61
CA NATIONAL ADVISORY COMMITTEE FORAERONAUTICS TECHNICAL NOTE 4137 FATIGUEBEHAVIOROFAIRCRAFT STRUCTURALBEAMS ByW. S. Hyler, H. G. Popp,D. N. Gideon, S.A. Gordon,andH. J. Grover BattelleMemorialInstitute Washington January 1958 —- —— —.

NATIONALADVISORYCOMMITTEE - digital.library.unt.edu/67531/metadc... · ca nationaladvisorycommittee foraeronautics technical note 4137 fatiguebehaviorofaircraft structuralbeams byw

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • CA

    NATIONALADVISORYCOMMITTEEFORAERONAUTICS

    TECHNICAL NOTE 4137

    FATIGUEBEHAVIOROFAIRCRAFT

    STRUCTURALBEAMS

    ByW. S. Hyler, H. G. Popp,D. N. Gideon,S. A. Gordon,andH. J. Grover

    BattelleMemorialInstitute

    WashingtonJanuary 1958

    —-

    ——

    —.

  • TECHLIBRARYKAFB,NM

    .Bb

    NATIONALADVISORYCOFMITTEE

    TECHNICALNOTE

    FATIGUEBEHAVIOROF

    I:lllllllllllll[lfllllll-FORAERONAUTICS ciobbi5i

    4137

    AIRCRAFT

    STRUCTURALBEM&

    ByW..S. Hyler,H. G.Popp,D.N. Gideon,S.A. Gordon,andH. J.

    SUMMARY

    Thisinvestigationinvolveda studyof

    Grover

    thecorrelationof compositestructuralfatiguebehavior,basicmat&ial,andshple-elementbe-~vior.Fatigueandrelatedstatictestsweremadeonaluminum-alloyboxbeamsandI-beamsandalsoonelementssimulatingkeyfailurelocationsinthetwobeams.Thestudyindicatestlutthesimulationapproachwillbe usefulforthosecaseswhereit ispossibleto assessreasonablyfactorscontributingto stress-raisersinthestructure.Themorecom-plexthesecondarystresspicturebecomes,themoreexactingwill.&therequirementsofthestressanalysis.

    \ Fatiguenotch-factorsK+ muchhigherthanmightbe expectedfromdataon simplynotchedcouponswerefoundinbothbeams.Thestudyoftheshmlationelementssuggestedthatsuchhighfatiguenotchfactors

    d maybe expectedincompositestructuresinvolvingstressgradientsandbiaxialstressdistributionsat ornearrivets.Thisobservationservesto emphasizethatconsiderablecautionshouldbe exercisedindesigninusingKf valuesobtainedfrcmsimplynotchedcoupons.

    Thesimulationapproachthusappearstoprovidea technique,insomecases,forevaluatingthefatiguestrengthof compositestructures.Useofsuchsimulationelementsembodyingcomplexstressinfluencesalsoappearstobe a helpfulresearchtoolindeterminingvaluesof ~whichmaybe morerealisticfordesigningbuilt-upstructurestkn thosewhichcanbe obtainedby simplynotchedcoupons.

    INTRODUCTION

    Aircraftstructuresareoftenso complexthatpredictionoftheir% resistanceto fatiguecrackingis impossible.Avaihblefatiguedata

    onlaboratory-testpiecesdonotreproducethedetailedstressconcen-trationsinthestructuresandareofMmitedhelpindesign.At present,

    d

  • 2 NACATN 4137

    the”laboratorydataservechieflyas guideswhichthedesignermustusewithdiscretionand,sometimes,withconsiderable~certaintY. e ‘-

    Severalstudiesofthefatigueperfornmnceofactualstructureshavebeenreported(see,forexample,refs.1 to6). Inmanyofthese,thereisinsufficientinformationonthedetailsoflocalizedstressesinthesti?ucturetopermitcompleteanalysiswithrespecttolaboratorydataonthebasicmaterialsinvolved.In someinstances,suchanalysisas feasiblehasindicatedthefatiguestrer@hofthestructuretobesignificantlylessthanthatestimatedfromdataonsimplematerialcoupons..Values,ofthefatiguenotchfactorKf reportedforstruc-tureshavebeenhighincomparisonwithvaluesforsimplecouponshavi.~sharpnotches.Suchobservationsimplythatdesign,basedonlaboratorydataon simplespecimens,maybe unconserntive.

    .-

    . . .-

    Accordingly,itseemedinterestingtoattackthisproblemfromadifferentpointofview. Thiswasto testa compositestructureinfatigueandthentoattempttodevisesimplecouponswhich,underappro-

    ——

    priateloading,wouldduplicatethemodeoffailureandthefatiguelifetimeofthestructure.In otherwords,“theapproachwasto find

    :

    whatkindof simplecouponswouldeffectivelyduplicatethestresscon-centrationsinthecompositestructure.

    Itwasbelieved’thatthisapproachmightclar~ theapparentgaP.betweenobservedbehaviorof structuresandlaboratory-testdataonsimplynotchedspecimens.Moreover,ifit_gouldbe shownthatsimplespecimenscanbe devisedforreasonableduplication,ofbehaviorofacompositestructure,thisshouldbe a useffiprocedureinsomedesignproblems.An aircraftengineermightmakea detailedstressanalysisofoneprototypeand/ora fatiguetestofonesampleofa newstructureto determineregionscriticalinfatigue.Then,simplespecimensdupli-catingthefatiguebehavioroftheseregionscouldbe usedfora fatigue-testingprogramadequateto obtainGoodmanQiagamsto coverallstressrangesofdesigninterest. —

    .—

    Thestructureschosenfortheinvestigationwerebuilt-upbeamsofaluminumalloy.Onewasa boxbeam,theother,an I-be~. AS willbe notedsubsequently,fatiguefailuresin.theboxbeamwereinthewebsection.TheI-beamstructurewasdesignedtoproducefailureinthe

    ——

    Itwasbelievedthatstudyofthetwotries,withdifferent—

    chord.modesoffailure,wouldprovidea reasonablefivestigationofthe‘simulationelementtlapproach.

    Duringthecourseofthisinvesti$ationj~l~ble suggestionswerereceivedfroma numberofpeople.Theauthorswould-liketo express_ *,theirappreciationforhelpandsuggestionsparticularlyto thefol-lowing:Messrs.M.RoscheandP.K,phn,NationalAdvisoryCommitteeforAeronautics,Mr.R. L.Templin,AluminumCompanyofAmerica,and Y

  • NACATN 4137 3k

    Mr.S.Levy,GeneralElectricCompany.CreditalsoisduetheMcDonnell* AircraftCorporation,andtheColunibusDivisionofNorthAmerican

    Aviation,Inc.,fortheconstructionofthebeamstested.

    Thisinvestigationconductedat theBattelleMemorialsponsoredby andcarriedoutwiththefinancialassistance

    INVESTIGATIONOFBOXBEAM

    DesignofBoxBeam

    A numberof factorsgovernedthechoiceandstructures.Itwasbelievedthatthestructures

    designofshouldbe

    InstitutewasoftheNACA.

    suitablefabricated

    withmaterialforwhichconsiderablebasicfatiguedataareavailable.To simulatetypicalaircraftconstruction,thestructureswerebuiltup ofetirudedanglesandsheetmaterials.Sinceitwasconsiderednecessarytoknowtheactualstressesinthestructure,eachstructurewassimpleindesign.Forfurthersimplicity,itwasdecidedtomakethestructuressymmetrical.

    Forthefirststructure,theseconsiderationssuggesteda box-beamspecimensubjectedto four-pointloading.Thiswouldprovidea constant-

    + stressmidspanandwouldeliminatesheardeformationinthetestarea.Thedesi~ wassuchastomaketheskinnonbucklingthroughouttherangeoffatigueloading.

    dFactorschieflyrelatedtoaccuratestressanalysesandto consist-

    encyinthelocationandmodeoffailureofthebeamwereconsideredinthedetaileddesignoftheboxbesm. Thefollowingfactorswereregardedtobe ofmajorimportance:

    (1)A reasonablelengthofmidspansectionto insurepurebending(nosheardeformation)

    (2)Sibility

    (3)buckling

    (4)

    Carefuldesignof supportandoffailureat supportsandin

    Rivetspacingandunsupportedthroughtheexpectedrangeof

    loadpointsto precludethepos-theoverhang

    skinproportionedtopreventfatigueloading

    Useofbs3e2024-!L’3alminum-alloysheetand2024-T4aluinum-alloyextrusionsto takead%ntageofthe;olumeof fatiguedataavail-

    % able. Brazier-headedrivetswereusedthroughoutforthesamereason.#

    Figure1 isa schemticdrawingoftheboxbesm. As noted,the< beamwas60 inchesbetweentheendsupportsandthemidspanlengthwas

  • 4 NACATN4137*

    24 inches.Beamdepthwas6.128inches,andthetopandbottomskin -.widthwas22 inches.Twodiametersofbrazier-headedrivetswereused:8

    i-forthe2017-T3 alwninumalloy,~/32-inchdiameter;forthe2024-’lY3aluminumalloy,3/16-inchdiameter.Webstiffenerswereof2024-T4alloy,5/8inchwideand1 inchdeepincrosssection;theywerespaced3 inchesbetweencenters.,Mechanicalpropertiesofsheetandchord-amglematerialsusedexelistedintableI.

    Thedesignofthestiffenersrepresentedthegreatestdeparturefromnormalaircraftconstructionofanyoftheelementsintheboxbeam. Thiscompromisewasmadetokeepconstructioncostswithinrea-sonablelimits;itwasconsideredjustifiablesincethecenterofthebesmcontainedno shear.Theappendixofthisreportcontainsa summaryofcomputationsofmomentsofinertia,ofinterrivetbucklingloadsandstresses,andofdeflections.

    Notillustratedinfigure1 istheconstructionneartheloadandsupportpoints;however,thisconstructioncanbe inferredfromfigure8whichisdi.cussedlaterinthereport.At thesepoints,solidrectangu-larblocksofaluminumalloywereused,drilledtopermitpress-fitassemblyofhardenedsteelbushings.Insidethewebs(betweenwebandsolidblock),0.051-inchsheetsweresodesignedthattheshearload

    wasgraduallydissipatedintheconstant-momentsection.Thiswasaccom-plishedwithin6 inchesofthecenterlineofeachsupport.Itwasbelievedthatsuchconstructionwouldprecl_udefailuresnearloadand

    e

    supportpoints.P

    LoadingandStressAnalysisofBoxBeam

    Figure2 showsthebeamInpositiononthefatigue-testingmachine(usedforstaticloadingforstressanalysisaswellasforrepeatedloadinginfatigue..testing).Figure3 illustratessomedetailsofthefixtureforapplicationofload.Thisfixturewasdesignedtopermitfreerotationat supportandloadpoints.Supportsconsistedofpinsthroughhardened-steelbushingsintheboxbeams.Ballbearingswerepressedonthepinstoproviderollingsupportonhardenedandgroundblocks. Fourloadingscrewsjoinedthebearingplatetothebaseplate(attachedtothemovableheadofthefatigue-testingmachine).Thesescrewswereusedforthemeanloadad~ustment.Onthereducedsectionofeachloadingarm,eightSR-4straingageswereattached,fouroneachsideofthearm. Thisarrangement,withcalibration,wasusedformeas-urementandadjustmentoftheload. —

    Tl@fatiguemachineusedinthisinvestigationhasa capacityof *50,000pounds.Theplatenmovementrangesupto2 inches,adjustable

    F’

  • NACATN4137 5b

    withthelargecamatthefrontofthemachine(fig.2). Speedis

    4 adjustableup toabout250cpm;thesetestswererunat 220cpm.

    Itwasbelievedthatsomeofthemostimportantdataforcomparisonr of structureandelementbehaviorwouldbe providedby rathercompletestrain-gagesurveys.Furthermore,a detailedstrain-~gesurveywouldprovide(1)possibleevidenceofunexpectedstressirregulzu?ities,(2)possibleregionsofbucklingforloadscontemplatedinthefatigue-testingprogrsm(3)stressdistributiononvariouscrosssectionsinthemidspan,and(h~stressvariationalongtheextremefibersofthemidspan.

    Accordingly,thefirstbesmwasinvestigatedunderstaticloadingpriortothefatiguetest. Insideandoutsidethebesm,78SR-4straingageswereattachedat criticallocations.Loadwasappliedto theloatingarmsinincrementsofabout18,cQ0inch-peundsofbendingmomentuptoa maximummomentof90,~ inch-pounds.Strainmeasurementsweremadeat eachloadlevel.Theresultswereexaminedcarefullyforstressdistributionandstressirregularities.

    Subsequenttestson otherbeamscontributedadditionalinformationon stressesandstaticbehavior.Theresultsofthisadditionalworkandoftheinitialstressanalysisareas follows:

    (1)At eachsectioninvestigated,thestressdistributionwask essentiallylinear.Figure4 showsresultsofa representativesection.

    (2) At manygagelocations,thestressvariedlinearlywithbending* momenttoa momentof90,000inch-pounds.Figure5 showsthisvariation

    fora numberofgageslocatedona sectionatthemidspan.A numberofothergagesshowedsomedeparturefromlinearityinthestressversusbending-momentplot. Thecurvesinfigure6 sretypicalof curvespre-paredfromdataobtainedwiththesegages.

    (3) Themiddle12 inchesofthemidspanwereessentiallyat con-stantstress.Therewasno detectabledropoffinouterfiberstrainupto 3 inchesfromthecenterlineanda decreaseofonly3 percentat6 incheseithersideofthecenterline.Therewasa gradualdeclineinstresstowardtheloadpoints.

    (4)st~inm=smementsbetweentheverticalrowofrivetscon-nectingthewebandstiffenerindicatedsecondarytensilestressestrans-versetothebeam. Figure6 showstypicalresults.

    (5) NO localizedbuc~~ W= observedUP to a compressionflange-skinstressof45.0ksi(117,000inch-poundsofbendingmoment).This

    * compareswitha calculatedbucklingstressof40.0ksi. Finalcollapseoccurred6 inchesfromtheinnerloadpointandintheconstant-momentsectionatabout130,000inch-poundsofbendingmoment.

    u

  • 6 NACATN4137

    (6) Beamdeflectionwaslinearwithappliedloaduptoabout99,000inch-poundsofbendingmoment.

    FatigueTestsofBoxBeams

    Twofactorsgovernedthechoiceoffatigue-testconditions:(1)Theloadfactorwastoapproximatethatusedincommercialaircraft “-design,and(2)thealternatingloadsweretoapproximateloadsthatmightbe experiencedby commercialaircraft.A meanstressof14.0ksiontheextremefiberwasselected.Thiscorrespondstoa l.Ogloadingfora loadfactorof4.6. AlternatingloadsrangedfromabouttO.30gtoabouttO.93g. .

    Eachboxbeamtestedhada-numberofstraingagesattached.Thesewereusedto load.eachbeamto itspredeterminedmaximumstressand ..

    minimumstress.The straingagesonthecalibratedloadingarmswere—

    usedto determinetheactualappliedbendingmoments.—

    Duringeachtest,thestrainbehaviorwasobservedat selectedintervals.

    Afterthefirstfewfatiguetests,smallcopperwireswerecementedto subsequentbeamsintheregionofexpectedfailures.Whena fatiguecrackoccurredunderthewire,thewirebroke.Thewirewasenergizedsothatfailureofthewirestoppedthemachine.This techniqueper-mittedtheobservationoftheearlystagesof crackdevelopment.For

    —-—

    halfofthebeams,thetestwasterminatedwhenthecrackor cracksfirst*

    wereobserved.Inthesecases,theboxbesmiiwereturnedoverandretestedunderotherstressconditions.Withthistechnique,additional Edatapointswereobtainedfromthelimitedbox-beamspecimensavailableforthiswork.

    Sixboxbeamsweretestedinfatigue.Threeofthesewereturned .overandretestedunderdifferentstressconditionsafterthefirst

    .—

    crackwasdetected.Somebeamtestswerecarriedto completedestruc-tion(completedestructionas definedhereinoccurredwhenthecrackor

    cracksprogressedat leasthalfthedepthofthebeam);load-carryingabilityofthebeamwasreducedessentiallyto zero.Forthesecases,thenumberofcyclesof stressfrom‘initialcrackdetectionto completefailurewasnevergreaterthan15percentof_~hetotallifetime.

    TableIIpresentsa summaryofspecific-testinformationandresultsforeachbeamtested.Theseincludebendingmoments,fatiguelife,webstressesdeducedfromstrainmeasurements,andcalculatedwebstresses(basedongrossareaandonnetarea).ThemeasuredandcalctiatedstresseswereatthelineofrivetsJoiningthewebandchordanglewherefailureswereinitiated. & ::

    P

  • NACATN4137 7

    Stress-lifetimedata(stressvaluesbasedonstrainmeasurements)areplottedonS, logN coordinatesinfigure7. An S-Ncurveisdrawthroughtheplottedpoints.

    TableIIIsummarizesfailuredataonthesixboxbeams.Inthistable,thelocationsofthefatiguecracksaregivenby componentandby numberedrivethole.Figure8 shouldbe usedin conjunctionwiththistableforidentificationoftherivethole. Ofthe29 fatiguecracksobserved,25 occurredinthemiddle12 inchesofthemidspan~theconstant-stressarea(fig.8). Theremainingfourcrackswerenearertobutnotattheloadpoints.Infact,itwillbe notedgen-erallythatfatiguecracksoutsidethemiddle12-inchregionwereaccom-paniedalsoby fatiguecrackswithintheregion.Withbuttwoexcep-tions,fatiguecrackswereassociatedwiththerivetholeinthewebandchordangleat therivetrowconmonto thechordangle,webJandstiffener.Typicalfailuresin someoftheboxbesmsareshowninfigures9 and10.

    SimulationElementsforBoxBean

    Possiblecorrelationoftheresultsofthefatiguetestsoftheboxbeamswithpreviouslymeportedresultsoffatiguestudiesof simpleelements(refs.7, 8,and9)wasinvestigated.Thesesimpleelements

    * (includingspecimenswitha hole,havingKt = 2,andspecimenswithanedgenotch,havingKt = 5)didnotresemblethegeometryof criticalregionsofthebeamsbutwereofthesamematerial,2024-T3aluminum& alloy.ItwasnotedthattheshapeoftheS-NcurveforthebeamisdifferentfromshapesofS-Ncurvesfortheseelements.

    Thislackof correlationisnottoosurprising,sincetheses@legeometricnotchesareconsiderablydifferentstress-raisersfromthoseoccurringina complexstructure.Theydonotcontainthesecondarystiffnessesofa structure,theredundanciesof severalstress-raisers}orresidualstressesandotherfactorsassociatedwiththebeam: Accord-ingly,itwasconsidereddesirableto isolateelementsfromtheboxbean,to testtheseinfatigue,andto comparetheirperformancewiththatoftheboxbeam.

    Firsteletient.-Thefirststructuralelementwaschosento duplicatetherivetedjointbetweenthewebandchordangle.,Thiswastheregionincludingallfatiguefailures.Figure11 showstheelementdetails.Thisspecimenwasdesiguedto haveitsgrossareacentroidcoincidentwiththeloadingaxis. Thus,extraneousbendingstresseswereminimized.

    Eachspecimenhada numberofl/4-inchSR-4straingagesattachedinthelongitudinaldirection.Theelementwasloadedto duplicate

  • 8 NACATN4137 .—

    *

    essentiallythemeasuredstrainsintheboxbeam. Themeanstresswasabout12.5ksi(basedonstrainmeasurements).Thedataaresummmrized ?intableIVandareplottedinfigure12. . —-

    Itisobservedfromthetablethatallfailuresoftheelementwereoneortworivetsremovedfromtheminimumtestsection.Allthesefailureswereinthechordangle.Thisrepresentsa differentmodeoffailurethanwasobservedin~heboxfatiguebehaviorofthiselementsmdreflectsthisdifferenceinthemodeworkwasdoneonthiselement.

    Secondelement.-Itwasthoughtencingfailureoftheboxbeams.In

    beam- Thedifferencebetween—

    oftheboxbeam(fig.12)probablyoffailirre.Therefore,no further —

    thatotherfactorsmightbe influ-reexaminingthebeamfailures,it

    .——

    .——wasnotedthatmostofthefailureswereat therivetholescommontothechordangle,web,andstiffener.Itwasbelievedthatseconmstressimposedinthewebby thestiffenerm“ightcontributetofailure.Onesuchsecondarystresswasthoughttobea transversetensilestressbetweenthetworivetswhichextendedthroughthestiffener.Iftheserivetsfilledtheholes,thenormaltransverseshorteningoftheweb(Poisson’seffect) duetothelongitudinalbendingstresswouldberesistedby thebulkystiffener.Thistransversetensilestresswasapparentina statictestofa box-besmspecimen(seefig.6). Inthisstudy,l/4-inchSR.4gageswerecementedon~hewebas closetothe ._ ~ ~chordangleaspossible. u.-

    Thesecondstructuralelementwasdesignedto incorporatesuchasecondarystress.Figure13 showsa diagrazz_oftheelement.It con- b:sistsoftwostiffenerblocksrivetedtoa sheetofwebmaterial.Two3/16-inch-diameterrivetscompletetheassembly.It isnotedthattheserivetsareona lineperpendiculartotheloadingdirection.Thus,iftheyfill.thehole,transversedeformationmightbe inhibited.

    Groovesweremachinedinthestiffenerblocksoftwospecimensformountingthel/4”-inchstraingagesonthesheetbetweenrivetholesunderthestiffenerblocks.Thesestraingagesweremountedtransverselyandlongitudinallytotheloadingdirection.Twospecimenswerecali-bratedstatically.As indicatedinfigurel+,theratioofthelongi-tudinalstresstothetransversestressoftheelementwasnearlythesameasthatfortheboxbeam(fromfig.6). —

    .A numberoftheseelementsweretestedinrepeatedaxialloading.

    Straingageswerenotusedonallspecimensbecauseofthecloseapproxi-mationinmeasuredstressandcalculatedstress(grossarea).It is ~believedthatthenominalmeanstressrangedfromaboutI-.2.5ksitoabout13.0ksiinthesetests.Thesevaluescomparecloselywiththemean &

    stressvaluesforthebox-bes.mtests(12.1k$ito 12.9ksi).r “-

  • :B NACATN4137 9k

    ThetestresultsaresummarizedintableV andsreplottedh fig-4 ure15. Inthefigure,thedashedlineistheS-Ncurvefortheele-

    ments;stressesarecalculatedfromstrain-gagereadingsorsrecalcu-latedonthebasisofgrossarea. ThesolidlinerepresentstheS-Ncurveoftheboxbeam. Itappearsthatthetwocurvescoincidewiththeprobableprecisionof eithertest.

    INVESTIGATIONOF I-BEAM

    Designof I-Beam

    Afterexperienceinthebox-beaminvestigation,itwas decidedtostudya fabricatedI-beamof somewhatgreaterlengthanddepththanthoseoftheboxbeam.

    Itwasthoughtthatthistypeofbeamwouldafforda goodchanceofa fatiguefailureinthechordwhichwouldbe a differentmodeoffailurethanthatobtainedintheboxbe&m. Simplicityofdesignsug-gestedthattheI-beambeloadedina mannersimilarto thatusedhtheboxbeams.

    To insure,asmuchas possible,thatfatiguefailureswouldoccur\ inthechordsection,thefollowingprecautionsweretaken:

    (1)●

    (2)

    (3)

    (4)

    Chordcross-sectionalareawasreducedinthebeamatthemidspancentersection.

    Rivetholesinthewebsectionaroundthe8 inches)werereamedanddeburred.

    theouterflangeof

    criticalspan(center

    Outeredgesofthewebwerebrokenwithfipe-gritpaper.

    Theedgedistancefortherivetrowwasmadegreaterinthewebthaninthechord.

    SchematicdrawingsoftheI-besmareshowninfigures16and17.TheprincipaldimensionsfortheI-beamareshowninthesedrawings.Asnoted,inthecenter8 inchesofthemidspanthedepthofthebeamwasreducedto Z inchesforreasonsdiscussedpreviously.

    4

    Thematerialsusedforthevariouspartsofthestructureswereasfollows:Forweb,spacers,andshearplates,0.072-inch2024-T3al-~-

    + alloybaresheet;forchordsandstiffeners,2024-T4aluminum-alloyextrusions;forbushinghousings,2024-T4aluminwn-alloyplate;andfor

  • 10

    theThe

    NACATN4137d

    3/16-inch-diameterBrazierheadedrivet=,2024-T3aluminumaldoy.mechanicalpropertiesofthesematerialsareshownintableVI. P

    As indicatedinfigure17,themomentofinertiaofthecentersec-tionofthebeambasedonnet-areacalculationswas I= = 40.88inches4.Themomentof inertiabasedongrossareas Igg was41.55inches4.Typicalcomputationsofmomentof inertiaandofdeflectionareshown —intheappendix.

    Theconstructionofthebeamnearthesupportandloadpointsisillustratedinfigure18. At thesepoints,constructionis similartothatusedontheboxbeam. However,thesolidrectangularblocksofaluminumareontheoutsideofthebeam. Oneachsideoftheweband - ““-extendingoverthechordsareshearplates,whichgraduallydissipatetheshearloadintotheconstant-momentsection.

    >

    LadingandStressAnalysisofI-Beams

    TheloadingfixturefortestingtheI-beamswasessentiallythe—

    sameas theoneusedintestingtheboxbetis.ThemaindifferencewasthatthefixturewaslargeYto acconmmdatethelargerbeam. Loadwasappliedthroughcalibratedloadingarmsequippedwithstraingages.Thefatigue-testingmachineandthemachinespeedwerethesameasthose e ““usedforthebox-beamtests.

    As inthebox-beamtests,a thoroughstatic-stresscalibrationof ~–theI-beamwasconsiderednecessarypriortothefatiguetest. —

    Accordingly,thefirstofthebeamstobe testedinfatiguewasstaticallycalibrated.A numberofstraingageswerecementedtothebeam. Theloadwasappliedinincrementsof45,000inch-poundsofbendingmomentinthemidspantoa maximummomentof270)000inch-pounds.A bendingmomentof270,000inch-poundscorrespondstoa stressof30ksiintheouterfibersat a sectionthroughthemidspancenterlineofthebeam. Strainmeasurementsweretakenat eachloadlevel.Theresultswereexaminedcarefullyforstressdistributionandstressirregularities.

    Duringthecourseofthefatiguetests,additionalexperimentalstressstudiesweremadetoprovideotherinformationas itappeared

    necessary.Forexample,aftercompletingfatiguetestsonthefirstbeam,itwasdecidedto removethecenterstiffeners(markedA infig.”18) onthesecondbeampriorinselectedregionsofthesecondwereremoved.Theresultsofall

    totesting.A stressstudywasmadebeambeforeandstressanalyses

    afterthestiffenersareas follow: *

    #

  • NACATN4137 l-l

    (1)Inthereducedsectionofthebeam,thestressdistribution3 withdepthwasalmostlinear.Figure19 showsa representativesection.

    An exceptiontothiswasobservedona sectionattheedgeofthefilletmachinedonthechord.

    (2)At sectionsoutsidethereducedsectionofthebeam,thestressdistributionswerenotlinear.Forexample,at sectionB-B(about6 inchesfromthemidspancenter)therewasalmosta constantstressacrossthechord,whereaswebstressdistributionwaslinear.A non-lineardistributionwasalsofoundona sectionthroughthefirstrivetintheshearplate(seefig.203notetheslight~iations in stressdistributiononthissectionfortheindividualbeams).

    (3) At allgagelocations,theprincipalstressvariedlinearlywithappliedbendingmoment.Foranyonevalueofappliedbendingmoment,therewasa gradualreductioninstresswithdistancefromthemidspancenterlineofthebeam.

    (4)An exceptionto item(3)wasnotedontheouterfibersofthetensionandcompressionflanges.At theseregions,a peakstressoccurred4 inchesfromthemidspancenterline. Thispositionis coincidentwiththefillet.Thepeakstressatthesepointswasabout20percenthigherthanwasthestressatthemidspancenterlineofthebeamonthesesurfaces.

    *(5)Secondarystressesperpendiculartothemidspandirectionwere

    greatestinthewebinanareaaroundthestiffenersandthefirstrivet* intheshearplate.Thesestresseswere,withthestiffenersinplace,

    lessthan1 ksioftensilestressand,withthestiffenersremoved,lessthan2 ksiof compressivestress.Themeasuredprincipalstresseswerenotaffectedappreciablyby theremovalofthecenterstiffeners.

    (6) Withthestiffenersinplace,nobucklingwasobservedthroughthestressrangeinvestigated.A smallamountofbucklingwasobservedinthewebwhenthestiffenerswereremoved.However,thiswasnotcon-sideredsufficienttoaffectthefatigueresults.

    (7) BeamdeflectionW= line= with applied load upto 27’0,000inch-poundsofbendingmoment.Themagnitudeofthemeasureddeflectioncom-paredcloselywiththemagnitudeofthecalculatedvaluesfordeflection(seecalculationsinappendix).

    Comparisonoftheresultsoftheexperimentalstresssnalysiswiththeresultsofthetheoreticalanalysisshowedthebeamtobe behavingaboutas hadbeenanticipated.

  • 12 NACATN 4137

    Thefatiguetestsanalogous_tothoseforincommercialaircraft

    D

    FatigueTestsofI-BeamsPontheI-beamswererununderloadingconditions

    theboxbeam. Theldadsapproximatedthoseuseddesign.Allbeamsweretestedata meanstress

    of 14ksioftheextremefiberofthemidspancentersection.Thisstressisequivalentto l.Ogloadingbasedona loadfactorof4.5.AlternatingloadvariedfromtO.&9gto*0.9~g.

    Thestraingagesattachedto eachbem.served(inloadingthebeb,m)to determinemaximumandminimumstresses.Thestraingagesontheloadingarmswere.usedtobalancetheloadandto~easuretheapplied

    bendingmoment.Tbro~houtthetest,.——

    a numberofloadandstrainreadingsweretskento correctforloadchangesduringthetest.

    —Crack-

    detectionwiresalsowereusedto determineoccurrenceofthefirstcrack,thuspreventingcatastrophicfailure.ofthebeams.Whenthefirstcrackwasdetected,thetestwasconsideredcomplete.Thebeamthenwasturnedoverfora secondtest.

    TwoI-beamsweretestedinfatigue.By usingthetechniquedescribedabove,foursidesofthebeamsweretestedandfourpointsontheS-N

    .-

    curvewereobtained.

    TableVIIsummarizesthefatigue-testresults.Thetableindicateswhichmemberofthestructurefailedandthecracklocationby theuse *ofnumberedrivets.Thesenumberscorrelatewithnumberedrivetsinfigure18.

    rInall,thereweresevenfatiguecracksdetected.Allbutoneof

    thesewereinthechords.TheonecrackinthewebwaslocatedatarivetatwhichfailureinthechordalsoW=”detected.Thisfailurewasinthefourthbeamside(specimen2-1)tested.Ofthesixfailuresremaining,fivewerelocatedinthechordata commonrivetholeasso-ciatedwiththefirstrivetintheshearplate,@ inchesfromthecenter

    4ofthebeam. Ofthethreebeamsidesfailingat thislocation,twohadfailuresinbothchordsat thisrivethole.Theremainingfailure,thatinthefirstbeam(specimen1),wasinthereducedsectionofthechord.However,itwasassociatedwitha metallographicflawinthe

    surfaceoftheextrusion.Therefore,thistestwasnotconsideredchar-acteristicofthebeam. A typicalI-beemfailuremaybe seenin ..figure21.

    —-

    !TableVIIIpresentsthestressdataforI-beams.Inthetableareindicatedthebendingmomentappliedtothemidspan,thestressesat thepointoffailureas determinedfromthestaticcalibrations,thelife- *timein cyclesto crackdetection,andthecalculatedstresses(basedonbothneteffectiveareaandgrosqarea).

    ?

  • NAMTN4137 13

    Stress-lifetimedataforthethreebeamsidesforwhichfailureoccurredat theedgeoftherivetholeinthechordareplottedonS, logN coordinatesinfigure22; Stressesarebasedon strainmeas-urementsobtainedinthevicinityoffailure,extrapolatedto thefail-urelocation(seesectionentitled“ElementsConstructedFromBeamMaterial”).

    SimulationElementsforI-Beam

    TheI-beauhadbeenplannedto failinfatigueinthechordat asectionwherethestressescouldbe analyzedrelativelyeasily.Whilethebeamsfailedinthechordangle,failuresinitiatedata regionofconsiderablecomplexityfordetailedstressanalysis.However,itwasdecidedtoproceed,withthesomewhatlimitedinformationavailablecon-cerninglocalstressesintheI-beamsat thislocation,in constructionof simpleelementswhichmightduplicatethefatiguebehaviorobserved.

    ComparisonoftheS-NcurvefortheI-beamwithcurvesforsimplynotchedspecimens(refs.7, 8,and9)andwithcurvesforthetwotypesof elementforsimulationofbehavioroftheboxbeamshoweddissimilari-ties.Accordingly,considerationwasgiventodesi~ ofa differenttypeofelement.

    Pretiinaryexperiments.-FailuresintheI-beamwereintheextrudedchordangleata rivetholewhichcontainedthelastrivetintheshearplate.At thislocation,a nmiberof factorscontributedtothelocalstressdistribution.Theseincluded(1)thediscontinuityinthestructureat theterminationoftheshearplate,(2)thesecondarystressesinthechordanglefromtheshearplate,(3)thestresscon-centrationofthefilledrivethole,and(4)theresidualstressfromfabrication.

    Threetypesofelementsintendedto containsimilarfactorswerefabricatedfromavailable0.081-inch2024-T3sheetstock(toconservethesmallreminingsupplyofactualmaterialsusedfortheI-beans).Fig-ure23 showsthespecimendesigns.Inthesespecimensthemainsheetisconsideredto representthechordangleofthebesm;thesideplateorplateswhichendjustshortofthetransversecenterlineofthespeci-menareconsideredtheshearplates.As showninfigure23,eachendofthespecimenscontainedsixrivetsina line.

    ThreespecimensoftypeA weretestedatnomtial(P/A)stressesof8.0f 6_Oksi. Thesefailedinlifetimesfrom300,000to 600,000cycles.However,failureinitiatedunderthe“shearplate”inthe“chordangle”atregionsof intensefretting.Thiswasascribedto localstressesresultingfromnonsyrmnetryinthethiclmessdirection.

  • 14 lwx m 4137d

    A specimenoftypeB (plannedtoreducethenonsymmetry)wasnexttested.Thislasted,underthesamenominalstressrangeinthechord Gsheet,morethan3,000,000cycles.However,eventualfailurewasagainneartheedgeoftheshearplateandfrettingwasagainpresent.

    .

    OneconditionintheregionoffailureoftheI-beam,notduplicated.

    intheseelements,wasa stressgradient.Accordingly,twospecimensoftypeC wereconstructedandtested.Inthese,thelineofloadingwasslightly(about1/4inch)offsetfromthelineofrivets.Straingageeonthesespecimenswereus’edto (1)verifythata straingradientexisted

    acrossthewidthand(2)obtain,by extrapolation,valuesofthestraininthechordsheetatthepositionofthelastrivetintheshearplate.Thefollowingresultswereobtained(seefootnoteoftableIXformethodof computingstresses):

    Specimen Nominalstressesin sheetatrivet Lifetime,number Fromcomputations Fromstraingages cycles

    1I

    10.4* 7.7 7.0f 5.3 I 608,0002. 16.8* 10.7 8.3-* 6.1 146,OCX) IForbothspecimens,failureoccurredat theedgeoftherivetholecor- 3–respondingtothelastrivetintheshearplate.

    —Thus,themodeof

    failurewassimilartothatintheI-beam.Sincethelifetimeforthe-.

    elements,forstressconditionsroughlysimil~tothoseintheI-beam, ●wereintherangeofthebeamlifetimes,itseemedreasonableto carryoutfurtherstudieswiththistypeof specimen.

    Elementsconstructedfrombeammaterial.-Accordingly,sevenele-mentssimilarto thoseoft~e C (fig.23)weremachinedfrommaterialsusedfortheI-beams.Figure24 showsthedimensionsandconfigurationofthecentersectionofthis(typeD) specimen.Thesheetwasthe0.072-inchmaterialfromstockusedontheI-beams.Thechordsections -wereplanedto 0.072-inchthicknessfromtheetiruded-anglestockusedfortheI-beams.

    Some32 straingageswereusedoneachspecimen.A numberoftheseservedmainlytoassistinloadingforreasonablesymmetry(forexample,tominimizebending)andtoassistinest”-tingtheoverallstrainpat-tern.Thelocationsoftheeightgagesgenerallyusedforloadingandevaluationsofstressesareshowninfigure24. —

    Theloadingprocedurewasas follows(seefig.24). Stressesweree

    extrapolatedlinearlyfromgages1 and2 topositionX at therivetwherefailurewasexpected.Similarextrapolationsweremadefrom R

  • IVLCATN4137 15

    gages 3 and4 andfromgages5 and6 and7 and8 to thecorrespondingpositionY. Afterreasonableadjustment(byshims,etc.) toprovideminimumbendingandtwisting,theaver%eoftheseefirapo~ted~luesonthehigherstressendwasusedfora loadingstress.TableIX showsthesestressesandtheobservedlifetimesto failure.Figure25 showstheresultsonanS-Nplot(loadingstressesusedforplotting).

    A dashedlineisdrawnthroughthepointsrepresentingdatafortheelements.Itwillbe notedthattwoofthedatapointsfallmuchbelowthisline. Evidencefromadditionalstraingagesindicatedthatthecorrespondingtwospecimenshadstraindistributions(particularlyacrossthechordsheetbetweentheshearplates)whichwasextremeincomparisonwiththoseoftheotherfivespecimens.It ispossiblethattheseunderwenttwistinginadjustmentofthegrips,buttheonlycertainconclusionisthattheyweredifferentin stressdistribution.Accord-ingly,thesepointsweredisregudedin~a~ thel~e.

    ThesolidlinerepresentingtheI-beamisabout20percentlowerthanthedashedline.A nuniberoffactorswhichmightaccountforthiswereconsidered.Theratioof chordmaterialto shear-platematerialwasmuchhigherintheI-beamthanintheelements.IntheI-beam,bendingmomentsprovideda differentmeansoftransferofloadbetweenchordandshearplatethanwaspresentintheelementunderaxialloading.Consequently,thestressesobtainedbyextrapolationinbothcaseswerereallynotdirectlycomparable.A limitedstrain-gageexplo-rationofonespecimen(oftypeD) showedthatstraingagesontheshearplatehadsomewhatlowerreadingsthsmvaluesobtainedfromlinearextrapolationofgagesontheedgeofthechordoftheelement.Infact,ifthestressamplitudevaluesforthedashedlineinfigure25arereducedby aboutthevaluesuggestedby thisexperiment(15percent),thedashedlinecomes(withintheexperimentalerror)in coincidencewiththesolidlinerepresentingthebeam.

    Justificationfortheassumptionthatstressesinthechordunder-neaththeshearplateareequaltothoseintheshearplateisquestion-able. Themeasurementsserveto emphasizethedifficultiesthatmightattendthesimulation-elementapproachforthosecomplexstructuresforwhichfatiguefailuremightoccurinregionswherestressescannotreadilybe determined.

    ThetypeD elementsfailedinthechordat theedgeofthelastrivetholeintheshearplate.Thus,thefailuremodewasthesameast~t oftheI-beam.Withreasonableallowanceforthemannerinwhichvaluesfromstrain-gagereadingswereetirapol.ated,itappearsthattheelementshowedqualitativeagreementwiththeI-beam.However,unliketheboxbeamitisdoubtfulwhetherquantitativeagreementcouldbeexpectedwithoutadditionalevidencebothon simulationelementsandon

  • 16 NACATN4137

    theI-beanregardingthelocalstrainorstressdistributioninthewebat ornearthechordangle.

    DISCUSSIONOFRESULTS

    CorrelationofFatigueBehaviorofElementsWith

    FatigueBehaviorofBoxBeamandI-Besm —

    Thesimulationapproachto studyingthefatiguebehaviorofa com-plexstructureappe~rsto involve..~processOZduplicating.intheS.fmU-””-la.tingelementsthestressconcentrationsinthecomposibestructure.

    Onceit isshownthatsimyleelementscanprovidea reasonableduplica- .4 ‘tionofthebehaviorofa compositestructure_itmaybepossibleto usesuchelementsto establishGoodmandiagramsfortherangeof stresses

    .:.—ofdesigninterest.Thislatteridea,of cotise,alsowillneedveriff-cation. As indicatedsubsequently,theuseof suchelements,embodyingthesecondarystressesandstiffnessesfoundinactualstructures,as aresearchtaolinfatiguestudiesalsomayprovidemorerealisticvaluesof Kf pertinenttoaircraftstructurestharcanbe obtainedby simplynotchedcouponsorlap-jointspecimensthat@ve beenexaminedinthepast.

  • B NACATN 4137*

    stressesintothe

    4 chordangleunder

    17

    chordangle)andofthefrettingcorrosionofthetheshearplate.

    Threeelementswerestudiedin investigatingsimulationoftheI-beamfatiguebehavior.OnlywhensecondarybendtigwasIntroducedintooneoftheelementswasitpossibleto duplicatethemodeoffail-ure(typeD). WiththiselementqualitativeagreementwiththeI-beamwasachievedwithinthelimitationsoftheapproximationsusedinextrap-olatingstraindatatothecriticalsection.QuantitativeduplicationwoulddependuponanaccuratedeterminationofthelocalstressesbothintheI-beamandinsimulatingelements.

    StressConcentrationFactorsofBeams

    It iscommonpractice,indesigningtopreventfatigue,to evaluatenominalstressesandtoapplyfactorstoallowfortheindeterminablestressconcentrationsthataresoimportantindeterminingtheinitia-tionofa fatiguecrack.Onefactoroftenusedin suchdesignisthefatiguenotchfactorKf. Thismaybe definedby

    Kf = StresssmplitudeforunnotchedmaterialNominalstressamplitudeforpartat samenominalmeanstressandssmelifetime

    I*It isinterestingto considerresultsofthebeamtestsintheseterms.

    s Figure26 showsvaluesof Kf fortheboxbeauandfortheI-beamintermsof cyclesto failure.Theseweredeterminedlydividingvaluesofnominalstressamplitudel(fromtables11andVIII)intovaluesofstressamplitudeforunnotched2024-T3sheetata meanstressof10ksi(fromref.7). Since,overthislifetimerange,thefatiguestrengthgenerallyisnothighlysensitivetomeanstress,no allowancewasmadefortheactualvariationsinmeanstressforthetwobeams(boxbeam,I-2.ltow.9ksi, I-bean,7.8to 8.2ksi).Forcomparison,dashedlinesinfigure26show valuesof Kf forspecimenswithsimplegeometricalnotchesoftwoseverities(takenfromrefs.8 and9).

    Intheregionofhigherstresseswhichproducecrackinginabout10,000cycles,theboxbesmshowsa valueof Kf lowerthanthatofaSha17Jl (Kt= 5.0)notchin sheetspecimens.Forlowerstressamplitudescorrespondingto failureinabout1,000,(XIOcycles,theboxbeamshowsa muchhighervalueof Kf (oftheorderof6.o).Thenotchedsheetshowsa decreasein Kf inthisrange.TheI-beamcurve(basedononlys

    %&&mm stressminusmeanstress.u

  • 3 points)indicatesa trendsimilartothatoftheboxbeamfor Kf.Thus, Kf continuesto increasewithdecreasingstressamplitude.The kvalueof Kf inthiscaseapproaches5.

    Similarhighvaluesof Kf canbe computedfromresultsof othertestson compositestructures.Failuresat rivetedshearjointsinc-46wingtests(ref.5)providevaluesintherangeof3.7to 4.5atlifetimesoftheorderof200,000”cycles;inthesametests,failwesat cornerinspectioncutoutsindicateKf valuesfrom4.8to 5.3atlifetimesoftheorderof300,000cycles.

    .—

    Suchobservationsimplythat,indesign,itisnotsafetoapply,to conventionalnominalstressvalues,valuesof Kf as lowasthoseobservedinlaboratorytestsofevensharplynotchedcoupons.

    FactorsInfluencingValuesofStressConcentrations

    Thestudiesof simulationelementsforthetwotypesofbeamspro-videsomeindicationofthefactorsinfluencingKf valuesof structures.

    Figure27 showsvaluesof Kf for(1)thefirstsimulationelement}ortheboxbeam,(2)a geometricnotch(Kt. 5.0)insheetmaterial,(3)theseconds~fiationelementfortheboxbeam,and”(4)theelement

    @

    fortheI-beam.It isobviousthatthe Kf valuesforallthesimula-tionelementsincreaseinmagnitu~eforlongervaluesofllfetjme(and ●

    lowervaluesofnominalstress)thandovaluesof Kf forthegeometricnotch.It seemspossiblethattheserelativelyhighstressconcentra-tionsarerelatedtothecomplexflowof stressthrougha rivetaswellastheinteractionsimposedonthecomponentsby adjacentrivetgeometry.Frettingaroundtherivetevenat lownominalstressesalsoisa contrib-utingfactor.

    .It isfurtherapparentthatthevaluesof Kf aremuchlargerfor

    thesecondelementfortheboxbeamthanforthefirstelement.Itwillbe recalledthatonedifferencebetweenthestressdistributionsinthese

    twoelementsisthepresenceofa significanttransversestressinthesecondelement.Itmayalsobe recalledthatonlywhentherewasastressgradientintroducedacrossthesimulationelementfortheI-beamwerefailuresobtainedattherivet.Theseobservationsimplythattheeffectivestressconcentrationata rivetcanbeparticularlyhighinthepresenceofa stressgradientandoftransversestress.

    +–

    r

  • NACATN 4137

    SimulationApproach

    19

    Thisinvestigationhasdemonstratedthefeasibilityofusingsimpleelementsto studythefatiguebehaviorof complexstructures;however,thestudyalsohassuggestedcertainlimitationsto suchanapproach.

    Themainthesisappearstobe thatsimulationcanbeachievedifitispossibletoanalyzethestructuresowellthatthestressdiscontinui-tiesofthestructurecanbereasonablywellduplicatedinthesimulatingelements.Forthosecaseswhereitmaybe impossibleto characterizetheentirenatureofthestressirregularities(ortheircontributory ‘causes)itappearsthatthesimulatingelementwillbe lessuseful.

    Itwouldappearthattheuseof simulationelementscanbe con-sideredfroma somewhatdifferentapproach.Forexample,considerabledatahavebeenassembledon simplynotchedbarsandonsimpleelements,suchas rivetedlapjoints.Suchdatamaybe of interestin character-izingthefatiguestrengthofmaterialsbutmay%e lessusefulinpro-vidingdataofgeneralsignificanceindesigningcomplexstructures.Thespecificreasonforthisisthatsuchnotchedcouponsandsimpleelementsdonotcontain,ingeneral,thesecondarystressesandrestraintsfoundina complexstructureand,hence,fatiguenotchfactorsobtainedfromsuchspecimensmaynotapproachthehighvaluesof Kf foundin structures.Ontheotherhand,theuseof simulating

    4 elementswhichcontainprovidemorerealisticandusefulinterestin.

    stressfeaturesfoundin complexstructuresshouldestimatesof Kf,whichdesigningstructuresto

    wouldbe ofmoreinmediaferesistfailureby fatigue.

    COI’?CLUDINGREMARKS

    Thisinvestigationwasinitiatedto exploretheproblemof corre-latingcomposite-~tructurefatiguebehavior-andbasic-mat&rialor simple-elementbehavior.To thisend,fatigueandrelatedstatictestswerecarriedoutonboxbeamsandonI-beamsandalsoon elementssimulatingkeylocationsinthetwotypesofbeams.Loadandstressconditionsforthefatiguetestswereselectedintherangeexperiencedbycommercialaircraft.

    Thefollowingconclusionsappearwarrantedonthebasisoftheinvestigation:

    Fortheboxbeam,thefatiguebehaviorat thecriticallocationof+ failurewasapparentlycorrelatedwiththebehaviorofa simplesimula-

    tionelement.Correlationwasobtainedwhenthemodeoffailureandthesecondarystresseswereduplicated.FortheI-beamthereappearedtobe

    4

    -—

  • 20

    qtilita~ive@eernentwith&......,.....detailedstressdistributionude @electionof& element

    NACATN4137.

    siiiilat’fbnerement.Uncei’taintiesinthein.{he,,region’offailure 01theI-beam Ec~n~ain~~t&s@ess irregularitiesdif-

    ficult. Itthusappearsthatthesi.uiulationapproachfillbe useful - ‘“forthosecaseswh&~e,by e~erfien~alstiidy,~~willbe possibleto_assessreasotiblyfactorscontributi~to stress-raisersinthestructure.

    High.fati@e,notchfactors(intermsoftheconventior~ldefinitionof stress)werefoundinboth~e~. Thisobservationsuggeststhatindesigntheuseof Kf ValuesobtainedfromSimplynotchedcouponsmaybe anunconservativepractice.

    Thestudyof sim~atfonelementssugjjestedthatsuchhighfatiguenotchfactoi?s&~ be e~ectedincomposite.structureswherebiaxialstressdistributionsandmarkedstressgradientsoccuraroundrivets.Thetijjoriaticeofriv=tedcmstructioninaircfiftdesi~ suggeststhat..-.

    fu&herabse$srn~iitof~fiee?i%~tof co~l~~Io&dingson~hefatiguenotchfactorsofrivetedcomponents,shouldbemade. If simulationele-mentsareiesi&edto containt~icalHecb-pdarystressandloadinflu-ences.asobservedinstructures,theresul@ntdatamayyieldmoreus&-ful K~ tiluesthanthosectientlyobta~nedonsimplynotchedcoupons.

    h. . . —.

    30, 1956. P

    .

  • NACATN4137

    APPENDIX

    21

    A

    a

    1)

    c

    d

    E

    10

    K

    z

    P

    s

    t

    v

    x

    TYPICALCALCULATIONSOFWMENTSOT INERTIA,BUCKLING

    STRISSES, BENDINGMOMENTS,ANDDEFLECTIONS

    symbols

    Thefollowingsymbolsareemployedinthisappendix:

    cross-sectionalareaofeachcomponentofbeam,in.2

    distancebetweenloadandsupportpoints,in. ●

    distancebetweenrivetrows,in.

    distanceto outerfibers,in.

    distancefromcentroidof componenttorespectiveaxisofinertia,in.

    Yew’s modilus

    momentof inertiaof eachcomponentofbeamaboutitsowncentroidalaxis,in.4

    momentof inertiaaboutneutralaxisofbeamsection(grossarea),in.4

    momentofinertiaaboutneutralaxisofbeamsection(netarea),in.4

    endrestraintconstant

    distancebetweenloadpoints,in.

    appliedloadineachloadingarm,lb

    bucklingstress,ksi

    weborflangethiclmess,in.

    Poisson’sratio

    centroidaldistanceofnet-areasectionfromaxisA-A (axiscoincidentwithcompressionsurface),in.

  • 22 N4CATN4137u

    mtdspandeflection,in.

    overhangdeflection,in.

    SummaryofMomentsofInertia,BucklingStresses,

    BendingMoments,andDeflectionsofBoxBe~

    Themomentsofinertia,bucklingstresses)bendingmomentsjanddeflectionsofthe

    Momentofinertia:,

    Neteffective

    boxbeam”areas

    area,inches4

    follow:

    1==’sAd2’Y‘0-&=7.7~L-J uGross area, inches4

    — —

    l==L‘d2+P0=8“727Flange-skininterrivetbucklingstress,

    s=fi2~t2

    12(1-+’)b

    Flange-skininterrivetbucklingbending

    Neteffectivearea,inch-pound

    ksi:

    = ko.o

    moment:

    Pa . %= 93,500c

    Grossarea,inch-pound -.

    SImPa=Y= 113,200

    b

    .—

    ——

    .

    -.

    F

    +

    u

  • NACATN4137 23

    Deflection:

    Neteffectivearea,inch

    PaZ2Yl=— = 0.00000088Pa

    m%

    Pa2(3Z+ 2a)Y2 = = 0.000~39Pa

    6EIm

    Grossarea,inch .

    PaZ2Yl=~ = 0.00000078pagg

    y2 = Pa2(3Z+ 2a)= o.m35 Pa6EIgg

    Momentof inertiaat centerofbeam:

    Neteffectivearea,inches4

    %J= xAd2+ 10 -&S = 40.88Grossarea,Inchesh

    ‘=‘I “2‘z10=41”55Momentof inertiaat sectionthroughthefirstrivet=d shearplate:

    Neteffectivesrea,inches4

    In= 57.8

    Grossarea,inches4

    %3= 58.67

  • 24

    Deflection:

    Neteffectivesrea,inch

    ‘1 =

    Y2 =

    Grossarea,inch

    Y1 =

    y2 =

    fQ&=0.000000333Pa

    ~a2(3~+ 2a) s o ooooo156pa6EI= “

    .

    Pa12 _8EIa

    o.000000328Pa

    Pa2(3Z+ 2a)= 0.00000154Pa6EIgg

    NK!JJTN4137

    .—

  • NACATN 4137

    REFERENCB

    1.Brueggeman,W. C.,Krupen,P.,andRoop,F.of10AirplaneWing-BeamSpectiensby theTN 959,1944.

    c.: AxialFatigueResonanceMethod.

    TestsNACA

    2.Anon.: FlexuralFatigueTestsofSomeAluminumAlloyWingBeamsofSeveralDesigns.Prog.Rep.No.1,Bur.Aero.,Aug.1947.

    3.Howard,DarnleyM.: FlexwalFatigueTestsofWingBeams.NBSRep.1350,Bur.Aero.,Dec.1951.

    4.Johnstone,W. W.,Patching,C.A.,andPayne,A. O.: Anl&qerimentalDeterminationoftheFatigueStrengthofCA-12“Boomerang”Wings.Rep.SM 160,Aero.Res.Labs.(Melbourne),Sept.1950.

    5.McGuigan,M. James,Jr.: InterimReportona FatigueInvestigationofa Full-ScaleTransportAircraftWingStructure.ma ~ 2920,1953.

    6.Howard,DarnleyM.,andKatz,Silas:RepeatedLoadTestsofAircraftWingBesmSpecimensUnderBendingandBending-TorsionLoads.Nat.Bur.StandardsRep.4720,Bur.Aero.,June1956..

    7.Grover,H. J.,Bishop,S.M.,andJackson,L.R.: FatigueStrengths ,ofAircraftMaterials.Axial-LoadFatigueTestsonUnnotchedSheet-. Specimensof2kS-T3and75s-T6AluminumAlloysandofSAE4130Steel.NACATN 2324,1951.

    8.Grover,H.J.,Bishop,S.M.,andJackson,L.R.: FatigueStrengthsofAircraftMaterials.Axial-LoadFatigueTestsonNotchedSheetSpecimensof2hS-T3and7x-T6AluminumAlloysandofME 4130SteelWithStress-ConcentrationFactorsof2.0and4.0. NACATN 2389,1951.

    9.Grover,H. J.,Bishop,S.M.,andJackson,L. R.: FatigueStre@hsofAticraftMaterials.Axial-LoadFatigueTestsonNotchedSheetSpecimensof2&-T3 and75S-T6AluminumAlloysandofSAE4130SteelWithStress-ConcentrationFactorof 5.0. NACATN 2390,1951.

  • .

    TimLEI

    MECHANICAL PRolmTIEsa cm’MMcmIMs USED~BOXBl?AM

    Tensile Yield strength ElongationMcdulusofMaterial. strength, (O.2 percentoffset),in2 in., elasticity,

    ksi kai percent psi

    O.@-inch 2@+-T3 72.3 53.4 18.2 10.6X 106aluminum-alloysheet

    O.0~1-inch2024-T5 m.1 32.4 19.2 10.6aluminum-alloysheet

    (3/4- X 3 4- X O.@l-inch 67.1 53.2 17.2 10.62024-T EihIOlhUItl~Oyextruded angle

    aAv=e st~e~h VELIWS from f’o~Wec*ns.

    4=G-1

  • 1 t

    Specimen

    BendingmcdnentPa,1,000in-n

    Maximum I Mean

    TABLE II

    S!rmi%msm EoxBEluS

    Calculatedweb stress, ksi

    Fat iguelife,cycles

    (a)

    Measured webstress, ksi

    Maxmml

    64.869.882.162.2$.257.082.751.26’7.1

    41.844.842.842.543.744.443.641.941.0

    Pm,m193,76036,670265,3ecl624,7(x)

    1,137)12030,540

    5,294,630108,m

    20.220.624.217.715.816.724.215.620.3

    Mean

    12.712.912.512.112.41.2.212.312.712.7

    Eased on grossarea

    YMaximum-

    19.4 I-2.620.9 13.424.6 IJ2.918.7 I-2.816.8 13.217.1 13.424.8 13.115.4 12.420.1 12.3

    Based on ne%area

    Maximum

    23.925.’j’30.322.920.721.031.118.924.7

    Mean

    15.416.215.815.616.116.416.415.515.1

    !24=

    G-a

    %ee tableIIIandfigure8 forlocationoff’ailme.

  • mm

    $pecimen

    1

    2

    3

    4

    k-l

    5

    5-1

    6

    6-1

    TABLB III

    SUIMARYOF EOX-REAMFATIGUEFAILUREDATA

    Data cm firstobservedfatiguecracks

    Member

    WebFlangeWebChordangle

    WebCh6rdangleW&bChordangleWebCbrd angleWeb

    WebChordangle

    WebFlmge

    aseefigore8.

    [email protected]

    crack

    9

    10

    r +

    I

    Rivethole

    ~

    2; 59

    2; 5; 5; 52; 5; 5; 8

    2; 5; 5; 75; 8

    2; 5; 5; 85552

    55

    22

    Fatiguelife,cyclee

    289,00289,@193,T60193,[email protected]

    36,67036,670265,3i?0265,3E!0624,700656,8&l

    1,137,120

    w>%

    108,ooo

    Final failm

    Fatiguelife,cycle6

    289,850

    193,930

    43,Ym

    685,530

    32,$L0

    Renwks

    Fatigue-crackdetectionwirewas not used

    Fatigue-crackdeteetionwirewas cementedto flmgeteosionskin only;webapy=ed to failat rivet:

    Web failedfirstat rivet7

    Test stopped;b= turnedoverfor test 4-1

    Webfailedfiret

    Teststopped;beenturnedoverfortest5-1

    Did mt fail;beam turnedoverfar test 6-1

    Testwasmt continuedtoultimatef%ilore

  • f ? .

    E3

    Specimen

    1

    2

    3

    4

    5

    6

    86-1

    TAmLEIv

    SUMWSRY OF FATIGUE-TESTDATA ON FIRST SIMULATION ELEMENT FOR BOX BEAM

    Fatiguelife,cycleB

    533,000

    767,01x)428,ooo

    165,000

    791,000

    16,625,m

    $),634,0MI

    Measuredstress, kai

    19.5

    19.021.3

    25.4

    17.9

    l~.k----

    Mean

    12.6

    12.211.2

    1.2.8

    12.o

    14.0----

    Calculated stress, ksi

    Based ongross area

    iaximm

    21.1

    20.3

    =.8

    25.1

    18.8

    16.2

    17.9

    Mean

    14.1

    14.511.7

    =.8

    12.8

    12.8

    u?.8

    Based onnet axea

    Maximum

    24.9

    23.9

    25.6

    29.5

    22.1

    19.0

    21.0

    Mean

    16.6

    15.413.8

    15.0

    15.1

    15.0

    15.0

    Location of failure

    Angle; l? in. off center

    Angle; 7/8III.off centerAngle; ~ in. off center

    Angle; 1$ h. off center

    Angle; 1: in. off center

    Did not fail

    Angle; 7/8 in. off center

    %etest of specimen 6.

  • 30 NACATN 4137●

    TABLEv

    RESULTSOFFATIGUETESTSOFSECONDSIMULATIONELEMENTFORBOXBEAM

    Calculated Calculated

    SpecimenFatiguelife, stressbased stressbased Locationof

    cycles ongrossarea, onnetarea, failureksi ksi(a (b)

    7 35,700 25.0 33.5 Center8 92,900 21.0 28.1 Center9 278,400 18.0 24.3 Center10 432,000 17.0 22.8 Center11 2,787,000 16.0 21.4 Center12 47,000 23.0 30.8 Center13 1,244,ooo 16.5 22.1 Center14 289,000 19.0 25.2 Center15 +20,019,000 12*5 , 20.8 Didnotfail16 2,446,600 16.0 21.3 Center17 +25,165,000 15.8 21.0 Didnotfail18 121,900 20.0 26.9 Center

    aEquivalenttomaximumstressesfromstrain-gagedataobtainedontwo~pecimenscalibratedoverthemaximumtest–ladrange.Meanstressrangedfrom12.5to 13.0ksi.

    bMeanstressrtigedfromabout17.4to=.8 ksi.

  • +-G--4

    TAELEVI

    MECHANICAL PROPERTIES OF M4TERIALS USED IN I-13EAJSa

    Tensile Yield strength Elongation Modulue OfMaterial strength, (0.2 percent offset), in2 in., elasticity,

    ksi kai percent psi

    0.0~2-inch 202k-~ 72.5 52.7 17.9 10.8x 106almimm-alloy sheet(sheet 1)

    0.0T2-inch 202h-T3 72.8 55.7 18.4 lQ.7aluminum-alloysheet(sheet 2)

    2024-T4 alminm-alloy 65.7 47.9 15.6 10.4extruded angle

    aA_e stre@h VF&.ES forfOUZ Spechens.

  • 32 NACATN4137

    SUMMARYOFI-BEAMFATIGUEFAILUREDATA

    Failing Locationof FatigueSpecimenmember failurelife, Remarks

    (a) cycles

    1 Chord Betweenrivets 86,330Failureassociatedlamd2 withmetallographic

    flawon surface1-1 2 chords Rivet3 137,&lo Catastrophicfailure2 2 chords Rivet3 75,3502-1 1 chord Rivet3 1,915,480Failuresassociated

    1 web withsamerivethole

    %ee figureI-8.

    t

  • ,

    TAELE VIII

    STRESSES IN I-J3EAM3

    Specimen

    11-122-1

    Bending nlomentFatigue

    Measured chordPa, 1,000 in-lb

    life,0tresi3,ksl

    ~“c’e” LMaximum Mean (a) Maximum

    I I 1253 133 E%,330 23.0249 U8 137,m l~.o256 135 75,330 15.8176 IJ8 1,915,483 E!.o

    Mean

    11,g;.;

    8:0

    Eased on gross

    I

    Based on netarea area I

    Maximunl Mem M9xhlluln Meaq

    26.6 lk.o ---- ---17.0 17.217.3 ;:; 17.8 ::?12. o 8.1 12.2 8.2

    %ee table VII and figure 18 for location of failure.

    bCalculatlonsbased on momnt of inertj.aat cross section associated with failure.

    UNu

  • 34 NACA‘m 4137d

    TABLEIx

    RESULTSOFFATIGUETESTSONSIMLJLATIONCOUPONS,TYPED,FORI-BEAM

    Computedstresse,s, LoadingetressesSpecimen tiomstraingages,Lifetime

    ksi ksi to failure

    123C4

    z

    C7

    11.5f 8.48.4& 8.38.3,&6,4

    13.0 * 6.4

    9.9* 8.310.9* 6.89,3& 7.1708f 6.87.3& 5.16.o ~ 4.5

    468,000628,000738,000136,000

    3,222,0002,507,0001,235,000

    .

    r

    .

    aCo utedstressesatrivetcenterlinewereobtainedfroms=; F

    P+ ~, where P iseithermeanoralternatingloadand M = ~;

    u

    2 i:use’dontheassumptionthatthefirstfiverivetsofthegroup‘6ofsixrivetstakealtogether5/6P. Inthisexpressione and yrepresentdistancebetweencenterlineof chordandrivetrow.

    bSeetextformethodofextrapolation.cIndication,fromothergages,ofunusualgradient.

  • 1 r

    I I4++++++++II I, +++9 ++++

    P --’”’~””+

    1‘+3= N% 21dril

    Irt, $+Zrivet

    ,4 & u+,+,++ -b- * -

    Figure l.- Schemtic drawing of box-beam specimen. For

    A-A

    section A-A: top skin, O.~-incheheet; bottm skin, O.C@-inch sheet; webs, O.Vjl-inch sheet; chord &les, -O.~ x 0.75 x

    O.091-inch extrusion;stiffeners,1 x ~ - inch b~ck; moment of inertia (based on net area),

    7.75 inch4; and moment of inertia (based on gross area), 8.~ inch4.

  • 36 NACATN 4137

    I,

    L-77-3623

    Figure2.-Testsetupforstaticandfatiguetestingofbox-beamspecimen.

    8

    —,

  • .t

    f.

    #

    s’

  • ----+-- “ ~ge ,8Gage 33

    3E

    Gage 34Goge3 ~’ Goge 7

    — Goge4=, Gage 12

    Gage 36

    %

    Gage23

    ‘-Goqe 28

    Liz23 3:2840 36 32 26

    \ Centerline of beam

    o35

    I I I20 16 12 8 4

    Tenskm

    +

    All gages”wera SR- 4 ‘Nos 1-12, AR-2, ~ -inch length

    Nos. 13-3< A-3, H -inch length

    Nos 33-76, A-7, ~- inchlength —

    Nos.79, 80, A-3,% - rnchImqth

    NOS.W, 91, A-7,*- inti len9th

    I4812 16 20 24 26 32364

    Compmssirn

    .

    I

    Stress, ksi

    Uw

    Figure 4.- 8tress distribution on sectionD-D for 90,000 tich-pomd bending mom?nt. For strain- ~gage ~cations see section-D-D in figure 8. w+

    . ●

  • . t

    1

    d-x

    z Gage 13= I‘Gage 18 _

    ,Gage 23 —

    = I~

    --’---.1Gage 29

    Strain-gage Iocatians

    I I I68101214

    c

    /

    ,

    I I I I I22 24 26 28 30 32 34 36 30 40 42

    Stress,ksi

    Figure ~.- S%rest3variation of skin of section D-D with applied mulent. For fitraln-gagelgca.tions see section D-D in figure 8.

  • 40 NACATN413’7

    4

    4

    4

    4

    4

    3

    3

    3

    3

    3

    2

    I

    I

    I

    I

    I

    a-

    ,6—Goge91

    4

    2 —

    o

    8—

    6

    4 —

    2

    0—

    8 Gage 901(longitudinalstress~

    o

    6“

    4

    2 —

    o~

    8—

    6

    4 “

    2

    0—

    8 J

    6 —

    4

    2 —

    o0 18 36

    BendinYMfiment,7;O00inch~%mds106 I26 1’

    Figure6.-Stressvariationofbox-beamweb(betweenstiffenerrivets)

    .

    ..-— withvariationinbendingmoment.

  • , # * ‘

    Figure 7.-Resultsofbendingfatiguetestsonbox-beamweb8ectionat12.~-ksimeanstress.

  • 4=ril

    0 0 (q o,,~O’+-.Q. . .I

    000 +0 o 00 Iw w w w w w w

    HK J.

    78 6

    Figure 8.- Box-beam specimen, midspan-rivetpattern. Ihiberfbox beam.

    ‘4 \9

    indicate locations of failure in’

    ,

    I I

  • NACATN 4137 43*

    .

    L-57-3625

    Figure9.- Fracturedsurfaceat fatiguenucleiofbox-beam2.

    —- -,,.,,--—. -.,. -,=~—.=_- :..-

    .-; _3’ y~”’”-:mfj)””~

    =.-.. ~. __~----

    .- “>>= __”__ =s!—s-—..——

    . .

    L-57-3626Figure10.- Fatiguecrackinbox-beam.6-1.

  • 0.19i-inch

    \

    diam

    A-

    Figure U_.- Detailed drawing

    sheet; chord angle, 0.75

    .-

    .—

    * lll--J

    of the first shmilation element. For section A-A:

    x 0.75 x O.091-tich extrusion;and rivets, ~ - inch

    m ●

    I ,;,1 ‘.!,

    T3“

    I

    I

    web, O.Ojl-inch

    diameter.

    . *

    ,11,:,

  • * , .,

    G 1 1 1 I I I I I I \ I I 1 IZ I

    $ Gage 2/~Gage I

    ,~4 & ~s ~7

    Fatigue Life, cycles

    Figure 12. - Results of axial-load fatigue tests on the first simtitirm element for bax beam.Mean stress,12.5 ksi.

  • ~. 0.191-inch diem.

    ‘12-inch rad

    I5“ +

    It II Iii

    4

    Figure 15.- Detailed dxawing of second simulati~ element. Web, 0.051-inch

    1 x ~- ~ch ~~i~; ~d ri~ets, _?_-inch ~~ter.—-28 16

    .

    I

    stiffeners,

    t .

  • 47

    36

    32

    26

    .20

    16

    x

    y ‘f’ ox,

    x

    w

    // /

    / “x

    /

    /x

    /

    //

    /

    x

    o SecondsimulationelementA

    0’x Box beam

    ‘/

    /

    o I 2 3 4 5 6 7 8TransverseStress, ksi

    Figure14.- Compsrisonof longitudinal-stress-transverse-stress reu.tionstip of second simulation element and box beam.

  • ~4 ,.510’

    ~?

    Fatigw Life, cycles

    Figure 15.- Restits of sdal-lead fatigue tests on second simulation element for box bean.

    ,,.h-ddl-l4=03

    . , . .

  • . Pm’

    , ,

    c+ sy mB + 4“~“

    4

    k Syln

    Figure 16. - Schermtic

    ;4J ~A’c+

    drawing of I-beam specimen.

    I

  • -+

    2Section A-A

    Figure 17. - Eeam sections of speci.mn shown in

    and Igg “

    41.55inchesL;r~ secti~B-B,

    I --

    4

    Section B-B

    . , b

    I

    figure 16. Fm sectionAA, 1= . 40.88 inches4

    In = 57-8 ~C~S4 ad Iu = 58.7 inches4.

    1! I

    *

    ,:

    .

  • * , , ,

    1 I I 1 1

    @d’‘, e+ -—-——-----Center

    Stiffener

    3XR!R_--,----

    4...-—_.L ----3-q&a

    HD-@@-Q-_—_____ ____

    Figure 18. - I-beam specimen,midspan-rivet

  • ,

    I I I

    ‘“9’57[’we”i ~ Goge 86

    Goge4~ l— Goge 3

    I-— Gage 20

    1 1

    50

    r& Gage 18

    l— Goge 16

    Goge 2 —1 * Gage IJ ~Goge72

    Goga 371 ~ G$%%5%0

    ‘Centerline of beom

    All goges were SR-4

    Nos. 1-12, AR- 1! ~-inch length

    Nos. 13-55, A- 3, ~inch length

    Nos. 56-87, A- 7, ~inch length37

    36

    I I I I I I I I40 36 32 20 24 201612 B40 -4-8 -12 +6 -20 -24 -Ze -32 -36 -40

    Tension Stress, ksi Compression—

    Figure 19. - Stress di@ribution on cross section at center of midspan of I-beem for270,000 inch-poundbending mcment.

    , T 4 ,

    ,, ,,

  • NACATN 4137 !33.

    .

    .

    .

    \ \ -—-. x-- 2nd sideof first beam\\

    \\\ –-~ Ist side of secondbeam

    &\ ~ 2nd side of secondbeam

    b \\+

    \\

    \\

    \

    \I

    I u uo 4 8 12 16 - 20Tensile Stress, ksi

    .

    .

    Figure20. - Tensile-stressdistribtiionat crosssectionthroughfirstrivetin shearplateof I-beamforappliedbendingmomentof240,0CQinch-pounds.

    —,. .

  • 54 NACATN4137*

    .

    —-.

    shear p104‘--py5

    ,~*b -’- —,.

    .’

    ...= .....L_. _.. .—. ...=.._ . .. . . ...= . . . . . . . . . ..—=

    : – .7- .-=

    .>: . . .. ..- ---- -—

    . . +, _._. _&. _ -a F_y .1<: .. J--- --

    _—_. . . ..._, -..

    L-57-3627

    Figure21.- FatiguefailureinsecondI-beam.

    .

  • B!4~

    12+

    .-

    2 10.

    :

    =

    93

    mw~

    66

    2g

    E

    :4

    2

    0104 IOs K+’ 10’ A-199eo

    Fatigue Llfe,cycles

    Figure 22.- Results of bending fatigue tests on I-beam chord section at 8-ksi measured meanstress. N

  • 56 NACATN4137

    I.I I

    .I I

    -I I

    -I

    -I I I 1 I

    Iu u u u u u

    I Thicknessofeachpiece=0.081w

    II I 1 I

    .1

    nI I I 1 I1

    n

    I II I

    I

    u I Lu u I I IuI i

    u u 1

    I-10”

    3“

    I

    Thicknessof eachpiece=(1081”

    I I InII

    It

    n nI

    nI I

    nI I1

    nI I

    u u u u w ~~ J

    TypeC

    ‘o”~ *,,,5,Figure23.- ElementsinpreliminarytestsforsimulationofI-beam.

    [ +“ Types Aand Bb

    L

    Type A

    .

    II

  • , , . ,

    Gages1,3 Gages5,7

    Gages 1,2,5,6on front side

    Goges %4,7,0 on reverse side

    Figure 24.- I-beam element (type D) with location of eight strain gagesindicated.

    U-1

  • 12

    .

    G 10x$

    a=~a

    4n9~

    3i6

    G

    z

    Z4

    2

    010+ 105 10s 107

    FutigueLife,cycles

    Fi@re 25.- Results of fatigue tests on simulation elements for I-beam.

    , . , . ,

    1

    -F=

    G--J

  • Figure 26. - JRM.gua notch factors in beam tests.

  • Figure 27. - Fatiguenotch factors for simulationelements.

    ,’