head

Strong near-field light from a nano hole