18
1 Supplementary Figure 1 Brain magnetic resonance imaging in patient 9 at age 3.6 years. (ad) Axial T2-weighted images show a marked degree of ventriculomegaly. Note the diencephalicmesencephalic junction dysplasia, characterized by a lack of separation between the hypothalamus and midbrain (arrowheads in a). In the nucleobasal region, bilaterally, there are dilated perivascular spaces (arrowheads in b) and an abnormal morphology of the basal nuclei, with prominent thalami (labeled T in c) and maloriented putamen and caudate heads (labeled P and C, respectively, in c). Note also the bilateral abnormal orientation of the posterior arms of the sylvian fissure (empty arrows in d). (e) An axial T1-weighted image obtained with a volumetric technique shows thickening of the left perisylvian cortex, consistent with polymicrogyria. Cortical abnormality is less prominent controlaterally, despite the abnormal orientation of the sylvian fissure. (f) A left parasagittal T1-weighted image shows abnormal orientation of the sylvian fissure (arrows), which is continuous with the sulci of the convexity without a normal posterior delimitation; this pattern, which was also visible controlaterally (data not shown), is typical of perisylvian polymicrogyria. (g) A midsagittal T1-weighted image shows shortened, hypoplastic corpus callosum with a thin splenium (thin arrows) and lacking a proper rostrum (thick arrow); also note the absence of a well-defined anterior commissure (arrowhead). Nature Genetics: doi:10.1038/ng.3578

Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

1

Supplementary Figure 1

Brain magnetic resonance imaging in patient 9 at age 3.6 years.

(a–d) Axial T2-weighted images show a marked degree of ventriculomegaly. Note the diencephalic–mesencephalic junction dysplasia, characterized by a lack of separation between the hypothalamus and midbrain (arrowheads in a). In the nucleobasal region, bilaterally, there are dilated perivascular spaces (arrowheads in b) and an abnormal morphology of the basal nuclei, with prominent thalami (labeled T in c) and maloriented putamen and caudate heads (labeled P and C, respectively, in c). Note also the bilateral abnormal orientation of the posterior arms of the sylvian fissure (empty arrows in d). (e) An axial T1-weighted image obtained with a volumetric technique shows thickening of the left perisylvian cortex, consistent with polymicrogyria. Cortical abnormality is less prominent controlaterally, despite the abnormal orientation of the sylvian fissure. (f) A left parasagittal T1-weighted image shows abnormal orientation of the sylvian fissure (arrows), which is continuous with the sulci of the convexity without a normal posterior delimitation; this pattern, which was also visible controlaterally (data not shown), is typical of perisylvian polymicrogyria. (g) A midsagittal T1-weighted image shows shortened, hypoplastic corpus callosum with a thin splenium (thin arrows) and lacking a proper rostrum (thick arrow); also note the absence of a well-defined anterior commissure (arrowhead).

Nature Genetics: doi:10.1038/ng.3578

Page 2: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

2

Supplementary Figure 2

Capillary electrophoresis analysis of NANS cDNA retrotranscribed and amplified from RNA extracted from cell cultures.

(a) Schematic of the exon–intron structure of the NANS gene. Asterisks indicate mutations with a putative effect on exon splicing (see Table 1 for details): EXins: c.385_386insT, exonic single-nucleotide insertion producing a frameshift and creating a premature termination codon; SPLko: c.488+1G>T, a canonical splice donor site mutation; INTindel: c.449–10delGATTACinsATGG, an intronic

indel 5 of exon 4. (b) Pedigrees of patients 1, 3, and 4, and corresponding capillary electrophoresis traces of semiquantitative RT-

PCRs spanning all analyzed NANS mutations. We assessed unprocessed PCR products obtained with the same primer pairs and allowing the simultaneous ampli-fication of the wild-type and the mutant mRNA (cDNA) forms, indicated on the right, within the same reaction. See the main text for discussion of the results.

Nature Genetics: doi:10.1038/ng.3578

Page 3: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

3

Supplementary Figure 3

Expression of NANS in human brain as extracted from the Brainspan database.

In brain, NANS is expressed at significantly higher levels in the thalamus than in other brain regions (top) (http://developinghumanbrain.org/). Expression seems to be highest in the dorsal thalamus (bottom), which is an important relay station for the limbic circuit (The Human Nervous System 439–468 Academic Press, 1990) and participates in learning and memory processes (J. Neurosci. 34, 15340–15346, 2014), which might contribute to the developmental delay in patients with NANS deficiency.

Nature Genetics: doi:10.1038/ng.3578

Page 4: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Supplementary Table 1. Overview of the filtering of exonic and splicing variants observed in the patients.

Pat1 Pat2 Pat3 Pat4. Pat.9

Number of exonic and

splicing variants

22737 22670 22600 23017 21921

Number of non-

synonymous variants

11396 11358 11349 11578 10878

Number of rare variants

(<1%)

863 909 868 926 495

Number of rare variants

after quality control (QC)

281 342 320 345 4291

Number of genes with 2

heterozygous variants

11 12 13 18 19

+ in common in each sib

pair

4* 4** -

+ in common in all four

patients

1*** -

In common in all 5

patients

1***

Values refer to number of variants unless specified otherwise. Rare (<1%): Variant frequency

= 1% or less in public databases – ExAC, ESP, and Wellderly, 1KG (from Complete

Genomics). Rare (QC): Rare variants after quality control, i.e. after removal of (1) WES data

of poor quality, with less than 15 reads per nucleotide and genotype quality less than 50, (2)

variants present in control WES processed by the same pipeline (to remove technical error),

and (3) variants which have healthy homozygous individuals in public database (ExAC). See

URL section in main manuscript.

1Family 3 (pat 9): the analysis was based on Vancouver pipeline that incorporates some of the

quality control steps earlier in the pipeline

Nature Genetics: doi:10.1038/ng.3578

Page 5: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

*Family 1 (pat 1 & 2): Genes: NANS, AQP7, SLCO1B7, ZNF429

**Family 2 (pat 3 & 4): Genes: NANS, ATP11A, OR14I1, PCDHB8

*** Gene: NANS

Nature Genetics: doi:10.1038/ng.3578

Page 6: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Supplementary Table 2.

Abnormal features observed by liquid chromatography- QTOF mass spectrometry in the cerebrospinal fluid of patient 9.

ESI positive mode

ESI negative mode

# Ranking Mass RT # Ranking Mass RT 1 244.07902 0.73 1 256.05916 0.69 2 204.08663 0.72 2 256.09295 0.73 3 123.05511 1.38 3 258.05683 0.68 4 219.11006 5.88 4 240.96941 18.37 5 246.10811 0.78 5 258.07227 0.88 6 168.06524 1.20 6 223.01996 14.79 7 137.08057 0.76 7 147.06612 2.79 8 138.05458 0.71 8 259.09362 0.74 9 316.21164 4.78 9 166.05073 1.25

10 99.04171 1.06 10 256.09391 0.97 11 195.11299 4.80 11 344.94818 0.72 12 221.01043 1.09 12 204.08818 0.83 13 170.08089 1.74 13 211.10854 5.68 14 220.97417 1.05 14 200.05651 3.14 15 130.97859 1.07 15 218.06673 0.91 16 429.31854 18.87 16 202.07188 1.48 17 235.0938 5.77 17 168.06649 1.45 18 206.10187 0.86 18 182.04549 3.01 19 281.08261 1.10 19 100.04102 0.82 20 327.1061 2.93 20 346.08176 0.66 21 317.21478 4.79 21 148.06532 2.76 22 196.13208 4.81 22 167.0543 1.24 23 191.0786 3.81 23 236.05632 2.17 24 184.06022 3.01 24 208.0615 3.07 25 226.06796 1.62 26 191.08086 4.40 27 177.07548 1.82 28 343.31986 1.06 0

The CSF samples of patient 9 and of 15 healthy controls were analyzed by reversed-phase liquid chromatography and high-resolution QTOF mass spectrometry on an Agilent 6540 QTOF. The features (signal with exact m/z (mass-to-charge ratio), RT (retention time) and intensity) obtained were aligned

Nature Genetics: doi:10.1038/ng.3578

Page 7: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

using the XCMS software (https://metlin.scripps.edu/xcms/), after which statistical analysis by Bonferroni-corrected t-tests identified significantly different features between our patient and controls. Features that represented the same ion (adducts, ion-source fragments) were combined. In ESI-positive mode, 28 significantly different features were identified; in ESI-negative mode, 24 significantly different features were detected.

Feature 1 in positive mode (m/z 244.07902 @RT 0.73) represents the Na-adduct of N-acetylmannosamine; Feature 1 in negative mode (m/z 256.05916 @ RT 0.69) represents the Cl-adduct of N-acetylmannosamine. In addition, feature 6 in ESI+ and feature 9 in ESI- represent the [M+H]+-adduct, respectively, the [M-H]- adduct of (iso)pyridoxal; feature 13 in ESI+ relates to the [M+H]+ adduct of pyridoxine, which is also detected in negative mode (feature 17, [M-H]- adduct). In negative mode, also the [M-H]- adduct of pyridoxic acid is detected (feature 18). These latter features are secondary to medication with vitamin B6 for seizures. All these annotations have been confirmed by analysis of the chemical standard. Other possible annotations against the HMDB database are not listed as they have not been confirmed by chemical standards and are putative annotations.

In general, features in this table were significantly different from control samples. They may partly relate to more distant effects of the metabolic perturbation caused by NANS deficiency, or, alternatively, be secondary to the perturbed development of the brain and/or ongoing epileptic activity. If the first hypothesis were true, others may be able to confirm such effects as m/z values and approximate retention times can be reproduced on other systems.

Nature Genetics: doi:10.1038/ng.3578

Page 8: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Supplementary Table 3.

Analysis of free sialic acid (Neu5Ac) by mass spectrometry in urine, CSF and fibroblasts

(see main manuscript for methods).

Urine CSF Fibroblast cultures NeuNAc in µmol/mmol

creatinine (age-related reference range)

NeuNAc in µmol/mmol creatinine (age-related reference range)

NeuNAc in in nmol/mg protein (reference range of 5 controls)

Pat. 1 10 (2-11) Pat. 2 8 (2-11) Pat. 4 (Family 2) 0.8 (0.9-2.0) Father (Family 2) 0.7 (0.9-2.0) Pat. 8 11 (2-11) 3.7 (0.9-2.0) Pat. 9 20 (12-34) 8,1 (2-24,4) 1.3 (0.9-2.0)

Nature Genetics: doi:10.1038/ng.3578

Page 9: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Supplementary Table 4.

Analysis of the glycosylation of plasma proteins.

Pat.1 (Fam. 1)

Pat.2 (Fam.1)

Pat.3 (Fam. 2)

Pat. 4 (Fam. 2)

Father (Fam 2)

Mother (Fam 2)

Pat. 9 Reference range (in %)

Transferrin N-glycosylation (IEF) TF-0 1,1 1,1 0,9 0,8 0,9 0,8 1,6 0 - 3.2 TF-1 2,1 2,3 1,5 2,6 1,3 1,4 3,4 0 - 5 TF-2 5,1 4,7 3,7 4,4 3,9 3,5 4,7 3.3 - 7.6 TF-3 11,8 12,9 14,1 11,8 8,9 11,7 8,8 4.9 - 10.6 TF-4 59,7 58,7 62,1 62 63,7 60,8 57,4 47.3 - 62.7 TF-5 16,2 16,7 15 15,2 17,1 17,7 19,7 18.7 - 31.5 TF-6 4,1 3,6 2,8 3,1 4,3 4,1 4,6 3.2 - 7.8 Transferrin N-glycosylation (QTOF) T3-TF1 5,6 5,9 9,6 6,3 3,8 5,4 2,3 <5 ApoCIII O-glycosylation ApoCIII-0 4,4 2,3 6,7 5,3 4,3 4,9 5,5 1.4 - 9.5 ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8

1 T3-TF (Trisialotransferrin) corresponds to the fully glycosylated transferrin lacking a single

sialic acid residue, as a measure for hyposialylation (molecular mass 79266 Da in reference 49).

Analysis of transferrin N-glycosylation and apolipoprotein CIII mucin type O-glycosylation

was done by isoelectrofocusing, and transferrin N-glycosylation also by nanochip-QTOF mass

spectrometry; see main manuscript for methods.

Nature Genetics: doi:10.1038/ng.3578

Page 10: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Supplementary Table 5. Sequences of PCR primers and morpholino oligonucleotides.

Primer pair spanning the exon-exon junctions 1-2 and 5-6 of the human NANS gene (used to selectively amplify cDNA retrotranscribed from fibroblasts)

Forward: 5’-CAAGGAGTGTGGGGCTGATT-3’ Reverse: 5’-CACCACAGACTTGCCCAGCTTCTC-3’

D. rerio nansa-e3i3 morpholino 5’- AGGGAAATATTGGACCTTTTTGGGC -3’

D. rerio nansb-e1i1 morpholino 5’ - AAATACCGCATATCTTTACCTTGGC -3’ D. rerio standard control MO 5’- CCTCTTACCTCAGTTACAATTTATA-3’ D. rerio nansa primers used to amplify cDNA retrotranscribed from 24hpf embryos

Forward: 5 ’ - GAACGGCCATACACCTCAAA -3’ Reverse 3’- AGTTCTGATTGTGCTCCTTCAC -5’

Nature Genetics: doi:10.1038/ng.3578

Page 11: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

SUPPLEMENTARY NOTE

Clinical Patient Reports

Nature Genetics: doi:10.1038/ng.3578

Page 12: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Nature Genetics: doi:10.1038/ng.3578

Page 13: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Nature Genetics: doi:10.1038/ng.3578

Page 14: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Nature Genetics: doi:10.1038/ng.3578

Page 15: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Nature Genetics: doi:10.1038/ng.3578

Page 16: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Nature Genetics: doi:10.1038/ng.3578

Page 17: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Nature Genetics: doi:10.1038/ng.3578

Page 18: Nature Genetics: doi:10.1038/ng · ApoCIII-1 58,2 64,2 37,4 51,7 50 55,5 61,1 48.5 - 75.2 ApoCIII-2 37,4 33,6 55,8 43 45,7 39,5 33,3 21 - 45.8 1 T3-TF (Trisialotransferrin) corresponds

Nature Genetics: doi:10.1038/ng.3578