89
IJĽńİĿĴĈ9ěCNDĞyõě<ýóQS <'lî()čGĞĐĖĉùcb& &B[^ï[^5/15-17/2015é]7$' Naoyuki Haba (Shimane U, Japan)

Naoyuki Haba (Shimane U, Japan)èèNaoyuki Haba (Shimane U, Japan) 2 -6/5$ TeV CND yõ

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

  • 5/15-17/2015

    Naoyuki Haba (Shimane U, Japan)

  • 2

    TeV

  • Hierarchy problem

    Higgs 126GeV

  • Hierarchy problem

    Higgs 126GeV

    Higgs M φ SM

  • Hierarchy problem

    *φyφ yϕL

    × ×M MϕR ϕR

    ϕR

    Higgs 126GeV

    Higgs M φ SM

  • Hierarchy problem

    *φyφ yϕL

    × ×M MϕR ϕR

    ϕR

    ~ −y2

    16π 2M 2 logΛ

    d 4 p16π 2∫

    ip

    ⎛⎝⎜

    ⎞⎠⎟

    4

    M R2

    Higgs 126GeV

    Higgs M φ SM

  • Hierarchy problem

    *φyφ yϕL

    × ×M MϕR ϕR

    ϕR

    ~ −y2

    16π 2M 2 logΛ

    d 4 p16π 2∫

    ip

    ⎛⎝⎜

    ⎞⎠⎟

    4

    M R2

    2

    ↓ Higgs mass M

    Higgs 126GeV

    Higgs M φ SM

  • Hierarchy problem

    *φyφ yϕL

    × ×M MϕR ϕR

    ϕR

    ~ −y2

    16π 2M 2 logΛ

    d 4 p16π 2∫

    ip

    ⎛⎝⎜

    ⎞⎠⎟

    4

    M R2

    2

    ↓ Higgs mass M

    TeV (new physics)

    SUSY

    y2φ *φ

    ϕ! R×M 2

  • Hierarchy problem

    *φyφ yϕL

    × ×M MϕR ϕR

    ϕR

    ~ −y2

    16π 2M 2 logΛ

    d 4 p16π 2∫

    ip

    ⎛⎝⎜

    ⎞⎠⎟

    4

    M R2

    2

    ↓ Higgs mass M

    TeV (new physics)

    SUSY

    y2φ *φ

    ϕ! R×M 2

    MR TeV TeV seesaw (new physics)

    classical conformal

  • Hierarchy problem

    *φyφ yϕL

    × ×M MϕR ϕR

    ϕR

    ~ −y2

    16π 2M 2 logΛ

    d 4 p16π 2∫

    ip

    ⎛⎝⎜

    ⎞⎠⎟

    4

    M R2

    2

    ↓ Higgs mass M

    TeV (new physics)

    SUSY

    y2φ *φ

    ϕ! R×M 2

    MR TeV TeV seesaw (new physics)

    classical conformal

    TeV new physics

  • 11

    TeV

  • LHC results show…

    126 GeV Higgs

    BSM?(beyond the standard model)

  • BSM

    An ongoing exciting matches (experiments) are facing a tough defense, and can’t get a goal (see physics beyond the Standard Model) yet.

  • ν

    An ongoing exciting matches (experiments) are facing a tough defense, and can’t get a goal (see physics beyond the Standard Model) yet.

  • ν

    An ongoing exciting matches (experiments) are facing a tough defense, and can’t get a goal (see physics beyond the Standard Model) yet.

    tiny mass

    large flavor

    mixings

  • ν

    An ongoing exciting matches (experiments) are facing a tough defense, and can’t get a goal (see physics beyond the Standard Model) yet.

    tiny mass

    large flavor

    mixings

    126 GeV Higgs mass

    DM

    hierarchy problem

  • 17

    Higgs mass 126 GeV

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    Higgs potential

    〈H 〉•

    V

    H

    V = λ(|H |2 −v)2

    0.131@MZ

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    Higgs potential

    〈H 〉•

    V

    H

    V = λ(|H |2 −v)2

    0.131@MZ

    λ

    H H

    H† H†

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    Quantum corrections

    λ

    H H

    H† H† W

    t H

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    G.Degrassi, S.Di Vita, J.Elias-Miro, J.R.Espinosa, G.F.Giudice, G.Isidori and A.Strumia, JHEP1208 (2012) 098

    λ

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    (4π )2 dλdt

    = 24λ 2 +12λyt2 − 6yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

    top mass

    Higgs massλ

    1018 E (GeV)

    β

    0.131@MZ

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    〈H 〉•

    V

    H

    weak scale

    (4π )2 dλdt

    = 24λ 2 +12λyt2 − 6yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    〈H 〉•

    V

    H

    V

    H

    weak scale MP

    (4π )2 dλdt

    = 24λ 2 +12λyt2 − 6yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

    Energy

  • RGE of Higgs self coupling

    (4π )2 dλdt

    = 12λ 2 +12λyt2 −12yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

    〈H 〉•

    V

    H

    V

    H

    weak scale MP

    Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    means SM -> Mp????

    SM Mp

    Energy

  • (Amaldi, PLB260(1991)447)

    Before this paper, SUSY is not so familiar than TC etc.

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    top mass

    Higgs massλ

    1018 E (GeV)

    β

    (4π )2 dλdt

    = 24λ 2 +12λyt2 − 6yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    top mass

    Higgs massλ

    1018 E (GeV)

    β

    (4π )2 dλdt

    = 24λ 2 +12λyt2 − 6yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    top mass

    Higgs mass

    < 0 > 0

    λ

    1017 1018 E (GeV)

    (4π )2 dλdt

    = 24λ 2 +12λyt2 − 6yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

    1010

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    top mass

    Higgs mass

    < 0 > 0

    λ

    1017 1018 E (GeV)

    (4π )2 dλdt

    = 24λ 2 +12λyt2 − 6yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

    1010

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    top mass

    Higgs mass

    < 0 > 0

    λ

    1017 1018 E (GeV)

    171.081

    (4π )2 dλdt

    = 24λ 2 +12λyt2 − 6yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

  • Higgs (but still no BSM) discovery at LHC

    mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM

    RGE of Higgs self coupling

    top mass

    Higgs mass

    < 0 > 0

    λ

    1017 1018 E (GeV)

    171.079

    (4π )2 dλdt

    = 24λ 2 +12λyt2 − 6yt

    4 − 3λ(g '2+ 3g2 )+ 38[2g4 + (g '2+ g2 )2 ]

  • λ(µ Mp) 0

  • λ(µ Mp) 0

    SM Mp

    1010 GeV

  • ex flat land scenario Iso et al

    Higgs Mp

  • ex flat land scenario Iso et al

    Higgs Mp

    U(1)B-L

  • ex flat land scenario Iso et al

    Higgs Mp

    U(1)B-L

    U(1)B-L νR Majorana

  • ex flat land scenario Iso et al

    Higgs Mp

    U(1)B-L

    U(1)B-L νR Majorana

    → U(1)B-L U(1)B-L Higgs Φ

  • ex flat land scenario Iso et al

    Higgs Mp

    U(1)B-L

    U(1)B-L νR Majorana

    → U(1)B-L U(1)B-L Higgs Φ

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

  • mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM (4π )2 dλ

    dt= 24λ 2 +12λyt

    2 − 6yt4 − 3λ(g '2+ 3g2 )+ 3

    8[2g4 + (g '2+ g2 )2 ]

    1010

  • mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM (4π )2 dλ

    dt= 24λ 2 +12λyt

    2 − 6yt4 − 3λ(g '2+ 3g2 )+ 3

    8[2g4 + (g '2+ g2 )2 ]

    (4π )2 dyt

    dt= yt

    92yt2 − 1720g12 − 94g22 − 8g3

    2 −!g!2⎛

    ⎝⎜⎞⎠⎟

    new gauge Yt

    1010

  • mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM (4π )2 dλ

    dt= 24λ 2 +12λyt

    2 − 6yt4 − 3λ(g '2+ 3g2 )+ 3

    8[2g4 + (g '2+ g2 )2 ]

    (4π )2 dyt

    dt= yt

    92yt2 − 1720g12 − 94g22 − 8g3

    2 −!g!2⎛

    ⎝⎜⎞⎠⎟

    new gauge Yt

    λ

    1010

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    λ

    Iso et al

    TeV

    Mp

    SM

    1010

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    λ

    Iso et al

    TeV

    Mp

    SM

    1010

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    λ

    Iso et al

    TeV

    Mp1010

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    λ

    Iso et al

    TeV

    Mp

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    k

    λ

    Iso et al

    TeV

    MpλS

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    k

    λ

    Iso et al

    TeV

    MpλS

    Φ TeV

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    k < 0

    λ

    Iso et al

    TeV

    MpλS

    Φ TeV

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    k < 0

    λ

    Iso et al

    TeV

    MpλS

    Φ TeV

    (origin of the wine-bottle (EWB)

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    k

    gB-L (~O(1)) Φ TeV

    νR Majorana mass TeV

  • ex flat land scenario

    V = λ |H |4 +k |φ |2 |H |2 +λS |φ |4

    SM + U(1)B-L

    k TeV scale seesaw, (resonant) leptogenesis (anyhow, all phenomenology must be at TeV)

    gB-L (~O(1)) Φ TeV

    νR Majorana mass TeV

  • ex2 GUT @ Mp model

    GUT Mp

    NH, Ishida, Takahashi, YamaguchiarXiv:1412.8230

  • ex2 GUT @ Mp model

    GUT Mp

    NH, Ishida, Takahashi, YamaguchiarXiv:1412.8230

    GUT Mp

  • ex2 GUT @ Mp model

    GUT Mp

    NH, Ishida, Takahashi, YamaguchiarXiv:1412.8230

    GUT Mp

    vector-like mattes SM GUT Mp

  • mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM (4π )2 dλ

    dt= 24λ 2 +12λyt

    2 − 6yt4 − 3λ(g '2+ 3g2 )+ 3

    8[2g4 + (g '2+ g2 )2 ]

    GUC gauge

  • mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM (4π )2 dλ

    dt= 24λ 2 +12λyt

    2 − 6yt4 − 3λ(g '2+ 3g2 )+ 3

    8[2g4 + (g '2+ g2 )2 ]

    (4π )2 dytdt

    = yt92yt2 − 1720g12 − 94g22 − 8g3

    2⎛⎝⎜

    ⎞⎠⎟

    Gauge Yt

    GUC gauge

  • mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM (4π )2 dλ

    dt= 24λ 2 +12λyt

    2 − 6yt4 − 3λ(g '2+ 3g2 )+ 3

    8[2g4 + (g '2+ g2 )2 ]

    (4π )2 dytdt

    = yt92yt2 − 1720g12 − 94g22 − 8g3

    2⎛⎝⎜

    ⎞⎠⎟

    Gauge Yt

    λ

    GUC gauge

  • ex2 GUT @ Mp model

    gauge-> λ

    NH, Ishida, Takahashi, YamaguchiarXiv:1412.8230

    GUT Mp

    GUT Mp

    vector-like mattes SM GUT Mp

    vacuum becomes stable

  • ex2 GUT @ Mp model

    gauge-> Yukawa-> λ

    NH, Ishida, Takahashi, YamaguchiarXiv:1412.8230

    GUT Mp

    GUT Mp

    vector-like mattes SM GUT Mp

    vacuum becomes stable

  • LHC results show…

    126 GeV Higgs

    BSM?

    SM Mp (no intermediate scale?)

    TeV scale seesaw (inverse seesaw? generation structure? same sign di-lepton event? 0νββ? other observations?)

    leptogenesis/bariyogenesis? (resonant leptogenesis? quantum effects? New

    mechanism )

  • λ(µ Mp) 0

    µ 1010GeV BSM

    1010 GeV Higgs

  • Higgs= gauge (Gauge-Higgs Unification) AM = Aµ + A5 (scalar @ 4D)

    massless

    mass

    loop factor (1/16π2 tree ← finite

    λ

    1/R~1010 GeV!

    G.Degrassi, S.Di Vita, J.Elias-Miro, J.R.Espinosa, G.F.Giudice, G.Isidori and A.Strumia, JHEP1208 (2012) 098

    N. Okada, Q. Shafi, et al

    SM with top mass (173 GeV)

    For this meta-stability, GHU says

  • 65

    TeV

  • H HQuark charged Lepton y (g)

    H

    y y

    origin of tiny Dirac mass

    Standard Model H =(0, 250GeV)mass hierarchy = Yukawa hierarchy (yt 1, y 10-12)

  • another possibility: How about tiny H only for ν?

    H HQuark charged Lepton y (g)

    H

    y y

    origin of tiny Dirac mass

  • another possibility: How about tiny H only for ν?

    H HQuark charged Lepton y (g)

    H

    y y

    Hνν

    yν yν

    origin of tiny Dirac massneutrinophilic Higgs

  • neutrinophilic Higgsorigin of tiny Dirac mass

    another possibility: How about tiny H only for ν?

    H HQuark charged Lepton y (g)

    H

    y y

    Hνν

    yν yν

  • LYukawa = yuQHU + ydQHD + yeLHE + yνLHννR

    origin of tiny Dirac mass

    L = (νL ,eL )

    neutrinophilic Higgs

  • LYukawa = yuQHU + ydQHD + yeLHE + yνLHννR

    origin of tiny Dirac mass

    L = (νL ,eL )fields Z2-charge

    SM fields (SM Higgs: H)

    R

    Higgs doublet: H

    neutrinophilic Higgs

  • LYukawa = yuQHU + ydQHD + yeLHE + yνLHννR

    origin of tiny Dirac mass

    L = (νL ,eL )fields Z2-charge

    SM fields (SM Higgs: H)

    R

    Higgs doublet: H

    〈Hν 〉〈H 〉

    H 0

    A0

    H ±

    h0

    H

    • •• •

    ⎛⎝⎜

    ⎞⎠⎟

    • •• •

    ⎛⎝⎜

    ⎞⎠⎟

    neutrinophilic Higgs

  • LYukawa = yuQHU + ydQHD + yeLHE + yνLHννR

    origin of tiny Dirac mass

    L = (νL ,eL )fields Z2-charge

    SM fields (SM Higgs: H)

    R

    Higgs doublet: H

    〈Hν 〉〈H 〉

    H 0

    A0

    H ±

    h0

    H

    • •• •

    ⎛⎝⎜

    ⎞⎠⎟

    • •• •

    ⎛⎝⎜

    ⎞⎠⎟

    neutrinophilic Higgs

  • LYukawa = yuQHU + ydQHD + yeLHE + yνLHννR

    origin of tiny Dirac mass

    L = (νL ,eL )fields Z2-charge

    SM fields (SM Higgs: H)

    R

    Higgs doublet: H

    〈Hν 〉〈H 〉

    H 0

    A0

    H ±

    h0

    H

    • •• •

    ⎛⎝⎜

    ⎞⎠⎟

    • •• •

    ⎛⎝⎜

    ⎞⎠⎟

    neutrinophilic Higgs

  • LYukawa = yuQHU + ydQHD + yeLHE + yνLHννR

    origin of tiny Dirac mass

    L = (νL ,eL )fields Z2-charge

    SM fields (SM Higgs: H)

    R

    Higgs doublet: H

    〈Hν 〉〈H 〉

    H 0

    A0

    H ±

    h0

    H

    • •• •

    ⎛⎝⎜

    ⎞⎠⎟

    • •• •

    ⎛⎝⎜

    ⎞⎠⎟

    neutrinophilic Higgs

  • yq ×〈Φν 〉〈Φ〉

    Γ(H ± → l±νL ) GFmH ±mν

    2 〈Φ〉2

    〈Φν 〉2

    Γ(H ± → qq) m

    H ±yq2 〈Φν 〉

    2

    〈Φ〉2

  • ε ≡Γ(νR1 →Φ + l j ) − Γ(νR1 →Φ

    * + l j )Γ(νR1 →Φ + l j ) + Γ(νR1 →Φ

    * + l j )

    ! −38π

    1(yνyν

    † )11Im

    i=2,3∑ (yνyν† )1i2 M1Mi

    , (Mi ≫ M1)

    !38π

    M1mν 3〈Φ〉2

    sinδ ! 10−6 M11010GeV

    ⎛⎝⎜

    ⎞⎠⎟

    mν 30.05eV

    ⎛⎝⎜

    ⎞⎠⎟sinδ

    nbs! Cκ ε

    g*

  • ε − 38π

    1(yνyν

    † )11Im

    i=2,3∑ (yνyν† )1i2 M1Mi

    −38π

    M1mν 3〈Φν 〉

    2 sinδ

    −316π

    10−6 0.1GeV〈Φν 〉

    ⎛⎝⎜

    ⎞⎠⎟

    2M1

    100GeV⎛⎝⎜

    ⎞⎠⎟

    mν0.05eV

    ⎛⎝⎜

    ⎞⎠⎟sinδ

    nbs Cκ ε

    g*

  • ε − 38π

    1(yνyν

    † )11Im

    i=2,3∑ (yνyν† )1i2 M1Mi

    −38π

    M1mν 3〈Φν 〉

    2 sinδ

    −316π

    10−6 0.1GeV〈Φν 〉

    ⎛⎝⎜

    ⎞⎠⎟

    2M1

    100GeV⎛⎝⎜

    ⎞⎠⎟

    mν0.05eV

    ⎛⎝⎜

    ⎞⎠⎟sinδ

    nbs Cκ ε

    g*

  • ε − 38π

    1(yνyν

    † )11Im

    i=2,3∑ (yνyν† )1i2 M1Mi

    −38π

    M1mν 3〈Φν 〉

    2 sinδ

    −316π

    10−6 0.1GeV〈Φν 〉

    ⎛⎝⎜

    ⎞⎠⎟

    2M1

    100GeV⎛⎝⎜

    ⎞⎠⎟

    mν0.05eV

    ⎛⎝⎜

    ⎞⎠⎟sinδ

    nbs Cκ ε

    g*

  • ε ≡ ε(νR → lH ) + ε(νR → lH) + ε(νR→ lH) + ε(νR→ lH )

    −316π

    10−5 0.1GeV〈Φν 〉

    ⎛⎝⎜

    ⎞⎠⎟

    2M1

    103GeV⎛⎝⎜

    ⎞⎠⎟

    mν0.05eV

    ⎛⎝⎜

    ⎞⎠⎟sinδ

    nbs Cκ ε

    g*

  • flavor symmetry: !!tri-bi-maximal mixing [sin2 12=1/3, sin2 23=1/2] + deviation, !

    seems good!-> find flavor symmetry (S3, S4, A4, ) !-> phenomenology ! ex) mass sum rule !

    S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys.16 (2014) 045018

  • summary of research plan!

    TeV scale seesaw (inverse seesaw? generation structure? same sign di-lepton event? 0νββ? other observations?)

    leptogenesis/bariyogenesis? (resonant leptogenesis? quantum effects? New mechanism )

  • For a goal !(discover BSM), strong cooperation between ! experiment & theory is needed. !

    experiment

    theory

  • λ(µ Mp) 0

    EW Mp

    1010 GeV

  • mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM (4π )2 dλ

    dt= 24λ 2 +12λyt

    2 − 6yt4 − 3λ(g '2+ 3g2 )+ 3

    8[2g4 + (g '2+ g2 )2 ]

    stable stable

    top scalar vector gravity gauge running

    !

  • SM center

    Mp

    Higgs mass & top mass dependence for λ β

    Higgs mass & top mass are uniquely determined by MPCP @ Mp

    (128.6,!172.6)

    (126,!171.2)1017 GeV < Mp