28
USDA FOREST SERVICE National Biomass Estimator Library Forest Management Service Center 2150 Centre Ave, Bldg A Fort Collins, CO 80526 Wang, YingFang 5/9/2019 This document contains information for the National Biomass Estimator Library, user guide and installation instruction.

National Biomass Estimator Library · Web view2019/05/09  · USDA Forest Service National Biomass Estimator Library Forest Management Service Center 2150 Centre Ave, Bldg A Fort

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

National Biomass Estimator Library

USDA Forest ServiceNational Biomass Estimator Library Forest Management Service Center2150 Centre Ave, Bldg AFort Collins, CO 80526Wang, YingFang5/9/2019

This document contains information for the National Biomass Estimator Library, user guide and installation instruction.

Contents1.Introduction22.Biomass Components and Their DLL Functions23.NBEL Species Regional/Forest Default Setup44.Install and User Guide for NBEL TesterSetup65.Installation and User Guide for MS Excel Add-in Functions96.Use NBEL DLL with Microsoft Visual Studio C# Project107.References10

1. Introduction

The national Biomass Estimator Library (NBEL) was developed by the Forest Management Service Center (FMSC). The NBEL synthesizes published biomass equations in US and also unpublished equations developed by FMSC. This collection of biomass equations and their associated metadata are stored in a SQLite database. The NBEL also integrates with the National Volume Estimator Library (NVEL) and tree species specific gravity and other properties to convert cubic volume to biomass. The NBEL is written in C# and has a graphic user interface (GUI) to allow user to query/view equations, calculate dry and green biomass on selected equation, view regional/forest species default equation for each component, and also setup local defaults. The NBEL is packaged as a maintainable Dynamic Link Library (DLL). The DLL has a function for each biomass component. All DLL functions will only require input parameters of Region, Forest, District, Species, DBH and Height to calculate biomass. The DLL functions will automatically use species default equation for the region/forest. If there is no default setup, they will convert cubic volume to biomass with component ratio method.

The units in NBEL are in English. To use the equation from NBEL, DBH needs in inches and height in feet. The biomass calculated is in lb.

2. Biomass Components and Their DLL Functions

From the collection of biomass studies, the biomass components and their DLL function are summarized in Table 1.

Table 1. List of biomass components and their DLL functions from NBEL

ID

COMP ABBR

Description

Excel_function_name

1

CPT

Complete tree (above + belowground)

bmCompleteTree

2

AGT

Whole tree (aboveground)

bmAboveGroundTotal

3

AST

Whole tree (above stump)

bmAboveStumpTotal

4

STW

Stem (wood only)

bmStemWood

5

STB

Stem (bark only)

bmStemBark

6

STT

Stem (wood + bark)

bmStemTotal

7

TIP

Stem top

bmStemTop

8

BRL

Branches live

bmBranchesLive

9

B01

Branches live < 2.5 cm

bmBranchesLive_0_1

10

B13

Branches live 2.5-7.6 cm

bmBranchesLive_1_3

11

B3P

Branches live > 7.6 cm

bmBranchesLive_3_plus

12

BRD

Branches dead

bmBranchesDead

13

BRT

Branches total (live + dead)

bmBranchesTotal

14

AGB

Stem + branches (bark only)

bmStemBranchesBarkOnly

15

AGW

Stem + branches (wood only)

bmStemBranchesWoodOnly

16

SBL

Stem + live branches

bmStemBranchesLive

17

AWB

Stem + total branches (live + dead; no twigs or foliage)

bmStemBranchesTotal

18

FOT

Foliage total

bmFoliageTotal

19

FON

Foliage new

bmFoliageNew

20

FOO

Foliage old

bmFoliageOld

21

TGT

Twigs total

bmTwigsTotal

22

TGO

Twigs old

bmTwigsOld

23

FTG

Foliage + twigs

bmFoliageTwigs

24

CRW

Crown (branches + foliage + twigs)

bmCrown

25

CRT

Roots, coarse > 3 mm dia

bmRootsCoarse

26

SCR

Coarse stump roots

bmCoarseStumpRoots

27

CLR

Coarse lateral roots

bmCoarseLateralRoots

28

FRT

Fine roots

bmFineRoots

29

RTT

Roots total

bmRootsTotal

30

SMW

Stump wood

bmStumpWood

31

SMB

Stump bark

bmStumpBark

32

SMT

Stump total

bmStumpTotal

33

SMR

Stump + roots

bmStump_Roots

34

CON

Cones

bmCones

35

LCR

Live crown (branches + foliage + twigs)

bmLiveCrown

36

DCR

Dead crown (branches + foliage + twigs)

bmDeadCrown

37

BRS

Small branches

bmSmallBranches

38

MST

Merch stem (wood + bark) from stump to top dib

bmMerchStemTotal

39

MSW

Merch stem wood from stump to top dib

bmMerchStemWood

40

MSB

Merch stem bark from stump to top dib

bmMerchStemBark

41

TPW

Top (wood only) (from merch top to tip)

bmStemTopWood

42

TPB

Top (bark only) (from merch top to tip)

bmStemTopBark

43

SBT

Residue (stump + top limb)

bmResidue

44

BTP

Top limb (branches + tip)

bmTopLimb

45

WB1

Above stump wood and bark

bmAboveStumpWoodBark

46

WB2

Total wood and bark to min branches

bmTotalWoodBard_to_minBranch

47

B1P

Branches live > 1 inch

bmBranchesLive_1_plus

48

B0Q

Branches live <= 1/4 inches

bmBranchesLive_0_quarter

49

BQ1

Branches live > 1/4 inches and < 1 inch

bmBranchesLive_quarter_1

3. NBEL Species Regional/Forest Default Setup

The species default is important for biomass calculation. The regional/forest default for each species will need to be approved by regional measurement specialist and maintained by FMSC. Those defaults will be read only for user on the NBEL GUI. However user can set local default to overwrite the regional/forest defaults. The species default setup includes green weight factor, percent moisture content, bark to wood volume percentage, and equations used for each biomass component.

Table 2. Current NBEL defaults provided by regional measurement specialists

Region

Forest(s)

Species Code

Weight Factor (P)

Weight Factor (S)

Above Ground Total

Live Branches

Dead Branches

Foliage

Stem Tip

02

093

43

108

50

122

71

746

52

202

61

015

68

13

015

73.0

096

60.2

122

70.1

202

62.4

03

122

68.9

05

122

68

116

68

117

69

119

69

108

55

015

69

020

69

081

58

06

East Cascades

122

69

202

61

West Cascades (DBH<= 15)

202

51

West Cascades (DBH>15)

202

61

West Cascades

263

64

351

57

02

015

68

081

58

122

62

04

015

68.9

070

55.4

108

63.4

122

68.8

202

60.7

09

202

58

263

64

10

015

60

041

61

081

61

098

54

122

65

122

60

351

57

12

202

60.9

4. Install and User Guide for NBEL TesterSetup

(1) Download the install package NBEL_TesterSetup.msi from this web site: http://www.fs.fed.us/fmsc/measure/biomass/index.shtml

(2) Save the NBEL_TesterSetup.msi to a folder in your computer.

(3) Right-click on NBEL_TesterSetup.msi and then select Run Elevated to install

The NBEL TesterSetup is a graphic user interface to NBEL to view/test biomass equations, view regional/forest species defaults, and list of NBEL DLL functions. It has three tabs. The first tab is for view/test biomass equations. The second tab is for view regional/forest defaults and setup local defaults. It also allows testing calculation with the defaults. The third tab is list of NBEL function for each component.

View/Test Biomass Equation tab:

To view equation, enter Region, Species, Component, or reference Author from their dropdown list, then click on Get Equations button. Equation information will be displayed in top panel. To test the calculation from the selected equations, enter Region, Species, DBH, HT, Crown Length in the lower panel and then click on Calculate Biomass button.

Species Default Equations tab:

To view regional/forest default for a species, enter Region, Forest and Species, then click on View Species Defaults button to display its defaults. To enter or change local default, enter a valid value for the item you want to edit, then click on Save Local Defaults button to save your change. Note: if you reinstall NBEL TesterSetup on your PC, your local defaults will be lost.

To calculate biomass with default equation, enter DBH and height, then click on Claculate Biomass with Default Equation button. The dry and green biomass will be calculated. Reference author will also be displayed.

Excel Add-in Functions tab:

This tab lists NBEL function name for each component.

5. Installation and User Guide for MS Excel Add-in Functions

Download the Excel Biomass Functions install package from this web site: http://www.fs.fed.us/fmsc/measure/biomass/index.shtml

Installation of the NBEL Excel Add-In requires prior installation of the Microsoft .Net Framework version 3.5 SP1. The setup.exe will check the users’ computer to see if this prerequisite is met. If it is not present then setup will prompt the user to confirm installation of the .Net framework. If, however, the user already has the framework they can simply download and run nbelXllDeploy.msi. Right click on the install file and chose Run/Install Elevated.

Installing the Excel Add-In

If the .Net framework needs to be installed then follow the onscreen instructions for installation. This will take several minutes.

After installation of the .Net Framework or if .Net is already installed double-click the nbelXllDeply.msi file.

Click Next.

Click Next to accept the default installation location of C:\Windows\System32 and install for “Just me”

Click Next to start the installation

After successful installation click Close

Now you must add the Add-In to Excel. Open Excel 2007 and click the QuickAccess Toolbar (the MS icon in the upper left corner).

Click the Excel Options button in the lower right corner.

Click the Add-Ins tab. You should see Nbelroutines in the list of Add-Ins.

Click the Go… button to Manage Excel Add-ins.

Make sure Nbelroutines is selected and click OK.

How to use the NBEL routines

The Excel functions available in Excel are listed in the Table 1 under the column DLL_FUNCTIONS. All functions start with bm.

To actually use a function click the Formulas tab and the click Insert Function. In the ‘Or select category’ drop-down select User Defined. Scroll-down until you see the above equations.

6. Use NBEL DLL with Microsoft Visual Studio C# Project

To use the DLL with Microsoft Visual Studio C# project, save the NBEL.dll in your project folder and add reference to NBEL.dll. Then you can reference the biomass function with NBEL.bmFuncs.

7. References

Authors

Abbr

References

Affleck 2019

AFF

Affleck, D.L.R. 2019. Aboveground biomass equations for the predominant conifer species of the Inland Northwest USA. Forest Ecology and Management 432 (2019) 179–188

Alban and Laidly 1982

ALB

Alban, D. H. and P. R. Laidly 1982. generlized biomass equations for jack pine and red pine in Lake States. Can. J. For. Res. 12: 913-921

Alemdag 1982

ALE

Alemdag, I. S. 1982. Aboveground dry matter of jack pine, black spruce, white spruce and balsam fir trees at two localities in Ontario. Forestry Chronile. 58:26-30

Amateis et al 1992

AMA

Amateis, R. L.; Burkhart, H. E.; Dunham, P. H. 1992. Estimating dry weight of dormant-season foliage of loblolly pine. Biomass and Bioenergy. 3(5): 319-322.

Baldwin 1989

BAL

Baldwin, V. J. 1989. Is sapwood area a better predictor of loblolly pine crown biomass than bole diameter? Biomass. 20: 177-185.

Baldwin et al 1997

BAD

Baldwin, V. C., K. D. Peterson, H. E. Burkhatt, R. L. Amateis and P. M. Dougherty 1997. Equations for estimating loblolly pine branch and foliage weight and surface area distribution. Can. J. For Res. 27:918-927.

Barclay et al. 1986

BAR

Barclay, H.; Pang, P.; Pollard, D. 1986. Aboveground biomass distribution within trees and stands in thinned and fertilized Douglas-fir. Canadian Journal of Forest Research. 16: 438-442.

Barney et al. 1978

BAN

Barney, R. J.; Van Cleve, K; Schlentner, R. 1978. Biomass distribution and crown characteristics in two Alaskan Picea mariana ecosystems. Canadian Journal of Forest Research. 8: 36-41.

Baskerville 1965

BAS

Baskerville, G. 1965. Dry-matter production in immature balsam fir stands. Forest Science Monographs 9.

Baskerville 1966

BAK

Baskerville, G. 1966. Dry matter production in immature balsam fir stands: roots, lesser vegetation and total stand. Forest Science. 12: 49-53.

Bickelhaupt et al. 1973

BIC

Bickelhaupt, D.; Leaf, A.; Richards, N. 1973. Effect of branching habit on above-ground dry weight estimates of Acer saccharum stands. In: Young, H., ed. IUFRO biomass studies; Nancy, France and Vancouver, BC. Orono, ME: University of Maine, College of Life Sciences and Agriculture: 219-230.

Binkley 1983

BIN

Binkley, D. 1983. Ecosystem production in Douglas-fir plantations: interaction of red alder and site fertility. Forest Ecology and Management. 5: 215-227.

Binkley et al. 1984

BIK

Binkley, D.; Lousier, J.; Cromack, K.J. 1984. Ecosystem effects of Sitka alder in a Douglas-fir plantation. Forest Science 30: 26-35.

Bockheim and Lee 1984

BOC

Bockheim, J.; Lee, S. 1984. Biomass and net primary production equations for thinned red pine plantations in central Wisconsin. For. Res. Notes 256. Madison, WI: University of Wisconsin, College of Agriculture.

Boerner and Kost 1986

BOE

Boerner, R.; Kost, J. 1986. Biomass equations for flowering dogwood, Cornus florida L. Castanea. 51: 153-155.

Bormann 1990

BOR

Bormann, B. 1990. Diameter-based biomass regression models ignore large sapwood-related variation in Sitka spruce. Canadian Journal of Forest Research. 20: 1098-1104.

Brenneman et al. 1978

BRE

Brenneman, D. F.; Gardner, W.; Schoenhofen, L.; Marsh, P. 1978. Biomass of species and stands of West Virginia hardwoods. In: Pope, P. ed. Proceedings, central hardwood forest conference II; 1978 November 14-16; West LaFayette, IN. Purdue University: 159-178.

Bridge 1979

BRI

Bridge, J. 1979. Fuelwood production of mixed hardwoods on mesic sites in Rhode Island. Kingston, RI: University of Rhode Island. M.S. thesis.

Briggs et al. 1989

BRG

Briggs, R.; Porter, J.; White, E. 1989. Component biomass equations for Acer rubrum and Fagus grandifolia. Fac. For. Tech. Publ. 4. Syracuse, NY: State University of New York, College of Environmental Science and Forestry.

Brown 1978

BRN

Brown, J. 1978. Weight and density of crowns of Rocky Mountain conifers. Res. Pap. INT-197. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.

Busing et al. 1993

BUS

Busing, R.; Clebsch, E.; White, P. 1993. Biomass and production of southern Appalachian cove forests reexamined. Canadian Journal of Forest Research. 23: 760-765.

Campbell et al. 1985

CAM

Campbell, J. S.; Lieffers, V. J.; Pielou, E. C. 1985. Regression equations for estimating single tree biomass of trembling aspen: assessing their applicability to more than one population. Forest Ecology and Management. 11: 283-295.

Carpenter 1983

CAP

Carpenter, E. 1983. Above-ground weights for tamarack in northeastern Minnesota. Res. Pap. NC-245. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station.

Carter and White 1971

CAT

Carter, M.; White, E. 1971. Dry weight and nutrient accumulation in young stands of cottonwood (Populus deltoides Bartr.). Circ. 190. Auburn, AL: Auburn University Agricultural Experiment Station.

Chapman and Gower 1991

CHA

Chapman, J.; Gower, S. 1991. Aboveground production and canopy dynamics in sugar maple and red oak trees in southwestern Wisconsin. Canadian Journal of Forest Research. 21: 1533-1543.

Chojnacky 1984

CHJ

Chojnacky, D. 1984. Volume and biomass for curlleaf cercocarpus in Nevada. Res. Pap. INT-332. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.

Chojnacky and Moisen 1993

CHM

Chojnacky, D.; Moisen, G. 1993. Converting wood volume to biomass for pinyon and juniper. Res. Note INT-411. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station.

Chojnacky et al 2014

CHO

Chojnacky, D. C., Heath, L. S. and Jenkins, J. C. Updated generalized biomass equations for North American tree species. Forestry 2014, 87, 129-151

Clark and Saucier 1990

CLC

Clark, A. III and Saucier, J. 1990. Tables for estimating total-tree weights, stem weights, and volumes of planted and natural southern pines in the southeast. Georgia Forest Research Paper 79.

Clark and Schroeder 1977

CLR

Clark, A. I. and Schroeder, J. G. 1977. Biomass of yellow-popular in natural stands in western north Carolina. USDA For. Serv. Research paper SE-165.

Clark and Schroeder 1986

CLS

Clark, A. I.; Schroeder, J. 1986. Weight, volume, and physical properties of major hardwood species in the southern Appalachian mountains. Res. Pap. SE-153. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.

Clark et al 1980a

CLL

Clark, A.I.; Phillips, D. R.; Hitchcock, H. C. 1980 Predicted weights and volumes of scarlet oak trees on the Tennessee Cumberland plateau. USDA For. Serv. Res. Pap. SE-214.

Clark et al 1980b

CLN

Clark, A. I.; Phillips, D. R.; Schroeder, J. G. 1980 Predicted weights and volumes of northern red oad trees in western North Carolina. USDA For. Serv. Res. Pap. SE-209.

Clark et al. 1985

CLK

Clark, A. I.; Phillips, D.; Frederick, D. 1985. Weight, volume, and physical properties of major hardwood species in the Gulf and Atlantic Coastal Plains. Res. Pap. SE-250. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.

Clark et al. 1986a

CLA

Clark, A. I.; Phillips, D.; Frederick, D. 1986a. Weight, volume, and physical properties of major hardwood species in the Piedmont. Res. Pap. SE-255. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.

Clark et al. 1986b

CLB

Clark, A. I.; Phillips, D.; Frederick, D. 1986b. Weight, volume, and physical properties of major hardwood species in the Upland South. Res. Pap. SE-257. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.

Clary and Tiedemann 1987

CLT

Clary, W.; Tiedemann, A. 1987. Fuelwood potential in large-tree Quercus gambelii stands. Western Journal of Applied Forestry. 2: 87-90.

Clebsch 1971

CLE

Clebsch, E. 1971. Dry weight of trees and saplings from the Great Smoky Mountains National Park and eastern Tennessee. In: Sollins, P.; Anderson, R., eds. Dry weight and other data for trees and woody shrubs of southeastern United States. Ecol. Sci. Div. Publ. 407. Oak Ridge, TN: Oak Ridge National Laboratory: 15-21.

Cochran et al. 1984

COC

Cochran, P.; Jennings, J.; Youngberg, C. 1984. Biomass estimators for thinned second-growth Ponderosa pine trees. Res. Note PNW-415. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station.

Crow 1971

CRO

Crow, T. 1971. Estimation of biomass in an evenaged stand — regression and “mean tree” techniques. Misc. Rep. 132. Orono, ME: Maine Agricultural Experiment Station: 35-48.

Crow 1976

CRW

Crow, T. 1976. Biomass and production regressions for trees and woody shrubs common to the Enterprise Forest. In: Zavitkovski, J. ed. The Enterprise radiation forest: Radioecological studies. Rep. TID-26113-P2. Washington, DC: U.S. Energy Research and Development Administration: 63-67.

Crow 1983

COW

Crow, T. 1983. Comparing biomass regressions by site and stand age for red maple. Canadian Journal of Forest Research. 13: 283-288.

Crow and Erdmann 1983

CRE

Crow, T. R. and Erdmann, G. G. 1983. Weight and volume equations and tables for red maple in the Lake States. Res. Pap. NC-242. USDA Forest Service, Northern Central Forest Experimental Station. 14p

Czapowskyj et al 1985

CZA

Czapowskyj, M. M.; Robison, D. J.; Briggs, R. D.; White, E. H. 1985. Component Biomass Equations for black spruce in Maine. USDA For. Serv. Res. Pap. NE-564.

Dudley and Fownes 1992

DUD

Dudley, N.; Fownes, J. 1992. Preliminary biomass equations for eight species of fast-growing tropical trees. Journal of Tropical Forest Science. 5:68-73.

Dunlap and Shipman 1967

DUN

Dunlap, W.; Shipman, R. 1967. Density and weight production of standing white oak, red maple, and red pine. Research Briefs. University Park, PA: Pennsylvania State University, School of Forest Resources.

Elliot et al 2002

ELI

Elliot, K. J.; Boring, L. R. and Swaank, W. T. 2002. aboveground biomass and nutrient accumulation 20 years after crear-cutting a southern Appalachian watershed. Can. J. For. Res. 32: 667-683

Espinosa-Bancalari and Perry 1987

ESP

Espinosa-Bancalari, M.; Perry, D. 1987. Distribution and increment of biomass in adjacent young Douglas-fir stands with different early growth rates. Canadian Journal of Forest Research. 17: 722-730.

FCS_BIOMASS_FIA_NC

FNC

FIA biomass equation source code for NC.

FCS_BIOMASS_FIA_NE

FNE

FIA biomass equation source code for NE.

FCS_BIOMASS_FIA_NW

FNW

FIA biomass equation source code for NW.

FCS_BIOMASS_FIA_RM

FRM

FIA biomass equation source code for RM.

FCS_BIOMASS_FIA_SE

FSE

FIA biomass equation source code for SE.

Fassnacht 1996

FAS

Fassnacht, K. 1996. Characterization of the structure and function of upland forest ecosystems in north central Wisconsin. Madison, WI: University of Wisconsin. Ph.D. dissertation.

Felker et al. 1982

FEL

Felker, P.; Clark, P.; Osborn, J.; Cannell, G. 1982. Biomass estimation in a young stand of mesquite (Prosopis spp.), ironwood (Olneya tesota), palo verde (Cercidium floridium and Parkinsonia aculeata), and leucaena (Leucaena leucocephala). Journal of Range Management. 35: 87-89.

Feller 1992

FER

Feller, M. 1992. Generalized versus site-specific biomass regression equations for Pseudotsuga menziesii var. menziesii and Thuja plicata in coastal British Columbia. Bioresource Technology. 39: 9-16.

Freedman 1984

FRE

Freedman, B. 1984. The relationship between the aboveground dry weight and diameter for a wide size range of erect land plants. Canadian Journal of Botany. 62: 2370-2374.

Freedman et al. 1982

FRD

Freedman, B.; Duinker, P.; Barclay, H.; Morash, R.; Prager, U. 1982. Forest biomass and nutrient studies in central Nova Scotia. Inf. Rep. M-X-134. Fredericton, Nova Scotia: Canadian Forestry Service, Maritimes Forest Research Centre.

Gary 1976

GAR

Gary, H. L. 1976. Crown structure and distribution of biomass in a lodgepole pine stand. Res. Pap. RM-165. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.

Gholz 1980

GHO

Gholz, H. 1980. Structure and productivity of Juniperus occidentalis in central Oregon. American Midland Naturalist. 103: 251-261.

Gholz et al. 1979

GHZ

Gholz, H. L.; Grier, C. C.; Campbell, A. G.; Brown, A. T. 1979. Equations for estimating biomass and leaf area of plants in the Pacific Northwest. Res. Pap. 41. Corvallis, OR: Oregon State University, School of Forestry.

Gholz et al. 1991

GHL

Gholz, H.; Vogel, S.; Cropper, W. J.; McKelvey, K.; Ewel, C. 1991. Dynamics of canopy structure and light interception in Pinus elliotii stands, north Florida. Ecological Monographs. 6: 33-51.

Goldsmith and Hocker 1978

GOL

Goldsmith, L.; Hocker, H. 1978. Preliminary small-tree aboveground biomass tables for five northern hardwoods Res. Rep. 68. Durham, NH: University of New Hampshire Agricultural Experiment Station.

Gower et al. 1987

GOW

Gower, S.; Grier, C.; Vogt, D.; Vogt, K. 1987. Allometric relations of deciduous (Larix occidentalis) and evergreen conifers (Pinus contorta and Pseudotsuga menziesii) of the Cascade Mountains in central Washington. Canadian Journal of Forest Research. 17: 630-634.

Gower et al. 1992

GWR

Gower, S. T.; Vogt, K. A.; Grier, C. C. 1992. Carbon dynamics of Rocky Mountain Douglasfir: influence of water and nutrient availability. Ecological Monographs. 62: 43-65.

Gower et al. 1993a

GOE

Gower, S.; Haynes, B.; Fassnacht, K.; Running, S.; Hunt, E. J. 1993a. Influence of fertilization on the allometric relations for two pines in contrasting environments. Canadian Journal of Forest Research. 23: 1704-1711.

Gower et al. 1993b

GOR

Gower, S. T.; Reich, P. B.; Son, Y. 1993b. Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiology. 12: 327-345.

Green and Grigal 1978

GRE

Green, D.; Grigal, D. 1978. Generalized biomass estimation equations for jack pine. Res. Note 268. St. Paul, MN: University of Minnesota, College of Forestry.

Grier and Logan 1977

GRL

Grier, C. C.; Logan, R. S. 1977. Old-growth Pseudotsuga menziesii communities of a western Oregon watershed: biomass distribution and production budgets. Ecological Monographs. 47: 373-400.

Grier et al. 1984

GRR

Grier, C.; Lee, K.; Archibald, R. 1984. Effect of urea fertilization on allometric relations in young Douglas-fir trees. Canadian Journal of Forest Research. 14: 900-904.

Grier et al. 1992

GRI

Grier, C.; Elliott, K.; McCullough, D. 1992. Biomass distribution and productivity of Pinus edulis-Juniperus monosperma woodlands of north-central Arizona. Forest Ecology and Management. 50: 331-350.

Grigal and Kernik 1978

GRK

Grigal, D.; Kernik, L. 1978. Biomass estimation equations for black spruce (Picea mariana (Mill. (B.S.P.))) trees. Res. Note 290. St. Paul, MN: University of Minnesota, College of Forestry.

Harding and Grigal 1985

HAR

Harding, R. B.; Grigal, D. F. 1985. Individual tree biomass estimation equations for plantationgrown white spruce in northern Minnesota. Canadian Journal of Forest Research. 15: 738-739.

Harmon (year?)

HAN

Harmon, M. (year?) Forest Science Dept., Ore State Univ. fit the VSB equation. Appears to be a collection of equations with reference being VB source code.

Harmon 1994

HAM

Harmon, M. 1994. Unpublished equations. Corvallis, OR: Oregon State University, Forest Science Department.

Harrington et al. 1984

HAT

Harrington, T.; Tappeiner, J. I.; Walstad, J. 1984. Predicting leaf area and biomass of 1- to 6-yearold tanoak (Lithocarpus densiflorus) and Pacific madrone (Arbutus menziesii) sprout clumps in southwestern Oregon. Canadian Journal of Forest Research. 14: 209-213.

Harris et al. 1973

HRS

Harris, W.; Goldstein, R.; Henderson, G. 1973. Analysis of forest biomass pools, annual primary production and turnover of biomass for a mixed deciduous forest watershed. In: Young, H., ed. IUFRO biomass studies, Nancy, France and Vancouver, BC. Orono, ME: University of Maine, College of Life Sciences and Agriculture: 41-64.

Heath et al 2009

HEA

Heath, L. S., Hansen, M. H., Smith, J. E., Smith, W. B., and Miles, P. D. 2009. Investigation into calculating Tree Biomass and Carbon in the FIADB Using a Biomass Expansion Factor Approach. In: McWilliams, Wills; Moisen, Gretchen; Czaplewski, Ray comps. 2009. 2008 Forest Inventory and Analysis (FIA) Symposium; October 21-23, 2008: Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO. USDA Forest Service, Rocky Mountain Reasearch Station. 1CD

Hegyi 1972

HEG

Hegyi, F. 1972. Dry matter distribution in jack pine stands in northern Ontario. Forestry Chronicle. 48: 193-197.

Helgerson et al. 1988

HEL

Helgerson, O.; Cromack, K.; Stafford, S.; Miller, R.; Slagle, R. 1988. Equations for estimating aboveground components of young Douglas-fir and red alder in a coastal Oregon plantation. Canadian Journal of Forest Research. 18: 1082-1085.

Hitchcock 1978

HIT

Hitchcock, H. C. 1978. Aboveground tree weight equations for hardwood seedlings and saplings. TPPI: 61(10): 119-120.

Hocker and Early 1983

HOC

Hocker, H. W.; Early, D. J. 1983. Biomass and leaf area equations for northern forest species. Res. Pap. 102. Durham, NH: University of New Hampshire Agricultural Experiment Station.

Honer 1971

HON

Honer, T. 1971. Weight relationships in open- and forest-grown balsam fir trees. In: Young, H., ed. IUFRO biomass studies, Nancy, France and Vancouver, BC. Orono, ME: University of Maine, College of Life Sciences and Agriculture: 65-78.

Ivask et al. 1988

IVA

Ivask, M.; Lohmus, K.; Rasta, E. 1988. Belowground tree productivity of a Norway spruce forest: a preliminary report. In: Plant roots and their environment. Proceedings of an ISRR symposium; 1988 August 21-26; Uppsala, Sweden.

Jenkins et al 2003

JEN

Jenkins, C. J., Chojnacky, D. C., Heath, S. H. and Birdsey, R. A. 2003. National-Scal Biomass Estimatiors for United States Tree Species. For. Sci. 49(1)12-35.

Johnston and Bartos 1977

JOH

Johnston, R.; Bartos, D. 1977. Summary of nutrient and biomass data from two aspen sites in western United States. Res. Pap. INT-227. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station.

Jokela et al. 1981

JOK

Jokela, E.; Shannon, C.; White, E. 1981. Biomass and nutrient equations for mature Betula papyrifera Marsh. Canadian Journal of Forest Research. 11: 298-304.

Jokela et al. 1986

JOE

Jokela, E. J.; Van Gurp, K. P.; Briggs, R. D.; White, E. H. 1986. Biomass estimation equations for Norway spruce in New York. Canadian Journal of Forest Research. 16: 413-415.

Kasile 1984

KAS

Kasile, J. D. 1984. Biomass equations for sortheastern Ohio forest trees. Ohio J. Sci. 84(1): 16-18

Ker 1980a

KEA

Ker, M. 1980a. Tree biomass equations for seven species in southwestern New Brunswick. Inf. Rep. No. M-X-114. Fredericton, NS: Canadian Forestry Service, Maritime Forest Research Center.

Ker 1980b

KEB

Ker, M. 1980b. Tree biomass equations for ten major species in Cumberland County, Nova Scotia. Inf. Rep. M-X-108. Fredericton, NS: Canadian Forestry Service, Maritime Forest Research Center.

Ker 1984

KER

Ker, M. 1984. Biomass equations for seven major maritimes tree species. Inf. Rep. M-X-148. Fredericton, NS: Canadian Forestry Service, Maritime Forest Research Center.

Ker and van Raalte 1981

KEV

Ker, M.; van Raalte, G. 1981. Tree biomass equations for Abies balsamea and Picea glauca in northwestern New Brunswick. Canadian Journal of Forest Research. 11: 13-17.

Kimmins 1973

KIM

Kimmins, J. 1973. Nutrient removal associated with whole-tree logging on two different sites in the Prince George Forest District. Unpublished report submitted to BCFS Productivity Committee. Prince George: British Columbia Forest Service.

Kinerson and Bartholomew 1977

KIN

Kinerson, A.; Bartholomew, I. 1977. Biomass estimation equations and nutrient composition of white pine, white birch, red maple, and red oak in New Hampshire. Res. Rep. 62. Durham, NH: University of New Hampshire Agricultural Experiment Station.

King and Schnell 1972

KIS

King; Schnell, R. 1972. Biomass estimates of black oak tree components. Tech. Note B1. Norris, TN: Tennessee Valley Authority, Division of Forestry, Fisheries, and Wildlife Development.

Klopsch 1994

KLO

Klopsch, M. 1994. Unpublished data. Corvallis, OR: Oregon State University, Forest Science Department.

Koerper 1994

KOE

Koerper, G. 1994. Unpublished data. Corvallis, OR: Oregon State University, Forest Science Department.

Koerper and Richardson 1980

KOR

Koerper, G.; Richardson, C. 1980. Biomass and net annual primary production regressions for Populus grandidentata on three sites in northern lower Michigan. Canadian Journal of Forest Research. 10: 92-101.

Krumlik 1974

KRU

Krumlik, G. J.; Kimmins, J. P. 1973. Studies of biomass distribution and tree form in old virgin forests in the mountains of south coastal British Columbia, Canada. In: Young, H., ed. IUFRO biomass studies, Nancy, France and Vancouver, BC. Orono, ME: University of Maine, College of Life Sciences and Agriculture: 363-374.

Krumlik and Kimmins 1973

KRK

Krumlik, J. G. 1974. Biomass and nutrient distribution in two old growth forest ecosystems in south coastal British Columbia. Vancouver, BC: University of British Columbia. M.S. thesis.

Landis and Mogren 1975

LAN

Landis, T.; Mogren, E. 1975. Tree strata biomass of subalpine spruce-fir stands in southwestern Colorado. Forest Science. 21: 9-12.

Lieffers and Campbell 1984

LIE

Lieffers, V.; Campbell, J. 1984. Biomass and growth of Populus tremuloides in northeastern Alberta: estimates using hierarchy in tree size. Canadian Journal of Forest Research. 14: 610-616.

Loomis et al. 1966

LOO

Loomis, R.; Phares, R.; Crosby, J. 1966. Estimating foliage and branchwood quantities in shortleaf pine. Forest Science. 12: 30-39.

Maclean and Wein 1976

MAC

MacLean, D. A.; Wein, R. W. 1976. Biomass of jack pine and mixed hardwood stands in northeastern New Brunswick. Canadian Journal of Forest Research. 6: 441-447.

Marshall and Wang 1995

MAR

Marshall, P. L.; Wang, Y. 1995. Above ground tree biomass of interior uneven-aged Douglas-fir stands. Work. Pap. WP-1.5-003. Vancouver, BC: University of British Columbia.

Martin et al. 1998

MAT

Martin, J.; Kloeppel, B.; Schaefer, T.; Kimbler, D.; McNulty, S. 1998. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Canadian Journal of Forest Research. 28: 1648-1659.

McCain 1994

MCC

McCain, C. 1994. Unpublished equations. Corvallis, OR: Oregon State University Forest Science Department.

Means et al. 1994

MEA

Means, J.; Hansen, H.; Koerper, G.; Alaback, P.; Klopsch, M. 1994. Software for computing plant biomass — BIOPAK users guide. Gen. Tech. Rep. PNW-GTR-340. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

Miller et al. 1981

MIL

Miller, E.; Meeuwig, R.; Budy, J. 1981. Biomass of singleleaf pinyon and Utah juniper. Res. Pap. INT-273. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.

Monk et al. 1970

MON

Monk, C.; Child, G.; Nicholson, S. 1970. Biomass, litter and leaf surface area estimates of an oak-hickory forest. Oikos. 21: 138-141.

Monteith 1979

MOT

Monteith, D. 1979. Whole tree weight tables for New York. AFRI Res. Rep. 40. Syracuse, NY: State University of New York, College of Environmental Science and Forestry, Applied Forestry Research Institute.

Moore and Verspoor 1973

MOO

Moore, T. R.; Verspoor, E. 1973. Aboveground biomass of black spruce stands in subarctic Quebec. Canadian Journal of Forest Research. 3:596-598.

Morrison 1990

MOR

Morrison, I. 1990. Organic matter and mineral distribution in an old-growth Acer saccharum forest near the northern limit of its range. Canadian Journal of Forest Research. 20: 1332-1342.

Myers et al 1980

MYE

Myers, C.; Polak, D. J.; Raisanen, D.; Schlesinger, R. C.; Storts, L. Weight and volume equations and tables for selected upland hardwoods in Southern Illinois. USDA For. Serv. Gen. Tech. Rep. NC-60.

Naidu et al. 1998

NAI

Naidu, S.; DeLucia, E.; Thomas, R. 1998. Contrasting patterns of biomass allocation in dominant and suppressed loblolly pine. Canadian Journal of Forest Research. 28: 1116-1124.

Nelson and Switzer 1975

NEL

Nelson, L.; Switzer, G. 1975. Estimating weights of loblolly pine trees and their components in natural stands and plantations in central Mississippi. Technical Bulletin 73. Mississippi State, MS: Mississippi Agricultural and Forestry Experiment Station.

Oswald et al 2010

OSW

Oswald, B.P., Botting, R.R., Coble, D.W., and Farrish, K.W. 2010 Abobeground biomass estimation for three common woody species in the post oak savannah of Texas. South. J. For. 34(2) 2010, pp91-94

Ouellet 1983

OUE

Ouellet, D. 1983. Biomass equations for black spruce in Quebec. Inf. Rep. LAU-X-60E. Canadian Forestry Service, Laurentian Forest Research Centre.

Parker and Schneider 1975

PAR

Parker, G.; Schneider, G. 1975. Biomass and productivity of an alder swamp in northern Michigan. Canadian Journal of Forest Research. 5:403-409.

Pastor and Bockheim 1981

PAT

Pastor, J.; Bockheim, J. 1981. Biomass and production of an aspen-mixed hardwood-spodosol ecosystem in northern Wisconsin. Canadian Journal of Forest Research. 11: 132-138.

Pastor et al. 1984

PAS

Pastor, J.; Aber, J. D.; Melillo, J. M. 1984. Biomass prediction using generalized allometric regressions for some northeast tree species. Forest Ecology and Management. 7: 265-274.

Pearson et al. 1984

PEA

Pearson, J.; Fahey, T.; Knight, D. 1984. Biomass and leaf area in contrasting lodgepole pine forests. Canadian Journal of Forest Research. 14: 259-265.

Perala and Alban 1994

PER

Perala, D. A.; Alban, D. H. 1994. Allometric biomass estimators for aspen-dominated ecosystems in the upper Great Lakes. Res. Pap. NC-314. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station.

Peterson et al. 1970

PET

Peterson, E. B.; Chan, Y. H.; Cragg, J. B. 1970. Aboveground standing crop, leaf area, and caloric value in an aspen clone near Calgary, Alberta. Canadian Journal of Botany. 48: 1459-1469.

Phillips 1977

PHL

Phillips, D. R. 1977 Total tree weight and volumes for understory hardwoods. TAPPI: 60(6): 548-550.

Phillips 1981

PHI

Phillips, D. 1981. Predicted total-tree biomass of understory hardwoods. Res. Pap. SE-223. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.

Pillsbury and Kirkely 1984

PIL

Pillsbury, N. H. and Kirkely, M. L. 1984. Equations for Total, Wood and Saw-Log Volume for 13 California Hardwoods. PNW-414

Pollard 1972

POL

Pollard, D. 1972. Above-ground dry matter production in three stands of trembling aspen. Canadian Journal of Forest Research. 2: 27-33.

Ralston 1973

RAL

Ralston, C. 1973. Annual primary productivity in a loblolly pine plantation. In: IUFRO biomass studies, proceedings of the working party of the mensuration of the forest biomass. 1973 August 20-24. IUFRO: Vancouver, BC, Canada: 105-117.

Ralston and Prince 1965

RAP

Ralston, C.; Prince, A. 1965. Accumulation of dry matter and nutrients by pine and hardwood forests in the lower Piedmont of North Carolina. In: Forest-soil relationships in North America. Corvallis, OR: Oregon State University Press: 77-94.

Ramseur and Kelly 1981

RAM

Ramseur, G. S.; Kelly, J. M. 1981. Forest characterization and biomass estimates for two sites on the Cumberland Plateau. Journal of the Tennessee Academy of Science. 56: 99-104.

Reed et al 1995

REE

Reed, D. D.; Mroz, G. D.; Liechty, H. O.; Jones, E. A.; cattelino, P. J.; balster, N. J. and Zhang, Y. 1995 Above- and below-ground biomass of precompetitive red pine in notthern Michigan. Can. J. For. Res. 25: 1064-1069

Reid et al. 1974

REI

Reid, C.; Odegard, J.; Hokenstrom, C.; McConel, W.; Frayer, W. 1974. Effects of clearcutting on nutrient cycling in lodgepole pine forests. Res. Pap. Fort Collins, CO: Colorado State University, College of Forest and Natural Resources.

Reiners 1972

REN

Reiners, W. A. 1972. Structure and energetics of three Minnesota forests. Ecological Monographs. 42: 71-94.

Rencz and Auclair 1980

REA

Rencz, A. N.; Auclair, A. N. 1980. Dimension analysis of various components of black spruce in subarctic lichen woodland. Canadian Journal of Forest Research. 10: 491-497.

Reynolds et al. 1978

REY

Reynolds, P.; Carlson, K.; Fromm, T.; Gigliello, K.; Kaminski, R. 1978. Phytosociology, biomass, productivity and nutrient budget for the tree stratum of a southern New Jersey hardwood swamp. In: Pope, P., ed. Proceedings, central hardwood forest conference II; 1978 November 14-16. West LaFayette, IN: Purdue University: 123-139.

Ribe 1973

RIB

Ribe, J. 1973. Puckerbrush weight tables. Misc. Rep. 152. Orono, ME: University of Maine, Life Sciences and Agriculture Experiment Station.

Rogerson 1964

ROG

Rogerson, T. 1964. Estimating foliage on loblolly pine. Res. Note SO-16. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station.

Rolfe et al. 1978

ROL

Rolfe, G.; Akhtar, M.; Arnold, L. 1978. Nutrient distribution and flux in a mature oak-hickory forest. Forest Science. 41: 122-130.

Ruark and Bockheim 1988

RUA

Ruark, G. A.; Bockheim, J. G. 1988. Biomass, net primary production, and nutrient distribution for an age sequence of Populus tremuloides ecosystems. Canadian Journal of Forest Research. 18: 435-443.

Ruark et al. 1987

RUR

Ruark, G. A.; Martin, G. L.; Bockheim, J. G. 1987. Comparison of constant and variable allometric ratios for estimating Populus tremuloides biomass. Forest Science. 33: 294-300.

Sachs 1984

SAC

Sachs, D. 1984. Management effects on nitrogen nutrition and long-term productivity of western hemlock stands. Corvallis, OR: Oregon State University. M.S. thesis.

Santantonio et al. 1977

SAN

Santantonio, D.; Hermann, R.; Overton, W. S. 1977. Root biomass studies in forest ecosystems. Ped.o.b.iologia. 17: 1-31.

Santee and Monk 1981

SAT

Santee, W. R. and Monk, C. D. 1981. Stem diameter and dry weight relationships in Tsuga canadensis(L.) Car. Bull. Of the Torrey Botanical Club. Vol. 108 (3): 320-323.

Schlaegel 1975

SCL

Schlaegel, B. E. 1975. Yield of four 40-year-old conifers and aspen in adjacent stands. Can. J. For. Res. 5:278-280

Schlaegel 1975

SCA

Schlaegel, B. E. 1975. Estimating aspen volume and weight for individual trees, diameter class, or entire stands. Gen. tech. Rep. NC-20. St Paul, MN: USDA Forest Service, North Central Forest Experimental Station. 16p

Schmitt and Grigal 1981

SCH

Schmitt, M. D. C.; Grigal, D. F. 1981. Generalized biomass estimation equations for Betula papyrifera Marsh. Canadian Journal of Forest Research. 11: 837-840.

Schnell 1976

SCN

Schnell, R. 1976. Biomass estimates of eastern redcedar tree components. Tech. Note B15. Norris, TN: Tennessee Valley Authority, Division of Forestry, Fisheries and Wildlife Development.

Schnell 1978

SCE

Schnell, R. 1978. Biomass estimates of hickory tree components. Tech. Note B30. Norris, TN: Tennessee Valley Authority, Division of Forestry, Fisheries and Wildlife Development.

Schroeder et al. 1997

SCR

Schroeder, P.; Brown, S.; Mo, J.; Birdsey, R.; Cieszewski, C. 1997. Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science. 43: 424-434.

Schubert et al. 1988

SCU

Schubert, T.; Strand, R.; Cole, T.; McDuffie, K. 1988. Equations for predicting biomass of six introduced subtropical tree species, Island of Hawaii. Res. Note PSW-401. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station.

Shaw 1979

SHA

Shaw, D. L. 1979. Biomass equations for... p.763-671. in W.E. Frayer, ed. Forest Resource Inventory Vol.II. Proc. of workshop 1979 July 23-26 sponsored by SAF, IUFRO, Col. State Univ.

Siccama et al. 1994

SIC

Siccama, T. G.; Hamburg, S. P.; Arthur, M. A.; Yanai, R. D.; Bormann, F. H.; Likens, G. E. 1994. Corrections to allometric equations and plant tissue chemistry for Hubbard Brook Experimental Forest. Ecology. 75: 246-248.

Singh 1984

SIN

Singh, T. 1984. Biomass equations for six major tree species of the Northwest Territories. Inf. Rep. NOR-X-257. Edmonton, AB: Canadian Forestry Service, Northern Forest Research Centre.

Singh and Misra 1979

SIM

Singh, K. P.; Misra, R. 1979. Structure and function of natural, modified, and silvicultural ecosystems in Uttar Pradesh. Varanasi: Final Tech Report (1975-1978) Man and the Biosphere (MAB) Research Project.

Smith and Wood 2006

SMI

Smith, M. W. and Qood, B. W. 2006. Pecan tree biomass estimates. HortScience 41(5): 1286-1291.

Snell and Little 1983

SNE

Snell, J.; Little, S. 1983. Predicting crown weight and bole volume of five western hardwoods. Gen. Tech. Rep. PNW-151. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station.

Snell and Max 1985

SNM

Snell, J.; Max, T. 1985. Estimating the weight of crown segments for old-growth Douglas-fir and western hemlock. Res. Pap. PNW-329. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station.

Sollins and Anderson 1971

SOL

Sollins, P.; Anderson, R. 1971. Dry-weight and other data for trees and woody shrubs of the southeastern United States. Ecol. Sci. Publ. 407. Oak Ridge, TN: Oak Ridge National Laboratory.

Sollins et al. 1973

SOI

Sollins, P.; Reichle, D. E.; Olson, J. S. 1973. Organic matter budget and model for a southern Appalachian Liriodendron forest. Publ. EDFBIBP-73-2. Oak Ridge, TN: Oak Ridge National Laboratory.

St. Clair 1993

STC

St. Clair, J. B. 1993. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii). Forest Science. 39: 743-755.

Standish et al. 1985

STA

Standish, J.; Manning, G.; Demaerschalk, J. 1985. Development of biomass equations for British Columbia tree species. Inf. Rep. BC-X-264. Victoria, BC: Canadian Forestry Service, Pacific Forest Research Centre.

Stanek and State 1978

STN

Stanek, W.; State, D. 1978. Equations predicting primary productivity (biomass) of trees, shrubs and lesser vegetation based on current literature. Inf. Rep. BC-X 183. Victoria, BC: Canadian Forestry Service, Pacific Forest Research Centre.

Swank and Schreuder 1974

SWA

Swank, W. T.; Schreuder, H. T. 1974. Comparison of three methods of estimating surface area and biomass for a forest of young eastern white pine. Forest Science. 20: 91-100.

Telfer 1969

TEL

Telfer, E. S. 1969. Weight-diameter relationships for 22 woody plant species. Canadian Journal of Botany. 47: 1851-1855.

Ter-Mikaelian and Korzukhin 1997

TER

Ter-Mikaelian, M.; Korzukhin, M. 1997. Biomass equations for sixty-five North American tree species. Forest Ecology and Management. 97: 1-24.

Thies and Cunningham 1996

THI

Thies, W. G.; Cunningham, P. G. 1996. Estimating large-root biomass from stump and breast-height diameters for Douglas fir in western Oregon. Canadian Journal of Forest Research. 26:237-243.

Tinker et al 2010

TIN

Tinker, D.; Stakes, G. K. and Arccano, R. M. 2010. Allometric equation development, biomass, and aboveground productivity in ponderosa pine forest, black hills, wyoming. West. J. Appl. For. 25(3): 112-119.

Tritton and Hornbeck 1982

TRI

Tritton, L. M.; Hornbeck, J. W. 1982. Biomass equations for major tree species of the northeast. Gen. Tech. Rep. NE-69. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station.

Tuskan and Rensema 1992

TUS

Tuskan, G.; Rensema, T. 1992. Clonal differences in biomass characteristics, coppice ability, and biomass prediction equations among four Populus clones grown in eastern North Dakota. Canadian Journal of Forest Research. 22: 348-354.

Van Lear et al. 1984

VAL

Van Lear, D.; Waide, J.; Teuke, M. 1984. Biomass and nutrient content of a 41-year-old loblolly pine (Pinus taeda L.) plantation on a poor site in South Carolina. Forest Science. 30: 395-404.

Wade 1969

WAD

Wade, D. 1969. Estimating slash quantity from standing loblolly pine. Res. Note SE-125. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.

Wang 2012a

WAA

Wang, Y. 2012. San Juan / Pagosa Spring district biomass / weight factor study. USDA Forest Service Forest Management Service Center, Fort Collins, CO. Study Final Report.

Wang 2012b

WAB

Wang, Y. 2012. Region 3 ponderosa pine Flewelling profile model volume equation validation and biomass study. USDA Forest Service Forest Management Service Center, Fort Collins, CO. Study Final Report.

Wang et al. 1995

WAN

Wang, J.; Zhong, A.; Comeau, P.; Tsze, M.; Kimmins, J. 1995. Aboveground biomass and nutrient accumulation in an age sequence of aspen (Populus tremuloides) stands in the boreal white and black spruce zone, British Columbia. Forest Ecology and Management. 78(1-3): 127-138.

Wang et al. 1996

WAG

Wang, J. R.; Zhong, A. L.; Simard, S. W.; Kimmins, J. P. 1996. Aboveground biomass and nutrient accumulation in an age sequence of paper birch (Betula papyrifera) in the Interior Cedar Hemlock Zone, British Columbia. Forest Ecology and Management. 83: 27-38.

Waring et al. 1978

WAR

Waring, R.; Emmingham, W.; Gholz, H.; Grier, C. 1978. Variation in maximum leaf area of coniferous forests in Oregon and its ecological significance. Forest Science. 24: 131-140.

Wartluft 1977

WAT

Wartluft, J. L. 1977. Weights of small Appalachian hardwood trees and components. Res. Pap. NE-366. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station.

Weetman and Harland 1964

WEE

Weetman, G. F.; Harland, R. 1964. Foliage and wood production in unthinned black spruce in northern Quebec. Forest Science. 10: 80-88.

Westman 1987

WES

Westman, W. 1987. Aboveground biomass, surface area, and production relations of red fir (Abies magnifica) and white fir (A. concolor). Canadian Journal of Forest Research. 17: 311-319.

Whittaker and Niering 1975

WHN

Whittaker, R. H.; Niering, W. A. 1975. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology. 56: 771-790.

Whittaker and Woodwell 1968

WHW

Whittaker, R. H.; Woodwell, G. M. 1968. Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. Journal of Ecology. 56: 1-25.

Whittaker et al. 1974

WHI

Whittaker, R. H.; Bormann, F. H.; Likens, G. E.; Siccama, T. G. 1974. The Hubbard Brook Ecosystem Study: forest biomass and production. Ecological Monographs. 44: 233-254.

Wiant et al. 1977

WIA

Wiant, H. V., Jr.; Sheetz, C.; Colaninno, A.; DeMoss, J.; Castaneda, F. 1977. Tables and procedures for estimating weights of some Appalachian hardwoods. Bull. 659T. Morgantown, WV: West Virginia University Agricultural and Forestry Experiment Station.

Wiant et al. 1979

WIN

Wiant, H. V., Jr.; Casstaneda, F.; Sheets, C. E.; Colaninno, A.; DeMoss, J. C. 1979. Equations for predicting weights of some Appalachian hardwoods. W. Va. For. Notes 7:21-26.

Williams and McClenahan 1984

WIL

Williams, R. A.; McClenahen, J. R. 1984. Biomass prediction equations for seedlings, sprouts, and saplings of ten central hardwood species. Forest Science. 30: 523-527.

Yarie et al 2007

YAR

Yarie, J.; Kane, E.; Mack, M. 2007. Aboveground biomass equations for the trees of interior Alaska. AFES Bulletin 115.

Young et al. 1964

YON

Young, H. E.; Strand, L.; Altenberger, R. 1964. Preliminary fresh and dry weight tables for seven tree species in Maine. Orono, ME: Univ. of Maine; Maine Agri. Exp. Stn. Tech. Bull. 12. 76p

Young et al. 1980

YOU

Young, H. E.; Ribe, J. H.; Wainwright, K. 1980. Weight tables for tree and shrub species in Maine. Misc. Rep. 230. Orono, ME: University of Maine, Life Sciences and Agriculture Experiment Station.

2