121

NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector
Page 2: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

NAVAL POSTGRADUATE SCHOOL

Monterey, California

Commodore R. H. Schumaker David A. SchradySuperintendent Provost

This thesis prepared in conjunction with researchsupported in part by Defense Advanced Research Projects

Agency under DARPA Order 4035.

Reproduction of all or part of this report is authorized.

Released as aTechnical Report by:

J. ND.YDER /Dean of Science and Engineering

. . .

Page 3: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector
Page 4: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

UNCLASSIFIEDSECURITY CLASSIFICATION OF THIS PAGE (IWhen Data Entered)

20. Abstract continued

orientations are resolved and the lens studies for a rangeof orientations and strengths of gradient. The best lens isthen used in conjunction with the mirror and detector in aray-tracing scheme. Such a system was found to be feasibleand worthy of further study.

N 0102- LF-

014- 6601- '

(IN(, A---, T EDSIECURITY CLASSIFI#CATION OF THIS PmAGEr(Wheff Data EnIS-e,'

2

Page 5: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

Approved for public release; distribution unlimited.

SUPERSONIC MISSILE SEEKER LENS SYSTEMUSING GRADIENT INDEX MATERIAL

FOR FIRST ELEMENT LENS

by

David S. DavidsonCaptain, Canadian Forces

B. Eng (Engineering Physics), Royal Military College, 1976

Submitted in partial fulfillment of therequirements for the degree of

MASTER OF SCIENCE IN PHYSICS

and

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1984

Author: *David S. Davidson

Approved by: __ __A. E. Fuhs, Thesis Advisor

E. A. Milne, Second Reader

G. E. Schacher, ChairmanDepartment of Physics

M. F. Platzer, ChairmanDepartment of Aeronautics

/ J..,1. DyerDean of Science and Engineering

3

" ... •.

Page 6: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

ABSTRACT

The design of a supersonic missile seeker lens system

using an aerodynamically efficient lens, a scanning mirror

and detector was accomplished through the use of ray-

tracing routines. The design of the first element lens

uses a gradient in refractive index to overcome the severe

handicap that the pointed shape imposes. This problem has

been previously solved for positive orientations of the

center of symmetry of the Gradient Refractive Index (GRIN)

material with respect to the lens. In this study- the

negative orientations are resolved and the lens studies for

a range of orientations and strengths of gradient. The

best lens is then used in conjunction with the mirror and

detector in a ray-tracing scheme. Such a system was found

to be feasible and worthy of further study. / -

4

Page 7: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

TABLE OF CONTENTS

I. INTRODUCTION................ .. .. .. 15

A. OUTLINE OF LENS DESIGN TO DATF.........15

3. GRADIENT REFRACTIVE INDEX (GRIN)........15

C. AIM AND INTENT OF THIS STUDY ............ 16

II. GRIN LENS DESIGN..................18

A. GRIN LENS DESIGN METHODOLOGY............13

B. GRIN RAY PATH DESCRIPTION...........19

C. GRIN LENS GEOMETRY..............22

D. RAY MATCHING .......... .. ... ... 24

III. NEAR-RADIAL LINES . . .. .. .. .. .. ... .. 30

A. DESCRIPTION OF DIFFICULTY . .. .. .. .. .. 30

B. PRELIMINARY WORK - IMPROVING THE ITERATION

SCHEME......... . .. .. .. .. .. .31

C. PRELIMINARY WORK - DOUBLE PRECISION......36

D. PRELIMINARY WORK - CHECKING ACCURACY ..... 36

E. FIRST PROPOSED SOLUTION - STRAIGHT LINES . .38

F. SECOND PROPOSED SOLUTION - REDUCED EQUATION .38

G. THIRD PROPOSED SOLUTION - MARCHAND METHOD .45

H. FOURTH PROPOSED SOLUTION - ANGLE IN TERMS

OF RADIUS....................46

IV. GRADIENT INDEX SEEKER LENS RAY TRACE RESULTS . .53

A. FRONT SURFACE ACCURACY..............53

B. SPOT SIZE RESULTS................53

5

Page 8: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

C. SELECTION OF A BEST LENS............53

V. MIRROR AND DETECTOR SYSTEM............57

A. DESCRIPTION OF SYSTEM..............57

B. LENS TO DETECTOR RAY TRACE..........58

1. Ray Direction Exiting Lens........58

2. Point of Intersection on mirror......53

3. Ray Direction Exiting Mirror . .. .. . .61

4. Ray Count on Detector..........................6

C. MIRROR AND DETECTOR SYSTEM RESULTS ...... 65

VI. CONCLUSIONS AND RECOMMENDATIONS...........68

A. CONCLUSIONS....................68

B. RECOMMENDATIONS.................69

APPENDIX A: PROGRAM GISL LISTING.............70

APPENDIX B: PROGRAM CHECK LISTING............93

APPENDIX C: PROGRAM DETPLOT LISTING . .. .. .. .. .. 103

APPENDIX D: DETECTOR SIGNAL..............107

LIST OF REFE~RENCES....................117

INITrIAL DISTRIBUTION LIST..................118

6

Page 9: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

LIST OF TABLES

I.Front Surface Accuracy ................. 55

7

Page 10: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

LIST OF FIGURES

2.1 GRIN Lens Coordinate System and Parameters

(fromnCarr)....................20

2.2 GRIN Lens and Ray Geometry............23

2.3 Ray Path Showing Improper Matching and Minimum

Radius.....................26

2.4 Ray Path Radius and Angle.............27

2 .5 Ray Matching Regions..............29

3.1 Ray Trace Showing Region of Radial Lines .... 3

3.2 Newton-Raphson Iteration Geometry ......... 34

3 .3 .Newton-Raphson Logic Flowchart.........35

3.4 Geometry of Accuracy Check - Forward Ray Trace .39

3 .5 Expanded View of Front Surface - Straiqnt Line

Method.....................41

3 .6 Reduced Equation Implementation ......... 44

3 .7 Radius and Angle Relation.............48

3.3 Angle in Terms of Radius Iteration Logic

Flowchart.....................50

3.9 Angle in Terms of Radius Iteration Geometry . . .51

3.10 Diverging Iteration - Forward Ray Trace. .... 52

4.1 Spot Size Results - ALFAP = 0 .3 Radians. .... 56

5 .1 Lens, Mirror and Detector System........59

5.2 Detector Signal.................60

5 .3 Reflertion of Ray on Mirror ........... 63

Page 11: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

5 .4 Mirror Tilt for On-Axis Spot and Angle of

Incidence.....................67

Page 12: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

LIST OF SYMBOLS

SYMBOL FORTRAN DEFINITION UNITSEQUIVALENT

a A index function parameter nondimensional

arg ARG argument of arcsine nondimensional

function in GRIN rayequation

arg argument of initial nondimensional.9 arcsine function in GRIN

ray equation

b B index function parameter nondimensional

c C ray matching constant radians

Dim Dl ray geometrical distance nondimensional

from lens to mirror

Dnd D2 ray geometrical distance nondimensionalfrom mirror to detector

DT DETP position of detector nondimensionalalong x-axis

e E GRIN ray trace constant nondimensional

K CK x-direction cosine of nondimensional

ray from lens to mirror

K' CKK x-direction cosine of nondimensionalray from mirror todetector

- z-direction cosine of nondimensionalray at initial point

L CL y-direction cosine ofray from lens to mirror nondimensional

L' CLL y-direction cosine of nond imensionalray from mirror to

detector

10

Page 13: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

M CM z-direction cosine of nondimensional

ray from lens to mirror

M' CLVIM z-direction cosine of nondimensional

ray from mirror todetector

M - Marchand reducedO integral expression

MP MIRP position of mirror pivot nondigensionalpoint on x-axis

n - index of refraction nondimensional

n - index of refraction at nondimensional0 initial point of GRIN ray

n vector normal to mirrorplane

* n. - x-component of vector nondilnensional

normal to mirror plane

ny - y-component of vector nondimensional

normal to mirror plane

p x-direction cosine of GRIN nondimensional0 ray at initial point

q 0 y-direction cosine of GRIN nondimensionalray at initial point

r RAD radius to ray from center nond inensionalof symmetry

r RO radius to ray at initial nondimensional0 point

r' RP first guess radius in nondimensional

iteration scheme

r- second guess radius in nondimensionaliteration scheme

* r"' - third guess radius in nondimensionaliteration scheme

rfs radius to front surface nondinensional

• ii

Page 14: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

rfs derivative with respect to nondimensionalangle of radius to frontsurface

rgr radius to GRIN ray nondimensional

rgr derivative with respect nondimensionalto angle of radius toGRIN ray

r i ray vector incident to nondimensional-nirror

rxi, components of ray vector nondimensionalryi , rzi incident to mirror

4

rr ray vector reflected offmirror

rxr, components of ray nondimensionalryr , rzr reflected off mirror

R R radius from x-axis to nondimensionaloutermost point of innersurface

Rz Rzero radius to edge of GRIN nondimensionalmaterial

U U angle of incident radiansradiation for lensconstruction

xd XD x-component of ray at nondimensionaldetector

xm XM x-component of ray at nondimensionalmirror

x XO x-component of ray at nondimensional0 lens inner surface

Yd YD y-component of ray at nondimensionaldetector

Ym YM y-component of ray at nondimensionalmirror

12

--- --.-.,,-*-*.. . . ....

Page 15: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

Y YO y-component of ray at nondimensional0 lens inner surface

zd ZD z-component of ray at nondimensionaldetector

Zi ZM z-component of ray at nondimensionalmirror

z ZO z-component of ray nondimensional0 lens inner surface

: EPSLON sign function of GRIN rayequa tion

PSI angle between GRIN ray and radiansradial arm from center ofsymme try

10 PSIO angle between GRIN ray and radians0 radial arm at initial

point

THETA angle from x-axis to radiansradius

THETO angle from x-axis to radians0 initial point

OL angle for GRIN ray part radiansto left of part of minimumrad ius

OR angle for GRIN ray part to radiansright of point of minimumrad ius

o' THETAP angle of first guess in radiansiteration scheme

-"angle to sedonc guess in radiansiteration scheme

"'angle of third guess in radiansiteration scheme

9m THETM angle from x-axis to plane radiansof mirror

13

.

Page 16: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

ACKNOWLEDGEMENTS

The author would like to thank Distinguished Professor

Allen E. Fuhs for his guidance and perserverance during the

writing of this thesis.

The author would also like to express his gratitude to

his wife Johanne for her support during this period.

14

Page 17: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

I. INTRODUCTION

iA. OUTLINE OF LENS DESIGN TO DATE

The design of a 'pointed' aerodynamically efficient

missile seeker lens has been the topic of a number of

studies. Frazier [Ref. 11, and Terrell [Ref. 2], first

studied the idea of using a pointed lens as a means of

obtaining some degree of aerodynamnic efficiency. They also

introduced the idea of using Gradient Refractive Index

(GRIN) material in order to overcome the difficulties in

imaging imposed by the odd shape. Amichai [Ref. 3], and

Carr [Ref. 4], studied the GRIN concept in more detail,

Amichai by defining the outer surface as a cone and solving~

for the inner surface and Carr by defining th~e inner

surface as a cone and solving for the outer. The main

reference for this author's study was drawn from Carr's

work and a review of that thesis would be helpful if the

reader seeks a more detailed background from that given in

the next few pages.

B. GRADIENT REFRACTIVE INDEX (GRIN)

Although the theory for GRIN has been developed and

known for some time it was not until fairly recently that

materials have become available that allow the theory to be

put into practice. A gradient in index will cause light

rays to bend in an otherwise homogeneous material. Thus,

15

Page 18: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

the lens designer now has a new dimension of flexibility

which will allow him to solve problems that could not be

ri formerly solved. A proper selection of the manner in which

the gradient varies is also important. The designer would

normally select certain degrees of symmetry. Three are

most common; axial, radial or spherical gradients.

GRIN material in the shape of rods now commonly use

axial and radial gradients in such devices as fiber-optic

cables and photocopying machines. Spherical gradients are

not available because spherical gradient material has not

yet been produced. Spherical gradients do offer an

advantage in that they lend themselves more easily to

mathematical description since closed form solutions for

the ray paths can be obtained.

A good introduction to gradients and the materials

currently available for production of large scale GRIN lens

systems is provided by Moore [Ref. 61, and Light [Ref. 7].

These also give the reader an idea of the advantages that

may be realized along with the problems associated witi~ the

design and production of such items.

C. AIM AND INTENT OF THIS STUDY

The aim of this study is to complete the design of the

* Gradient Index Seeker Lens (GISL) initiated by Carr. This

design uses a spherical gradient and 'pointed' lens shape.

This study does not determine the aerodynamic efficiency of

16

Page 19: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

the design but rather ensures that the lens has a

generally pointed character that will also allow some

degree of imaging for off-axis objects. The spherical

gradient is chosen since it seems to fit the geometrical

shape of the lens and also since the three-dimensional

analysis of rays is much simpler.

This design is accomplished through the use of ray

tracing trchniques. Thus, no actual study of the lens

material nor the manner in which such a lens could be

manufactured is intended. It is the hope of the author

that studies of this nature will provide the impetus for

the development of suitable GRIN material with spherical

gradients.

Once the lens design was completed a 'best' lens was

chosen and a simple detector system applied to it to see if

precise definition of off-axis targets is possible.

17

Page 20: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

II. GRIN LENS DESIGN

A. GRIN LENS DESIGN M~ETdODOLOGY

The method by which the GRIN Lens was designed in

Carr's thesis [Ref. 41, is the subject of this section. A

cross-section view of the top half of the lens is shown in

Figure 2.1.

As can be seen, the lens is designed by defining the

inner surface as a cone and then constructing the outer

surface so that a backwards ray trace from a point source

will result in parallel lines emerging. This is done by

tracing rays from the back edge of the lens towards the

front surface and finding the point of intersection of the

ray and front surface line. The front surface line is

found by using the previous ray solution as described

below. The intersection of the ray and the line is

determined using an iteration procedure. Once a solution

is found the front surface line that will cause the ray to

emerge parallel with all other rays is deter-nined. This

front surface line is then used to find a point solution

for the next ray. twout 1000 rays are traced starting at

the outside edge of the inner cone and working inwards

towards the center. Details of the iteration process is

included in later sections.

18

Page 21: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

Once the lens outside surface has been constructed the

lens is then studied to see how well it will image three

dimensional skew rays that enter the lens at varying

degrees of incidence. To accomplish this, a grid is placed

in front ot the lens and then rays are traced from the

intersection points of the grid through the lens and onto

the image plane. The grid is then tilted at successive

angles and the resulting 'spots' on the image plane

recorded for each case. The manner in which these spots

move on the image plane and their size are the major

performance characteristics of the lens.

B. GRIN RAY PATH DESCRIPTION

Following Marchand [Ref. 5], GRIN ray paths in

spherical gradients are found through the solution of the

appropriate line integral:

+ e r dr (2.1)0 r e 0 r(n2 r 2- e2)1/2

where

e = nrsin = n0 r 0 sin 0 (2.2)

and

It should be noted that the value of is -1.0 if tile

radius is decreasing with angle and +1.0 if the radius is

increasing with angle.

19

Page 22: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

U-

C)

C)

W L)

L) C)

(nC

0

D0

200

Page 23: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

The choice of index gradient is instrumental in

allowi.,g the integral to be solved in closed form. In this

study the index is defined as:

n 2 = (a + br 2/Rz 2 )

The constant a defines the strength of the index at the

origin and the constant b defines the strength of the

gradient and whether it is negative or positive.

As can be seen in Figure 2.2, the ray path is described

by the constant e in conjunction with the parameter

the angle between the radial arm of the coordinate system

and the direction of the ray at any point.

The solution of the integral in equation 2.1 results in

the following expression:j- sinIar 0 - -

) 0 2- (argo - sin- (arg)' (2.3)

where

a- 2e/r 02

arg oa0 (a 2 + 4be 2 /R 2)1/2

and

a - 2e/r 22r 2 2 2 7-

(a + 4be /Rz2)1/2

or, expressed in terms of the radius,

21

Page 24: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

r /2 el

-I'a+(a 2+4be 2 /R 2) sin [-2c(- 0 ) - sin 1 (arg0 ) ] 1/2

z '

(2.4)

C. GRIN LENS GEOMETRY

A factor which must be considered is the manner in

which the lens is cut out of the GRIN material. Figure 2.2

shows an orientation of the material with respect to the

lens such that the center of symmetry of the material is

inside the lens. Carr has defined this as a negative value

of OB, the distance from the point 0 to the point B.

Carr was able to work out the lens problem for positive

values of this parameter only, thus the major portion of

this study is to develop methods that enable solutions for

negative values of OB. In so doing, two factors have to

be overcome:

a) ray matching - When the ray path radius initially

decreases and then increases with change in angle the ray

path equation !nust be matched at the point of ninimum

rad ius.

b) near-radial lines - Rays that show very little

curvature are difficult to describe in terms of radius anJ

angle and these cause problems in the iterative solution

scheme.

22

I

Page 25: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

LL

CfC)

ww

L))

z !w 0 )

00OLL Z

23

.-.. ~~~ ~~ .~-~-~-- .-.- - . . . . . .

Page 26: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

The solution to the ray matching problem is relatively

simple and is discussed in the next section. The

resolution of near-radial lines is a more complex task and

is covered in the following chapter.

D. RAY MIATCHING

As stated previously the ray path equation changes

signs as the radius of the path decreases anJ then

increases. Such a path is shown in Figure 2.3. Simply

changing sign in the equation as the point of minimum

radius is passed does not produce the desired result, but

rather has the effect shown in Figures 2.3 and 2.4.

The resolution of this problem is fairly simple. At

the point of minimum radius the arcsine function in

equation 2.3 containing this radius (arg) reduces to - /2.

This is due to the fact that at this point the value of

is -/2. Thus:

sin 1 = 1

and

e2 =n2r 2

Thus:

2 2a_2n2 a-2(a+br /Rz

2 2 2 2 172 2 2 2 2 2 1(a2+4bn r /R / (a +4b(a+br 2 /Rz r2/Rz

24

. . . .. . . . . . . . . . . . . .. . ''

Page 27: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

and

sin - l (arg) =-/2

If the radius is initially decreasing as shown in

Figure 2.3, we can find the angle of the minimum radius.

We call this the critical angle or L:

0L = 9 -0 si& 1 (arg0 ) + 7/2

The positive and the neqative forms of the equation

should both contain the point of minimum radius, in other

words, by approaching the point from the left or the right

the same result should be obtained. The fact that this

does not happen is shown in Figure 2.3 and reveals the need

to match the rays at the point of minimum radius.

This matching is achieved by simply adding a constant

to either the positive or the negative form of equation 2.3

and then matching at the point of minimum radius in the

following manner:

OR = OL + c

thus

L i Tr/2+sin- (arg )l = + -1(arg + c

The constant c can then be found:

c = - I/2+sin (arg0 )

*• This constant must now be applied for all points past

the point of minimum radius; in our example all points in

25

.. .. ..

Page 28: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

jI 2.0

X 1.0

CC)

0.5

0.0 1

00.

Fig~ure 2.3 Ray Path Showing Improper Matching an'f

r*inirnum Radius.

26

Page 29: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

4.

3.

1.~ra witwhtummatching

0.0 0.5 1.0 1.5 2.0

RO I US

Figure 2.4 Raj, Path Radius and Angle.

27

Page 30: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

the increasing radius portion of the ray must be found

using the form:

0 + i- Isin 1 (argo) = sin l(ary)l + c

In the iteration scheme the ray path equation must be

more carefully handled. First, the critical angle and the

constant c must be found. Second, the angle of the

ray must be checked to see if it has passed the critical

angle. If it has then the constant c is added to#A

equation 2.3 and the point recalculated. The details of

the iteration methods will be described in the following

chapter.

For further clarification Figure 2.5 shows the regions

in which ray matching is required for a certain position of

the center of symmetry. Note also that were the value of

OB positive then all rays in the lens would never reach aA

*minimum radius point. Thus ray matching is a problem

unique to the negative OB case.

28

~28

*

Page 31: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

2.0

oSrMB - -0.1000

A 2.2500000

8 -0.9843750

1.5

0c-n0.5

\ 2o~s /, 3 locus of:.

minimum radius

/" I

-4

0.0 I I , ;-1.0 -0.5 -0.0 0.5

x RXIS

Figure 2.5 Ray MNatching Regions.

29

• 1 ,- . .

Page 32: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

III. NEAR-RADIAL LINES

A. DESCRIPTION OF DIFFICULTY

As mentioned previously, the ray paths that are nearly

radial are difficult to describe mathematically in terins of

radius and angle. This is due to the simple reason that a

straight line originating from the center of the coordinate

system has no change in angle and an undefinable chanye in

rad ius.

The region in which this problem occurs in the lens

design is shown in Figure 3.1. As can be seen, near-radial

lines mean that the angle and thus the constant e

will be. very small, so small as to cause equation 2.4 to

approach a singularity and thus break down. In the

iterative scheme, as the front surface solutions are found

froma the outside edge of the lens inwards, the values of

j and e become increasingly smaller if the center of

symmetry is inside the lens (OB negative). When this

region is reached, equation 2.4 reduces the r,3 for all

p angles and futher construction of the front surface is

rendered impossible. This effect is shown in Figure 3.1.

Of note is the fact that if the radial line region is

passed successfully, the rays begin to curve in the

opposite sense, that is they are always convex to the

30

Page 33: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

radial lines in the case of a negative gradient and concave

to the radial lines if a positive gradient is used.

The resolution of the near-radial lines proved to be a

difficult task and became a major portion of this study.

The manner in which it was overcome is the subject of the

following sections.

B. PRELIMINARY WORK - IMPROVING THE ITERATION SCHEME

The first step in the resolution of the problem was to

simplify the iteration scheme. In his work Carr developed

a scheme based on the geometry of the rays and coordinate

system [Ref. 4], which worked well for all positive values

of OB (that is, for all orientations of the center of

symmetry to the left of the inside surface cone. See

Figure 2.2). It was decided instead to use the Newton-

Raphson approach, which is simpler in concept and not

dependent on geometry.

Carr used the Newton-Raphson method in the second

portion of the design involving the skew ray trace, but he

did not use it for the lens construction.

The manner in which this scheme works is now described

so that the reader will be able to better understand trie

concept of how all iterative methods work for this design,

as well as how the ray matching previously described fits

in.

31

Page 34: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

2.0OSYMB - -0.5000

A - 2.2500000

B - -0.9843750

1.5

, 1.0

front surface showing ,

affect of singularity

0.5

region of

near-radial lines

0.0-1.0 -0.5 -0.0 0.5 . "

X RXIS

Figure 3.1 Ray Trace Showing Region of Radial Lines and

Effect of Singularity,.

32

Page 35: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

The geometry associated with this plan is shown in

Figure 3.2 and a flowichart outlining the iteration logic is

shown as Figure 3.3. As can be seen with reference to the

two figures, an initial point is first chosen by drawing a

straight line from the inside surface intercept to the

slope of the front surface obtained from a previous ray

path solution. Newton-Raphson seeks to find the intercept

of this front surface line with the curved ray path. This

is done by using the initial angle to find the radius anJ

derivative with respect to angle for each line and then

calculating a new angle according to the relation:

r -r

fS rgr

This new angle is then used to recalculate the radii

and derivatives and thus an iterative loop if formed. Once

the difference in angle is small enough the iteration is

stopped and the solution considered to be found.

Ray matching is also employed in this scheme. As each

new angle is calculated, it is checked to see if the

critical angle has been passed. If it has, the constant c

of equation 2.5 is added to the angle and thus the proper

radius and derivative will be then found.

Once a solution has been found it is used to find a new

front surface slope by determniningj that slope which will

33

Page 36: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

B 0

Figure 3.2 Newton-Raphson Iteration Geometry.

34

Page 37: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

start

calculate lineccnstants

find Itialpotit then find

theta'

add c to theta'and change sign

for epsilon

find r and rdotfrom' grinequati on

find r and rdot

from fronsurface equation

fInd new anglefromt

Newt on-Ra Dhsonequation

Figure 3 .3 Newton-Raphson Logic eiowchart.

35

Page 38: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

cause the refracted ray to emerge parallel to the axis. it

is this slope that is used to find the solution for the

next ray in the scheme.

When this new iterative procedure was implemented it

was found to work efficiently for both the positive and

negative gradients, but it did not resolve the problem of

near-radial lines.

The reader should refer to Appendix A for a listing of

program GISL, which is the ray tracing program originally

written by Carr and modified by the author.

C. PRELIMINARY WORK - DOUBLE PRECISION

The next avenue that was explored was to place the ray

tracing scheime in double precision. This was considered

necessary since very small differences in angle were

required in the region of the radial lines.

Once this was installed in the routine it was found to

improve significantly the accuracy of the calculations and

succeeded in delaying the point at which the iterations

broke down. It did not solve the crux of the difficulty

however.

D. PRELIMINARY WORK -CHECKING ACCURACY

At this point it was decided to develop a scheme to

check the accuracy of the front surface solution. The

manner in which this was done is shown in Figure 3.4

36

Page 39: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

The ray trace was coinpleted in a forwar,] direction from

the front surface to the focal point in a two-dimensional

fashion. These rays were caused to originate from the mid

point of each set of points that define the front surface.

The slope of the front surface for each of these rays was

taken to be the line drawn between the two ad3acent points

on the front surface. In this fashion the worst case was

chosen since the skew ray trace used to determine the

performance of the lens uses incident rays that can hit the

front surface at any point.

These rays were then traced through the lens and back

towards the focal point. The x-coordinate of the focal

point was defined and the y-coordinate calculated fromn the

ray trace to see how close it would come to the

y-coordinate of the focal point originally used to start

construction of the front surface. A listing of this

routine is shown as Appendix B.

Another benefit of this two-dimensional ray trace was

that it allowed the author to confirm the methods by which

a forwards ray trace is done. In this manner ray matching

and sign convention in angles was checked. Also this ray

trace is different in that a solution between the ray path

in the lens and the back surface, rather than the front

surface, was now required in the iterative solution scheme

and this could now be verified to ensure that it was

properly done.

37

7.- -

Page 40: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

Another method of checking the accuracy of the sol,,tio:n

would be to study the front surface smoothness in the

region of near-radial lines. Although not as precise as

the above method this idea allowed the author to confirm

that the front surface was sufficiently smooth. By this

means it was also possible to see a physical representation

of the lens in the region of the singularity.

E. FIRST PROPOSED SOLUTION - STRAIGHT LINES

The first proposed method of solving the mathematical

difficulty was to simply replace the near-radial lines with

completely straight lines just before the singularity was

reached. This could be done by following the decrease of

the parameter ~.until it became small enough to ensure

that the lines were nearly straight.

This idea was implemented but it was found not to be

sufficiently accurate. It must be emphasized that an

inaccuracy in even a single point could not be tolerated

since this would mean that all succeeding points in the

iterative solution scheme would carry that error as well.

For these reasons the straight line solution was

rejected and other means of solvinq the difficulty were

sought.

F. SECOND PROPOSED SOLUTION - REDUCED EQUATIONS

The second method that was use3d to resolve the problem

of near-radial lines was to reduce equation 2.4 by

33

Page 41: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

start of trace

end of trace

Figure 3.4 Geometry of Accuracy Check -Forwards Ray Trace.

39

Page 42: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

employing small angle aproximations, binomial expansions

and curve fitting. The details of how this was ]one

follows.

Recalling equation 2.3:

1 -= 0- sin (arg 0 ) - sin (arg)02

The arguments of these arcsine functions were reworked

as follows:

a-2(a+b') 0 2

argo = 2+4b , (a+b, 2)1/2

andia-2 (a+b ),, 0 2 r0 2/r 2

arg/(a2 +4b'(a+b'),!'0

2)1 L

where

0 = sin.,,,0

b= br 02/Rz 2

Note the angle 0 is very small.

These arguments were then reduced using a binomial

expansion:

2(a+b')2arg =i- 2

a

40

-

. .. . . . . . . . . . . ." " . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Page 43: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

FRONT SURFACE EXPANOED VIEW7

0SYMB -0.50

A = 2.2500000

8 = -0.984375

0.23

U-)

X

CI

0.22

0 . 2 1 I i I J I I i I I I I I I I I

--0.210 -0.235 -0.230 -0. 225 0.220 I.1 ..

X AX[1

Figure 3.5 Expanded View of Front Surfac,.-- Straight Line

Method.

41

.& . . : '.. -." . . . ".. -' .. .. . . . ." . , . - . . -• . . . -. . ''"" L ' - ' - .. -

Page 44: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

and

22r02(a+b') !,O(-T- a+b')r

arg=l- 2

2Again the 0 2 term ensures that the expansion is valid.

A function of tie type arcsin(x) where x is known to

be close to the value I can be curve fitted into the form:

sin-l(x) = /2 - [2(1- x)11/2

This equation applies to both arcsine functions as the 02

term ensures that the argument is close to 1.

When placed in the equation the arguments result in the

following final expression:

2b , , t)(O2 1/2,

S= e0 +-- f(a+b') - [(a+b')(---. a+b)]S0 2 2r

In terms of radius:

r = r (a(a+b') )l/2

- - (a+b)] 2 - b,(a+b)

The reduced equation was then implemented in the

iterative front surface solution scheme by constantly

checking it against the complete equation. When the

42

Page 45: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

difference between the two became small, the reduced

equation was subsequently used in solving for the front,

dsurface. The reduced equation was then turned off when the

rays had progressed an equal distance on the other side of

the singularity. See Figure 3.2 for clarification.

The equation worked well in resolving the front surface

for the lens construction and did produce a smooth Surface

similar to that shown in Figure 3.5.

b It did not do well when the accuracy program check was

applied. One reason is that although it was easy to

implement the equation for the lens construction it was not

so easy to complete the forwards trace since these rays hit

the front surface randomly making it difficult to know when

to use the reduced equation. In practice the reduced

equation could be implemented when the absolute value of

the parameter 0 became smaller than that used in the

lens construction phase during the time that the reduce(]

equation was used. There was then no way of telling how

accurate the front surface was, in other words, there was

no inethod to show how the rays would physically react in

the region of the singularity. Thus the reduced equation

method would work but it is not an entirely satisfactory

solution.

43

Page 46: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

region where reducedequation used

0 ,-inner surface

B 0ot F

Figure 3.6 Reduced Equation Implementation.

44

Page 47: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

Program CHECK was tried without using the reduced

equation but disastrous results were obtained for those

points in the region of the singularity.

For these reasons it was decided that another means of

resolving the problem was required.

G. THIRD PROPOSED SOLUTION - MARCHAND METHOD

The third proposed solution is drawn from Marchand

[Ref. 5] p. 27, in which he proposes a means of improving

the ray trace formula so that nearly radial lines will be

more easily described.

The method is based on redefining variables as

follows:

e = eM0 (3.1)

where

M = jr dr0 r0 r(n2 r2 e2 1/2

Marchand describes the ray path using the parameters

and , such that:

= sin e/sin,,( (3.2)

a = COS9 - ?COS;,O

This enables the coordinates of the ray to be described

as:

x r~ax0 0x = r{cr- + 2-)..

45

. .~ .• .. .

Page 48: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

y = r( + L)

z0 0

z = r ( -0 + no

Upon substitution of equations 2.2 and 3.2, equation

3.1 becomes:

= n0 r 0 M0 sinc

The parameter can now be more accurately solved for

small angles of using a Maclaurin series for the sinc

func-ion.

This method was then implemented in program GISL using

an iteration scheme based on Cartesian rather than polar

coordinates.

This method was not found to improve the accuracy of the

ray trace in the region of near radial lines and was not

adopted.

One reason for this may lie in the fact that in our

solution to the integral in equation 2.1 the value e no

longer appears at the front of the expression. Thus there

is no advantage to redefining the variable as shown in

equation 3.1.

H. FOURrH PROPOSED SOLUTION - ANGLE IN TERMS OF RADIUS

The fourth method and the one that proved successful

involved the solution of the front surface slope and the

46

. . . . .

Page 49: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

GRIN ray using the form of the ray trace equation shown in

equation 2.3 rather than that of equation 2.4.

The reason for this choice is shown in Figure 3.7.

This figure shows that when the rays are nearly radial a

small change in angle will result in a huge change in

radius. Thus the form of the ray tace equation using r(

is inherently unstable. Previously we have used this forff

in order to .iake use of the Newton-Raphson technique. It

was thought that if the iteration scheme could be reworked

so that the form ,(r) of the equation could be used then

better results might be obtained.

A suitable iteration method was found and is

illustrated in Figures 3 .8 and 3 .9.

The figures show that an initial point was chosen in

the same manner as before, that is by drawing a straight

line from the ray refracted at the inner surface out to the

front surface slope. This point provides the radius for

equation 2.4 so that a new angle can be calculated. Tis

angle is then used to find the corresponding radius out to

the front surface slope. This new radius is then used in

equation 2.4 to find the next angle and thus an iterative

loop is formed.

Thus a simple scheme was found. It should be noted

however that this method will only converge when the

initial angle is greater than 90 degrees. The reason for

this lies in the geometry and is shown in Figure 3.10.

47

Page 50: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

-

w ~

z

C1aCD)

48

Page 51: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

Thus the iteration will only converge when the rays are in

the region of the nearly radial lines. This does not cause

a difficulty since the Newton-Raphson method, modified to

include ray matching, can find solutions efficiently in the

region where the initial angle is less than 90 degrees.

Figure 3.10 is also drawn to show the reader an example

of a forward ray trace.

This simple scheme was implemented and found to work

successfully for both the lens construction and the skew

ray trace; see [Ref. 8].

49

.J

Page 52: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

start

calculate lline constsrt

Figure~~~~~~~ 3 8 ng e i Te m f In ta dl s I e at o o i

Flowchatet.

50cuat

Page 53: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

locus ofequal radius

first guess

seconduguess

thirduess g i ray

r'"

B 0

Figure 3.9 Angle in Terms of Radius Iteration Geometry.

51

..:L. . . . . . . . . . . . . ... : , t L. . A S' . ..... .. . . . . : .

Page 54: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

thirdguess

grin ray path

f irstsolution .

'11 1 of

0

Figure 3.10 Diverging IteraLion - Forward Ray Trace.

52

Page 55: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

IV. GRADIENT INDEX SEEKER LENS RAY TRACE2 RESULTS

A. FRONT SURFACE ACCURACY

As mentioned previously, the front surface of the

Gradient Index Seeker Lens was checKed for accuracy by

completing a ray trace from the midpoint of each set of

solutions. A sample of the output froma program Check is

shown in Table I so that the reader will have an indication

of the accuracy of the ray trace in the region of near-

radial lines. Note that the most radial lines occur when

the absolute value of the angle *; is smallest.

B. SPOT SIZE RESULTS

The results of program GISL showing the variation of

spot size are shown in Figure 4.1. This figure shows how

the spot size varies as gradient strengths and orientations

of the center of symmetry are changed for a median angle of

incidence of 0.3 radians.

Note that all orientations of the center of symmetry

are now included. The studious reader should refer to

Carr's work [Ref. 4], to compare results.

C. SELECTION OF A BEST LENS

The best lens was selected by determining those

parameters that would result in a small spot size and also

-ause the least number of rays to be reflected or refracted

53

Page 56: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

outside the missile diameter. Figuce 4.1 shows that these

criterion were not easily discernable and a judgemental

decision was required.

The reader should note that a value of 2.25 was chosen

- -for the parameter a. This was done since the resulting

value of 1.5 for the index of refraction at the center of

symmetry is common to a large number of possible lens

materials. Also of note is the fact that the focal point

tM was chosen to be 2.0 units along the x-axis from the inner

surface cone. This was done since this value resulted in

smaller spot sizes generally.

0 With these criterion in mind a value of -0.2 for 0i6

and a 5% negative gradient were chosen as parameters for

the best lens design.

A more detailed study of the lens parameters could be

accomplished with use of an optimization program in which a

large number of parameters could be varied in order to find

the best lens. This would achieve a more satisfactory

result than the one shown.

54

.~~~~ ~ ~ ~ ...

Page 57: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

TABLE I

FRONT SURFACE ACCURACY

M~ine Number I Angle .0 Error in y- I number of

I j (Radians) Icoordinate I iterationsI

I 895 I 0.0411 0 0.0008 I4I 896 0 0.0390 0 0.0007 I4

897 0 0.0369 0 0.0003 I483 0 0.0349 0 0.0009 I 4

I 899 0 0.0328 0 0.0007 I4I 900 I 0.0308 I 0.0009 I4I 901 I 0.0288 0 0.0008 I4I 902 0 0.0268 0 0.0008 j4

903 I 0.0247 I 0.0009 4I 904 I 0.0227 I 0.0009 I3I 905 I 0.0207 I 0.0008 I3II 906 I 0.0137 I 0.0009 I3I 907 0 0.0167 0 0.0008 3

*I 908 0 0.0147 0 0.0003 3I 909 0 0.0127 0 0.0010 I3II 910 0 0.0107 0 0.0009 I3II 911 0 0.0087 0 0.0008 I3II 912 0 0.0067 0 0.0010 I3II 913 0 0.0048 0 0.0009 I3II 914 0 0.0028 0 0.0010 I2II 915 0 0.0008 0 0.0010 I2I 916 I -0 .0010 0 0.0010 I2II 917 I -0 .0030 0 0010o 3I 918 I -0 .0050 0 0.0010 I3II 919 I -0 .0069 0 0.0309 I3II 920 I -0 .0089 0 0.0011 I3II 921 I -0 .0108 I 0.0010 I3II 922 I -0 .0127 0 .0010 I3II 923 I -0 .0147 0 .0009 I3II 924 I -0 .0166 0 0.0011 I3II 925 I -0 .0185 0 0.0010 I3I 926 I -0 .0204 I 0.0011 4II 927 I -0 .0223 0 0.0011 I4II 928 -0 -. 0243 0 0.0010 I 4I

929 I -0.0261 I 0.0012 I4II 930 I -0 .0281 I 0.0911 I4I

*I 931 I -0 .0300 0 0.0012 I4II 932 I -0 .0313 0 0.0012 I4I 933 I -0 .0337 0 0.0012 I4II 934 I -0 .0356 0 0.0011 14I 935 I -0 .0375 0 0.0013 I4I

55

Page 58: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

o ~ ~ r o r: a, o,* S % 0 * 0 * * s ~

, t N 't , - N, -o * ,* 6% N 6 0 *

ao, a4 4 4 4*, *4 v In 4

-,~ ~~~~ -, -, -% - -* - -, - -* 4 0

co" .4 4 * oo v N Ua Do o * S* It 4 N

NW NW 4N 4 N 4 r:6 . 6 4, 'I4, 4 W -!"l

A7 -0 -W -- - 4 - V --? -%~ -~? - ~ -i -'U - j -r -4 - ---

'4c, N% 6 C4 -4 -*40 N % 4 O w m? I? mD? a!s5~

NN~ ~~~~~~ NN N-! O 4 V 40 4N N% N * 4 - . -, I'

Na -, -- - - - - -% - - - -N6% 065 % 0co c,0 656 a,0 0 0 OW N Nr. 0 ,4UUN0 . N -4 4 oz S , V? 4 N ,"

- -, -N - - --4 - -- - -' - - -

-4 m m a% N, mm mm4'- I 0r.4 C, r4- 4 N m, c, N, 4z mm A co% a, ,0

m 0o

N -4 4 4C-%46 c 46 U,6% 4,6 cc % 0 0 06 % 6 5 0 lo 4 5 0 6 S NN N N ...4 N .- 4 -! 4, O%-4 6 ,6 6

-o xc r- '

4 4 -4 N - -4 -- N 4, n In o,. 4 -4 0,S ?-4 --

40 *e oo '.4 %c *4 '65 6% o '5o 'co co o c

(4 m1

az - -! o t ! ,

-4 0 4 t*. 4

40~~~~c N0 a% km0 4'- 44 , 4% 4 N 4 * S O

-, 0, w4 U, Un, U , 4U

O 0' 0 0 0 o 4 '-4 -4 v~ 0n :

m, In In 4, W * , 4 4 W l 6%

*-4o o- o- o- -- - - * . 4 *4 04 G C

0 N N, N, U, U, U, U, U, w N . z

4, 4 -I4 -M U, 4- o, c, 4, U 0 *(-

4o -4 -

1- 4, 4, U, U, U, -' -4 -4 6% 4 Cl)

0n 0 o 0 o 0 4-1 Ii 0

lo

O 0 4, 4, U V, U, m o

O 2 0 o 0 4 o% 0o 0 0o 0o 0 0 -o 0 -4 -. 0n~4.4 .. 4 N6 N6% U,- U,4 0. .44 ?I SDI 04 S-I 0-4 -4

-~ ~ -: 0 0 o 4, 4n, U , 4

64 1%4 N4- 06 4- U,- -I 44 6- D 64 -I % 4.

N 0 0 0 0 0-4 -1 -4

.4 .4 . .. . N . . . .D . . , 0 6 )

Page 59: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

V. MIRROR AND DETECTOR SYSTEM

A. DESCRIPTION OF SYSTEM

A scanning mirror and a detector were added to *the GRIN

best lens in order to determine if precise definition of

off-axis targets would be possible. The design of these

two new elements is shown in Figure 5.1.

The mirror is made to 'nod' at a high rate and thus

scans the spot across the detector. The detector consists

of two sections, as shown in Figure 5.1. Thus, when the

spot is scanned across the two plates a signal from each

detector will be generated and will result in the form

shown in Figure 5.2. This arrangement will allow an

accurate measurement of the mirror an~gle for which the spot

crosses the axis. The electronics of the detector signal

processor could then be arranged to relate the mirror angle

to the angle of incident radiation so that the precise

line-of-sight angle of an off-axis target will be known.

Note that this is a simple detector systemn that will

only resolve angles in one plane. A more sophisticated

system along the same lines could be designed with a four-

element detector and a more intricate method of scanningj

the spot across the detector. It was decided to keep the

mirror and detector system as simple as pos3sible since the

57

. 0-2-.t. A .. . . . . . . . . . -. . . ..

Page 60: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

aim of this work is only to show that a precise angle

measuring device is feasible.

B. LENS TO DETECTOR RAY TRACE

This section describes the mathematics of the ray trace

from the lens to the mirror and then to the detector. A

listing of program DETPLOT which accomnplishes this task is

included as Appendix C.

The ray trace consists of the following parts:

a. ray direction exiting lens

b. point of intersection on mirror

c. ray direction exiting mirror

d. detector ray count

1. Ray Direction Exiting Lens

The ray direction exiting the lens is derived from

the direction cosines of the ray as calculated by program

GISL. This data is used as an input to program DETPLOT

along with the coordinates of the point at which the ray

left the lens.

2. Point of Intersection on Mirror

The point of intersection of the ray and mirror may

be described by the following expressions:

xm = DmK + x0(5.1)

Ym = D mL + y0 (5.2)

Zm DImM + z0 (5.3)

58

Page 61: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

41

44

00

0 >0

59U

Page 62: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

0

-~~.1

0

-o

600

Ca

O~. 9 OP OC .01

ILNflOJ AVU

Figure 5.2 Detector Signal. .

60

. ..

Page 63: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

Since the surface of the mirror is tilted along the

z-axis it can be described by the equations:

Ym = tan9M(xm - MP) (5.4)

Ym 2 cos 2 3m + Zm2 < R (5 .5

Where equation 5.4 describes a tilted plane and

equation 5.5 limits the plane to the mirror diameter.

Neglecting equation 5.5 for a moment, equations

5.1, 5.2 and 5.4 may be combined to solve for DoM . The

result is:

tan m (x 0- MP)- Y0D = m P)-y

Pm L- K tan6 m

Now that DPm is known, equations 5.1, 5.2 and 5.3

may be used to find the coordinates of the mirror

intersection point. These are then checked with equation

5.5 to make sure they are not outside the mirror diameter.

3. Ray Direction Exiting Mirror

The solution of the ray direction leaving the

mirror is best understood vectorially. See Figure 5.3.

Reflection off a mirror is governed by two factors.

Firstly, the angles of incidence and reflection must equal.

Using vectors this is expressed as:

Sr. =- n. r1r

In component form:

n r . + nr nr r n nr(56x xi y yi xr y yr (5.6)

61

Page 64: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

Secondly, the ray is reflected in the same plane as

the incident ray. This may be expressed vectorially by !using the cross product to generate the vector np as

shown in Figure 5.3. Thus:

np = rixn = rrxn

In component form:

ex(-nyrzi) + ey(-nxrzi) + ez(nyrxi-nxry i ) =

ex(-nyrzr) + ey(-nxrzr) + ez(nyrxr - nxryr)

Three equations result:

-nyrzi = -ny rzr

-nxrzi = -nxrzr

nyrxi - nxryi = nyrxr - nxryr (5.7)

The first two results are not unexpected as the

mirror should not effect the z-component of the ray.

Equations 5.6 and 5.7 may now be combined to find

the x- and y-components of the ray. When this is done the

two following expressions result:

(n 2 2 2nnr y -n ) xy

xr (n 2 + n2 xi - 2 + n 2 yix y x y

(n 2 n 2 2n nx y x y

yr (n2 + n2 )yi ( + 2 xix y x y

62

i . . . _ _. .. . / : : i .i . -::. _ : . . . -.- :." . . /., •: ;:-- : :: :- :• :: :-.;

Page 65: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

mirror plane

I/

Figure 5.3 Peflection of Ray on Mirror.

63 1

7.c1

Page 66: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

Since the vector n is entirely in the x-y plane,

its components nay be related to mirror angle as follows:

n X = -sin m

ny = COS m

When the above equations, along with well known

trigonometric identities are used the following expressions

will be found.

rxr = cos(2 m)rxi + sin(2 m)ryi

ryr = -cos(2 m)ryi + sin(2 m)rxi

Thus these equations represent the change in direction for

the exiting ray and form two of its direction cosines, the

third being rzr.

4. Ray Count on Detector

The coordinates of the ray at the detector are

described by the expressions:

xd = Dnd K' + x.

Yd = Dnd L' + Ym

zd = Dnd 1' + zm

Since xd is used to define the position of the

detector, it is known. Thus the value Dnd may be solved

and the corresponding y and z-coiponents may be found.

The ray is then checked to make sure it is within

the detector diameter. If it is the y-coordinate is

checked to find out if it is negative or positive, and thus .-

64

Page 67: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

whether the ray has struck the upper or lower half of the

detector. The ray count is then incremented accordingly.

Program DETPLOT traces all rays for each increment

of mirror angle and thus generates plots such as that shown

in Figure 5.2.

C. MIRROR AND DETECTOR SYSTEM RESULTS

Appendix D shows the results of the detector signals as

a function of mirror angle at angles of incidence froin 0 to

40 degrees. For these the mirror pivot point was placed at

1.4 units along the x-axis from the inner surface cone

since this was the smallest distance that would still allow

full movement of the scanning mirror. The focal length was

adjusted to 2.8 units for the lens design calculations so

that the spot would be imaged as small as possible on the

detector. Figure 5.4 summarizes the results shown in

Appendix D. As can be seen, the smaller angles of

incidence (those in the range 0 to 16 degrees) result in a

linear relation between angle of incidence and mirror tilt

angle, corrc3ponding to an on-axis spot. The larger

values of the angle of incidence resulted in a more random

relation between these two quantities.

Appendix D also shows that the error in determining

mirror angle increases as the angle of incidence increasas.

This is due to the fact that each successive plot is less

distinct and thus a precise measure of the angle becomes

65

..

Page 68: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

more difficult. Although this effect shows a deterioration

in the lens system performance, it is not harmful since, as

the missile corrects itself, the measurement of angle will

become more accurate.

For these reasons this simple system is considered to

be a viable means of target detection and shows that the

GISL can be a successful missile seeker lens.

66

Page 69: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

.0

.. . . . . . .. ... . ./

C

/ cc

.. ..*. . . . . . . . . . . .. ..

... .. .. ... .. .. .. .. .. . . .0'

.. . .. . .. . . . .. .

. ... .. .. . .. ... . .. .. .. .. ... .. .. .. .. ..

. . . . . . . . . . . . .. .. ...

ot 9 ac z 0z of Z 9 t 0

ajN~aJN1 i sm~0

Figue 5.4 Mrro Til fo OnAxisSpo andAnge o

Incidence

670

Page 70: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

VI. CONCLUSIONS AND RECOMIMENDATIONS

aA. CONCLUSIONS

Two objectives were accomplished in the course of this

study. Firstly, the Gradient Index Seeker Lens design, as

initiated by Carr [Ref. 41, was completed in that all

orientations of the center of symmetry with respect to the

lens were made possible to describe mathematically. The

results obtained for the spot size on the image plane

showed trends that indicated the parameters that would

produce a 'best' lens, but precise definition of these

values was not possible.

Secondly, it was shown that a scanning mirror and

detector system applied to the lens could be described

using ray-trace techniques and also that such a system

could be used to provide precise angle measurements of

off-axis targets at angles less than 16 degrees. For

larger values of angle, error in definition became

increasingly greater.

Specifically, then, the following conclusions are nade:

a) The Gradient Index Seeker Lens can be described

using ray-trace techniques and can be shown to provide

adequate imaging of off-axis objects.

b) A scanning mirror and detector system can be used

to provide precise angle measurements.

68

0

Page 71: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

B. RECOMMENDATIONS

The following recommendations for further study are

made:

a) An optimization program should be applied to

program GISL to study the variations of all important

parameters.

b) A detector system capable of detection in all

directions should be designed.

c) The manner in which signal processing of the

detector signals can be carried out should be studied.

d) A study of Gradient Index material and the methods

by which a lens could be manufactured should be undertaken.

69

• I

Page 72: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

APPENDIX A

CA.

_J *% . .4 _4 _* * * .)( N = C - .q -L

** *L a -4C. - -3Ln Z~ 4

* * LuuL < 4n Z'I J ft ftN _j o<Ce tV

* * .- JJIWL Z ft 0?- < -4 LU - - -) I-*3. *: ZI~ LU <? -0. (1 ( NJ .j 0 1 LJ 0 Q

* *cce Wu- * _.0 -4 Z * o 0.t- CL ~< * * . 0-.30 OF- rX (N~l-V . - p

*U * ) >. w -w 0+>. OZ )d- >- rXw~ -C t- a* * wC3I- - * IQ /). . Coo COW I W -?- W.6 l.4

* L)4~-iwuo 0> tr o-.- o.14 Q Oma<U j '* * * LUGw. Q'1) mr *t ~ A* -4 )- -4 - w ft* -4f % *-3* * '- * '+-~ -n~.-- 0.0 111 0.?Uj 0 0.44

'3 z 1- e-0 LU C >. * k .Jcx .4-< 00>. 0 -UfLJ0. e.. Q* L) ZLUL) 40Wu CQ U.I)ZC -- 4c4: <0 - J 4 -cq X .- -1 ~r

-e "C * ftI- slU* .jL. q"1 ""- CLOLL Y_ (li~J\J4o - w.1* LU < cD.(nQcX Z *0t X/Q4 -- z Lfl.-4)( ft~ s-14) X _j.. 4

* %.* -L. -rZ0_ LW >* -. 3cA *j V) - X- . -.04--- JX* *Z'LI-.I- -Q4U*- < -i <I- -1; at c0 itN f 3,4 t. . I '-. IL L. * wUC L WEUJI- ( -6 1Z.~4 j ft.a.6 Ur w.J)(U- a KtJU X4 u

* LU * 4LCX..'- *_ CZ? .. 4j.). "' j Q_.~ WLUI-Q (..J0X)e a 0LI)0 xc * Y -14 -OZ-06.0 O(M0ZZ -L)C'J~ ftft--C:

* LU * _ w~-Q 0 aI -(~.- OU). -"- OL-- <LJ<O.l 0. Z -S u * L.& UJLU-4uJ ft fJtu-4..4 *'A - f -4 F- ft ftt-' 'q" -4 ft f* I% QQ _3~.~J M > 0 -- 0 .4cx- ft-c"r Lu--iwt-.j L.Lil

*u )(r2c < 0 .04-i-W04-4-4444 t~

* 3 ?-Lu. D ?-'xA * -TP- -40 OQN ft>.* ft s.cc .140.4 fz: .a*z * = (n3-Ct-- 1-a * (D- - CL.CIOO 0.--4'-/) a Q.)&4~x-

* .% *Ln)I-UJ Ujz<Ln/-q"- *JNc~~~ COT--C W~OJ~0.~ .* * Z 4Ct0I-Z *<W -%N-I -0..D--0i- <"s..-4 Orl 003

* I *(3t1-/) Z-%C LL.c 04-'-4Mc Q. 4. O'JJ - CZ* "'* A 0 (x I- w 0 * C -O'CtW -o-4004c - W.4 cj-.0. *CJN* w Lnccc<O0'z~ Q. 7-CY Oa,)_0 %.u..0.-eu -013(/4-d 0 o rf

.4 W-"C3. L.0.LU.t 0 w-<(/ '-4 ft aQC)0I -L.-4O .lQ.7_* 0 * 0LU 0 )'~ :D Z-L * -'C3 .-.-. >.q:0 ft0 0 ft

*ce z = 00(D(/)>- * XrfOQ. )<0 CD-000. - W<t 0OLLL.L, )- '022. * /?-'l-tf 4 -.4 C001-- o-L .4fn-LUUL3 LJ-4.4.-"LJ " * C4 .-

** ct *.. Lu.I?--u.ICC LU J. _2 .- 4 *or04> (Utx~l.)( "O"-3.-4 L4CC 7*o *-C0 * ".Z4 _ - ft-4.t.-CtZ -<t..ft ., )<x* LUCCZ W4OW LU 0'W Q >. -U .jjLU ..j: 4 EJLJ .4~

* ~3 ce~c.4 - -N-%)-MD , .tON2DA3 oc-0ZM *'.DWI ZO -* *0.C<.Z '-4'QO.IJ < .4-JO--o' -o.-'0 (A.cktL-4D002 oce.-* -Z-4 OWLZ "- * - -ZCDZ-4CQ6;W0) - f-t l .ZCe_ " .7

*LILl)'-@U._-J ce~tAo* LA SdUj7_,0 .0 wnD-q 3-.zI--I ft . Ll X- -

* -c~4C..o QL -cla - -Zc4zz -Q. -tuW .,J0WAJ.( cr-ofe LU a7* * ~ ZI-U. Z * - "0 5CC' r'.< q1 .. CXUC~ -,4(!) M C3 -

* ~ ~ . m (Cx L. LU * .Jo-j'-l LLU -- h-3--U ca. A..* .. Ulu.U J. 'q CLQO_.%h.6 -.- LJ4Ljt-I ft ft C3)O-L~j(X 2L

* * -l4.lL00. - * LU -,I0V~ ~e)IJL-N. -#4-W'.Jr'J* 55* %4 L3e-L.- LU.. w t <- .. 0-0.OCejCCe .<t

U * L. Lu CXLU4..j.-q4 * G 4)Nj--4zuj-4 .C -LdICQjQ..l-* * 54 0 ft 34Ll

* ** Z~natU .4tJl)L7LU4Ctjw c-4t' xJr.

Id)

70

Page 73: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

C: LU;J) LU (AJ

0 -4 (.4J ... .VI V) '

0 0 0 4 LA. >- CACftQ 0 >X 00- cLU ' La U

. 0% z (.3 (SA1 - C

-40.-4 (A I (A l Ck. 1--

CecfI.. LU LULlOjc.<c

NO.1- -40-- UL - 0

AQ Z0 z~ LU0 I--(C <(-D -NJ0.-44U--LJ (Al.-J W -LU (AU

0AO Z. CCUj CC 1,- 4(3 0- "J I.JL~ U.1 L 1.-0 0.U acz'4UI-

LU V. u LU 1-. C:)L .J LU )Z .

ot43.4 4"mUL "XC.J . cu0 -0 1-I- 4 LUO (n >. -- 4 0: Mc (A :9 I-< -0 zz I W...J4(WI-( -oz 0 - WO ILI

.L4u L64 cmz'4J W"~ "U. x

(A-o: 004''J4 Q-t4-3l- LUJ 1-- 17T."- Z-4 =4 (J(A .z 1-CZ.Z (A Lu LUJ

Zw0C4 1)xZ--P- Ll,)L LU 9

WU=0 UW QU -. L/V3Z<4L Z (AJ zCOLLO CIO U..4 WL...) qoW *.Z -4 C-3

1---4 V .I-"4 LL 4 U.X )QWU-JLU CCZI-0. Z L.L.I-L.<4-4(' U 4<ZXWi- .4 '-4- Ca"-Wo0 Qo] w Z.03 - UU.l'-4w < 1'- ZLUX= - .- Z:) U."<O X XU.Z 0 ( LUj

ftl-.A. I- X.LUV)F-r(0 .Lv LUJ UL.LJ- Q. ca Ml'- .9''41-1--i Z 7-.W9')ULJZ C2 dLW I4ZXN Z 01(3 Www: ZWUZZ O-.ZcW LUi .4At

S'-ZZ 0WZC3UXUiJ<4U WUO (a. .J (A

,4 9 - L3 )'-OZDC.-0(A.4(3U I LUo .NJd . 1 -- Z~Z~-40 < (0 7,- (A nA CL 11 0%

A. LU J.A .-- Z 9-9-4 QS - V) ( -4 (1)140. "9_4 .4 9 i 90to0 0 -0 to* *@* -0 * 0to . "4 zz WO ( -J(AF V) in

-7- X col r- LULUJ 9 -X6 10- coo.2 j- q4 CL .JC) VA Lu"- z r'-r

w4 S*0 Z. L4:i -. 1j < 00L L.Li ac LUlL) U> o LU..Jt 1'- LI0j. -1 I-OV >if ><>- >:w(A (A II0jo Lnlo0".JN >. .< ~ 9 0. UJ <4w <.-. .406 Z 0<40000 00

X( a.0 u4 44 W4~ . Iqo CL x 0 .4L X L 0 *.J;4.t 9( 0 b -M;. Q6 CC 0.6 . U. 0"--qlj" <- 9-.4 I--3 -.j (Q r.?xo0--C11 11O.) 0 -.1 -0( -Jxz.j D Owm O(AU Ow -j I 1-.1 I 11if11 II-4 I(3.40 ) .4LL.4-4C~ I--4L.) 4(,3WLU 0 I-(A(A F- Z VA 1--(AW I- L6<0-4Cr-ZZ

71

Page 74: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

-. *. 4 0 ,-

*. *0c 11* < - n: A* i" a c

* . t*L 4 -' C-

*% CL ccQ - . c ki

< r- (- I w I-

tn a L . -4 Cf 0-%1Z <X e(n * * 4 4

*M O*-/ 'A

%I *4- 0- I- 416. *-L -4 vo ta W * -k w -*j I -r '..U 0 0c. r-QA.j 1 1 "1 Z . 6rLJ

*nV It I-" Of -ZL L I. a fLj . ti . -i i

* Qi *L Il of -q -. aAo - c-L0 x-VC -- L'JJ )-L"' 01 Nu -4z-1 (j P-3o C - -~ "I (3'1 X1

10- 45Z * wN w *i O A.n* 22~ * - 0 &t.- < U.7 3N.N " N% u-Q -- L. U - a

* ~ -J 3 .4 0 >* 1 V)* ~ ' ~ 4 ZLi '. k* * 4 . - ~ N

* z :rLi Z-~- 72

Page 75: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

--- ~-4-44~~--4- -~-~4~44- -- ~-4 4-4 -4 -4-4-4-4-4- - 4-~ 4~-

N D

z 0 -%

LU L4 N

in 0

4 U Z L4

~(z LUiCl L LL

oJ P. - _ -

_j "V -1 U

*% Qu" c. LA.

.p -'J *u.!q 06. C: tl..

.4 0Z cc ILI I < b0 cCa AN<% 0 Lic 0 X~ 0

LI)- LU P- L )WJ (1) 0- -.14 a

X 0 X. ":c X-~ + -JI- I 0 W lf-I- U f CZ A z-

UJ -4 LUi L* ccJ = 0 - 0. -4 ."4

0 . _j 04* -%1- 4 3 wJ 0 IN -

If 0 11 0 0. '-'1h 4111 wo 4: _Axl4 - - - N

j- o l- "- - * *u Z ZC o- < U c -) a-I -0) ,- -W N. -*---* U)4A 1-Ca LU I Q * D+Q>

<:c 0 -4= 0- *.. SLUW O-z X- . 4 ft -a -Z Io~. . > tnw -LU *-. -- Iq Z - ---- 0' L 11. - z- -

-0 =0 00LUN 0.1-I-LU MUJ !O 19 A0 I~4A-0 0" I- MO NV* 1~ 0C 0 Li- CLJ LI) 0-n -Z

N. QJ (A 0 4 -C'* z aO-~LuI. ILJ ~3ZiLU -0 q44--.QUA --m Z o~.~nocOo w- 0 1QI 00-4 0.-WQL LU --LJ- --- 1L 4.D--*O *' 0: 0 \J* *1 0.-1 <U'I.- Z

N. QU>A 0>.Z- l-) *'-4a-Z -OwL-UUJLU I -O -UJ wU W-.w i-- IZjU *~Z9.I * 1uuvc-I - al, - A21-d- *j V a 0 0 1 eV Z4..*-~~4.- . -

I- I + OWLLiI- -x 9QC3C~ -I-i- AZ tJ Li **)(Z A C~ 10C IV-4Eq r3 **+D+ UJ..J-4 0*Al 1-41I 1LULULUII -- J -c L3QUJ"LULL'ZP-4: to 1 C-41L4.4 -) -7. J.LJI + "~J4J)~JJJ .Ir- EiLLU LU '4 -qLJU54 I <4-' %LU f-UJ

111- 444I - 1CC Of cLJJ q 4t " I mII - ~ - I-%if-7---r4,--j% x >.11 < 1 < IIt M00ZA44 toU. uLL u.: ao- " " _j -1 % ImZZ- LJ

of-I it -. 1 -4 -04 L\q~.-t-444 ~ LL L4 Z ) . I1 I 1 I-4q-4'))-'I1f-*-

LU- IILILU..V-Z iL 4--' -.1

73

Page 76: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

V%-lV% -4 V" -4-4 44 N4-4N.4 -t- N-q (94 -NJ'-4 -4 It'll4 -4I4 flo4III),, It,-1041

N* 0

0-I 0-4-C. - - + W-

-f I>I - 1(

0.0 13"=,

-U 0c)4 I. N ) (-DVC0 Z

V) AZO *07M D>(*U*

>- z LI) +~ + X

.4~- 0 U 0 C-t 0% * N% *%j 11 a. _Vcf 'q QQ Q. )-3 * -

Lo * -D +Q ~ I .JQ-4 LLJ4 ukn +I-Wi -- U. -O Z ~ - 91. -0. -4 -2D~ UJ-4 LJ- *rD

V) -1 .3 I -+ @. >.-O I +-~- 0 . ',J N- 't -4 CO V). < ./)4. * * Z-C3-N 3 * -4 1

(AZ I ) )- 0- - 0.-- O- 0.i)- I*Z .Ofl--4-

0 U.1 N- <W-i -11- -J -5 -=t& :b Z LWA '' - * 9INUC C -0 0 It- 1 - " - L < 16.4 -J-z -QO. .4 1 * q Q 10 -. 4 *44-) *i.. *Q< 4 N V

LU 11 Q- aCL 10 I-. /) 1 OM3d2-IW11*-. 1 N t- I1%~~~.4- WN Itit..22uJ*- - F-t

o,- 11 cz 36 - _ L/) IW.0'-j u - V *OiZOu if t)Q* J- isZ-

-4-4JLX1 QL. O 4 D C)U.N<N.=LL0'(2' - 1 11J.~J (.L6 I)'%)C-1U. +. 6*-1- -- *Q NI'I'. ---J 1UC/LQ

iI - "M 0 W -.. O zN0- .i+ L-i0LI) 4 1 :): -.1 < ~~ w)O .N - ~ -- +a Cd) w-d -) 4OI. -qZ0-.~* ~

L/ A I NZz4 I) ~ . *~ 0OI-->

0L WoL -~) ~- 4i - *.~!).Z.4 '~)s8-- --

U.~ W&w('J .I *L~(J4.J 9 0-1-*IL4..J 4.74..

Page 77: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

T4-IIT4 -Z '4J'4J %)U,1%))Uitu "I. IQ '4Q IVt~ 4J,4j..g~A QV IVU -V-U

'o '-4 '-4''4' ( 04 % *.4 (N o 'k -444 '-'-* t-4-4-4jc (-41- 4-4 0 -4-4 0- 4, N ('4 -t No4 o-44 ' t 4 ", 4 4

z 7L-w

V) -'a V)

0 UC.U- LU

'4 U, 1- t

e 10-I- If -.1

LA. 06 0. LLPI--L ft cl

L11. - U Ln 1 . ) -

I-2 000.4- 0

.4 00 * -3 c U. F U."4J *ii- t.- -. 0.~ 0 1

-j o.J. 1- OrX 0UC Z4 0' L) n

'3D mm ~ z -4 0 0 1- ~ - I'- LUZ 10 xx 1--4 - LtVn - C0 <- Z Ln )

'40 >- >. >WU -Ne 0 00 0 <~ I- o 0 0-. 4 000=) O.M-' * -4<4 -0 cc- (N(/) ") Ip..D -.

Q OQ.J0-' Z- -.j 1 NU.-%O 0 1*- LU (x 0 0 L'C- 0Z 0 0 i "*I jo C4UJ. -c* .'-qC 0 Il- *- * 4

- 0000Q. 01- - -4 -0I-4L)I 11 - -i O* .j -

0 - z~zt-- C9' c- 0--Oj - N L) 00 -*

9(3 0 1-- '4'4'4 a*rLj 4. "Jcr.LU'-" 0 Vi) '-%-% I I-*0 <(< o4 * *ZO33,D. (d)'-XOL)' 03 z (N~zQ.-- 0

Q74' -L-U' w .. a ' *-J-- (30 -. 1D~ ~ :: r4 I-- ccx-U )-CJZQ-% -lJC4 WqLIV)WL u Q(J(JO=rW x Co~x.'4~o ac1 * *o.Lr-C - I0

LU 9 Z * 0 0 1 <uJr- o00~w00 )x(Z U. - I I *'j: 0*a I.W-LU qCL-LMUWO.Q0C3- Oq4J0 9 LUW'4J. Q -04Z-< .-41-

LU 03 LI fOIL)**-0 I4'-l- I-4'I'4il" *.J

C.0 L36 (X C .Q.CL. SX~Cc CXi * *.LVi31. *O-Jt.U. x L)'xq. (3j(Ju t.-<4 <4 q4U.444'~-UW I '.400i,-ci0ac0 0 *1- ~'~-0- 9 0 '4-.j I-- LX .)- I- -q 'I--I-- 4 L3 II 1 if < * X:rnLA.0 C I 114Q LU CZ < 1- 11 1% 11 11 0.Q'4(L z

-j to ofJ 1.4I~L.. xI t" xI - 4q LLL. "I -A. L j - Lj

(3-0 W 1 0.. U . - 4.- . -4'.4LUiJ.JQ.Uj 11 -- 0 .

Z U. X3 M0 . .'4'U.U <Q< LM U U L0 w0UM=Cu.Q'4 0

w, I. .0 . f XU 3WW V

U..

75

Page 78: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

(%4.4 C'%I( 1j nJ )oCJ J'J~'C I'l'I cv)(I I ilI I'% I (1)f I(I') :,II 'It, III'I (I )s ( )I II I , $(I Itf I )I II re III I A)f I ( ) ) M i o cr I CS) Io

OOOOOOOOOOOOOOOOOOOOOOOOOOOOO#,OOOOOOQAAA AAA AAA AAA AA l'vi) -'AIA.4 I AA/L)A'I/V~f')AA '

z 0

-0 C4-i

.- j

CI + -

>. C .3T4 III)

I- N mo l-

mmm LA.x c ix

<<AIx- -rW774 O mm a Q1.L L 0. 1-4 0-7- L

-%* I-- V)Zw mm AC * U.- NU

ZOO 0- cx z~ .4c -C

C 4<qLU L 0 - 0- , U. 04 _

I-)CQ Io 9'l-G Z c4 LuL

* I- e(F-X(D s* oN- 0 Q I -I-e<OI-40 LU - IIZtL N ,, Ls -ft A+

o- if .0)L~oO -. N Z *- CL C.3 CLA- LU 'O.40*detl " 4 4 ' 4Z .

o N - 0 -'Z A-ss- -Ij.~-lb q -4 ve UUI-I" W0I'--LLJ;UL- P 11 WO0. -J Of ~ LL 4 J 4 -

s-s I--41 11 "4O *++-J O.- z Z Z-0-44OLLMUOUc W o-- - Z U.~--~ Q-.) ~ M4 Z cu 6*4-- -<-

Z -- 1- LA " 1 ~ 11 ml--N~ I . 0 I- -0OI-4--w W3. W4 D0 Z'").-.-. (- I- X CX -3 " "OUW* I LU 4- t-.-N 4 I3 0 110 m 4-lZ - Lt

£J"J -s *s~4- w ~ 9- % ~ 1) Q

AZOO-404-1 oA.Z'f0(-4 z

'A wA -- ~- C-, 0 (i j 9I

.440 -4~.4 *4 J0~ILLUos.4 A 4 r '90

~..~-c~4-.,-U' .. L) ~ aI976~..s4 L s.J 0

Page 79: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

O n 0 0 0 0 O0- ' W 0 0 0 0 0 t 0 0 0 0014 l 0ks l u I L 1 4 0 0 0 0 0 0 0 0 O 0 0 0 0 0 O Cr- r r - I, 0 0 0 0 O 0 0 0U '

0o ' 000O I" 00l IIsI lo00(0II O0OOt0I O0000III ( )- I - IIn0 i 1001"%0t0#'%ICI1 10 111 It I0I(I t OIn0. tI(II0I,0t(Ii I

" 4~44- ~ 4~ 44~44-4 .................... W-4 -4 .... ... ... ... ...

a *

* N* *Z

c~cz* **4 ~~ LL I **X ~~ ~ ~ ~ ~ *qU "N d d4c -0. ~~~ 0.* '-M-j~~~ ~ ~ *- -u C- X > - .-4~~ ~ ~ ~ * 4 c c3~~ L-

N Q* *UqI-

U. z. * < I-

I- *U-4X XXA A *Vj M

U Lfl P- *q *%ZZ

CO -40 *L *-OCfo~ydS-(* u r4en rN 4 m 9 (u .

U. ~ ( 000C *00/< x L *Lb. 40 LUA .0 * " + .. 4

NA N q4 X.JZ4O of ~Iu * If OLT *j, 01"

ZJ UL< - z if it (. J-4..-- * * *I-I*I-P 2L a. 0.Ww ***JZ- f- L ~ J --WWJ

.4~I N0 -<I- (t) C) J.~C* * ~4Z ZC X i A. 4- WV- QAc Q.L WcN N *- *-QQ M X". Z

-- - - , -c zr z - -U - --2J

Page 80: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

w Q- Qv l.tI - .. . . . . -I %J" Uft ---A.- V4,-- I-- I- - - - - -

OOOO OOOO OOOO OOOO OOOO OOO~OO0O OOO NCr)

~OQ%~4\ ~ O-Nrf',t~ O~ O~ O N~~ f'Y ~ 4VN

-4

U..

wU U

C)B 00 L

N4 0 3 .

)1- -73. 4 ( O7a

G.L cz -r 04 Q . LU

(2 (2 1 0 0 Q9 0i w L- 3J)- 1<XV3 - # - f I.- OQ (3D- 4'-

0 wJ N 0 -i V 0 U. -ccr-N. >.0( 0 coo 3-1 .x

4A>w J3 Q a3 Ix )I r* 9 0 +*0 '3pO.'3~L (Z a 3 ' 4~ a3 L

is w~ .U C'. 1fl -3 IN IZ V)13 (3" (1

zx-- Z- 034 x4 4. .3 Z0'

at.')l .. O L 0 1-3L 0 -. 0< 0< u 11 Ll. i-J O <xLl04~ ~ -J .4- Q( ' L(3 (3 = >QQ04 ,,-

4 o'- %' L* ~3 - A 4- I * . *-10 ~ ~ ~ ~ ~ ~ ~ ~ T M ~I> C ~ 3c~.i >O

a 9 * 0 * .4> - '- * 7'

Page 81: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

000O0O0000000000000000000O0t0A00000O0 V00C

(I 0WW0000000000000000000000000000%A0000'0l0U04j040 I.. WWrA I TI W IAr ITAr.lf U l -l

I c0

LU

0

a. CL 06 _'Z

L&.~ M-LA V ~w ~ L) *

0* El 1c04 u - a

Q Uj I I~ 0.L

wU m~ ** L.6- 0 -U.1 of C3 *4 +N

0 .fl 4 N C) I -0 .~4 N Nco LU 0 0. 0

z 0 4<+ -4 .~ -I-

Q 0 N 0.110 0/ + 174Xuo 4 %0) 0 N* n~

0 04, <((Y-1

Q 0-4 * * *4 < %dO I ' .?L. z * *0-- - --I-0. -4 M0 N~--' 0Jz 0 0000

L)0 -4 0j * 0'-4,4 F- -WU 1 L- ~o- _ . X( L3- X LL 1- -4Q -

Ix 0 M. U.- -% * CC 0 _j LUI -'- + ) 0 In N.Z _L(32 F_ LU _i % 0 Na~C,,1-4 w~ M.G. IN 0 (a Njo4q+ Q < LU *w0/~ -4 -)* >_ 0 -'

9 C ***I+ oi) 0-4-O 0 <<f,_ I Lu (n (. C3000--0 )--"< *-.Q.' * 0000. 0 p- -%- OQ4wNNQ LU I I 04 -1 * Z *OWLLU--

cj >.LU 0 00.'O + I +CZMM.. J_ 1-_ (~J u . 112_j ) 4 (1

C ) M--~ I.4 U.1l'~ I.-J * 4 w- 'Z4-.J--.-.q' u * .0-4'

0- L f +- "J Ifou - -u %Xh -%%.j...j-L ** * - P-L6L LU P'3-ULtJ ~ J IN

lp L LL Miorc~ .N P4 1 1 cF V11C I -9D I OIt Lj -a-.~ _J C0o..2w>l-_ZQ' z > Z - 4 f- 44IX>- _J X()-Ycf i M 9 IJ'NNJ0.0.4 o0.9-4-0.~-4"0- 03 44-4.p II-Ma0.4 0 4Z40D~9-.

ZZ _- If11 If if of cr x c> it-11 j -.J.jI 11 -L3'--r-4"-4 100.0<3 OIf 4<J0~444u0 < Ww-4>.Mu. 00.C0.

QCl- C4.30 UM 000 .- >" Q oQ(/lmcz"- QZQ

79

Page 82: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

=4-4--4 . ..... .. .~ .4 ... . 4 , . . . . . . . . . . . . .* . .- =-- '444-Li D~~i i~iLi i'J)Q'-j (!1Li .LD -i~i . IJ-D Li-t -7

Li

U.A

cl: i

ii L

Li AU

LU Li

4 -U.-4z. cc - -

-ic --. *' -- 2: X

A) 1 Q P-4 LU )< a.CL < 4 1-- . -

4 LU z Z '~z LU A/ ULz ca LL. Lm) Q 0 cu

WxLL *ci < j I-. 1r4A -c OW c LA. 0 A)

>-. -- * _4 . 0 LiU ..In * lit0 1-.. ~ . p- cJu'p-% .

WL CL -- %4 * -4

.4 Z 0 " -z C3 00" 4 * 1* x p-ON An ...L

LA. LA. + l'- ft* .A.-4 If A) XI-Z LiLi 1i ON.5 + wL -%4.p- 11 At x 1% u J-

*1 ki ca ..) CC 1 .0-4 :30

LU LU -4 >. )N"< - i,- N wLi I IZ .~~ z~ 03 A~zL '1-- Z--% '- 4

Z CL - k ZC. -q 0 -o--.OC4 U. -M- p- U..(.-A-QA-ZZ 0 -0 4i 0*0 0<4C fl 0- . L * *

Qi Luq < Li P--1% 0 O V) 1 4 .1.c- 914 *'9 LUQ qu. Li =-.- 0 " -X0-4 I z z . cL7 I 00x:

u j ci Y y-e *Lf Q.., LUJ.>N * *-4 Li -ULL " (NJJ

ZJ LIUi --- V) - i *W - U.J M L. -1 t-U t- .'V p. -e zi

.-J 0 * - -4 -~ -r-4 " ~ ' *f - L) 3 -LJ I CrZ- * O-q '4 .U.LUL-j - ji..Ja..

Z 0.-4Z I-- V.)- "- 0Q.6 u-l.~ APA 34P-P- -4<Li 4~j < ZLJ..-01"0 QA 0. Q.ZZO "-J-J"-4 WU MO. -cQXPP 11 Pn 40 - 1.- PP 1111

-If p1p- wU -J I LU I I~p- PP-P.-0 ..J PP.J14 L i(- UJ-JLA. if P- 1 it PUu .U.-

oca. " 4 " 4 .J V U0_ :.DZ0 1: Z =0 <1 W .Lt 4 <4LA.:D 2 jZ dU. 0ee t.) 0 -.i-J-J"- L-J.JL.) -q 4 ., O~Q44 a. (.. . Q"4e -

80

Page 83: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

LAw IU~' LAW n A IL't~l u L u I u A I L I Lnu I 1us LL1LA1 U I 1ln L IA 1U I LA ILO Lnu IA I U I~ L Il11AA LAn 1 11 it U I U u )L u IL ILL "I

z

4.LNJ0 >0

z *

LU * -%.

(JJ + .Q 1 C-4(J >. 04 * P, =J

*Iq Zu * 2- 0jC iL6 - L UU. 06 O( * -c 0 j*-C y

a * 1% co (.1 0. r4n i

V) *3 a + 4. (.3-. Lil N CL

~NI M Ln * ii -o q <0 'i-

-L A" w -* N 0 Q2* 0 A 1 1-0 ?- WQ> N *r . co0 - n3 I'- ACL " c + r-4 A -J J X0 Ln

+U wJ _icez * 3 Q.* 0 0N N 00*

N tu Q.*.-4- 4. *An +4. 0 F- CC* Zc* -* - * cON1* N X( Q .Q 90 (D N% * 4*0.N T

E2 U>.4 * )~ko0 r:3 0 c('10 A0. Y-*z >. 0 0> N * +X O'Q+ zo 0 *i a ld J*'fn .- i

<0 fyocoo 'fo N)ixo* <0. V) '- *N 0 1J-04. -Q. ca. Z LJI0.L 2- 11 11 YII 0 * " V) LUN' q111 I I >(Lj

F- QUOL.)4 + )40* A M0J(J* <0 < OOfl* if 0.r-J* I * CL(2 0 1,N - Q)(3)C 0 XQQJ- lc 4 - 0~. Q-* *NN WU.4 c~c N)(>* *OQ wo WA A VA'3* *0.0.*~ xLU N 000* CM )v.~I. )-s-0L1i =CL Z <Q. + N 'Q(~*0'-.1 2xcc 000'- W 000.)-- 1,- 0 *-N- N,%-OOZ LU

co 11I10000 < CC * 0 N cy - s 0 C4 )0 .*-. "72*-. '44- -4 1;l X: 1.L .LLU.0.M.LL '00 VI i(OL t-wc -,4 C30A*. UJ.JWNe"1 4

< X- ~ zz a 0 ) 6 9 0 a m 0 90(1. (37 0 LU 0 *AV'-4C *.-I-*ix V) OUU(w'' '4%jjc UU I..(( = *(-I : qL3.,Az IA* * * *

caC2 V-I*** - -- I 'ii ',.)JU * ca V#UjLJ q~ .- OU - 1-4 -1* ?-CL- -j url. .* -4 'X.-a T LL.LL.'4%LXLLJJLJ U. C& 0 0LUJ . L (- Ql. 4-J -q ' -j. + OWLX.4WD OUJ-.J-i..JA. (.j-q -qLIL rN"J4 X .- ' 11 11 ".2 it (i~.(JilX.(J I '.J'.J -1 -j ..Z 9X20ZC)Z U 0(2 00-4NOLU0D LU Z"4fV)111 -41 I" ,.ZCe - >-NII4H11Of II 110 1111 11 Ma.CnC0XCLCL<<11 =_ I- Q0A000Nv- 1 111111YU1 IfIf A.)- N If X0>2-- IIZZ Iu 1ZZ--e-u.-L < -Jr.NI011 .4N~ '.J

I.- )K>N0£J000)CC3 -1 " -H Of .. J Y-.2-- LU LJ- - ).-Q - L-wC .x UjZ 000 0.60-ma. A O3 tnLJXujJL--.IJLA. :D C) IL AIJ0 LL Zw( 1J -)

'--4

81

Page 84: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

. . . U J . . . . .4 . JdJ . ILJ~ .L .44 . ~ .

i C:Ox 0 .-

C3 -.3i Q

-4 CL 4 / C

z V 06 V

xi M.- LL (-3 -N

-4 0 L/)Q I -0 0,0 _N1 -j - M cz:4 9 I-+ -j. C. q( OLn -~ C) u Ln .

< 00< 30 m WO Z t

+ LU E Z L 3j 0>0 0J Z<.*- 4- Cr.-.V 4 OWJ 0 U.

)0 0L -1 LU4 -1 Z .xi . Z 7 -

+- 01, cc1 *0.) *q )- -C U L-

2c *LA 0r 01- x~ 40.4 4 ).£LJ ) O1- t

:3> -= Z) "M" i.L CO -- 0 0 < - F-0 0z 0* 0 + I- (-j (A-10 W -1

LnA. III if 1 0>.-. -0 -X. z~ +£ z 11 03 (1)CX1 i 4 Zat 0.2.4 L/) MC. LLL

0 Z --t 0-.a. t~ 4.0. z -- JZ ( D4 0 <4ZLA - x I->( = N -<4 " O',-C "..3. 90.)<4. I "

La :3 + > 06 -4 V*). LL QQ-q4 I-- O< -U..0 Q U. Ly. J QL.) 0L 4 WJfCV) ui LU ix @4/)P- < 00-0 - < --0 (((

3~) * Q -%t 0 "C.L uj c4ML!"-CeCI rx 1-0.I) - %. X w- 01- I LU*LU . ftz

'(i V)c -A''% 0 1- L6l z- -.- Ni cq C"-f(3D LU uJ 0 .J. C~ . .J 0-% LUJ <t) 9+ .2 (3 ft.J(3 Q VJ V

(A C j)*'4..- 0 (3 n Z c -0 - OCL-N-I 0 "0 >- 90 0QQ(30U00'.)(ZO/ * 0 " - o P- 0 Oco.~(' Q.. q aY

0 1(.J1*~ .b- -% 1-0 I- 0.'U *W -0. -0 2: -Z(-9 Ci LL uW* -N.+ . ca)l 0 (3D Z < fJ-:r (1) "N < .- - w:)

o 0-.,IC$1x 0S- 0 I-Jl- = 4/)cX .4.-V) W cO- -.1c* : l i t - ec) - 3 LUT W 0 1 0. O.0->. O. I- LU - LA. tLU c 3

" ZWjQ :3v-L--jLL9 *.) J;.31 -4 Iq -i-O-.- " -cx OLU -.j LLLJLJJLI.: U. L%* 4IlJ..~ . I-O)Q0. Xg '.Z061-')4 Z CJ.. - 111-. MN£ N L -W I)- -c.Q 11 1 am4 0" -41-Z4 Iq .- j _j* LU XL,.jL)4LL is if if '4"L Of9 Vol/) .1 LA. X16. 4 'q I4 1A,*- Z-"

P- -J5 I 01 11 1" w -e- i.J- .vI L Lt~ w A A L vjJ*14 U-% 4£ ). £ UJ l ..J-LU r- --... -J -4 LL. --

X: J I -4.--4UL.(.)...£ULtA-U.LA. U L/ %.L T. - U. C.J LL !3 -1 < .J Li Q. .L00If N>-100001)C-Z'-4A N- 0"1,I- w "Qz<"- Z L)040 U. ---

L.3 _ 4 0 _j (Ala Y.L<< 0 -1 -. 1 a.~ LU

Q- 4 -4-.1 h-

82

Page 85: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

0000I.o0oooo0o 00oooo000o00 000ooo (oooo~aooooooo00oo(Dcoo

CL

CL

co N

Z I a. '4_ LU'-.Z N -4 4.

CL 1 (-IN x LUQ . UJUI* J c

00 C)Wu Z0'- Q. -j

'-44 A. Ce>9Z <

0 OH3- < -3 <I* 0- 1---tvj "-uLL0 LU t-- V) a3"* J1

L)Uj4 ILm .1% X-' qo0

CL .44 + i I -c -44 0 0. C3 -. LU4 -LJr- 0 LU <-X Z Ln -j'*

-'.2%*. 1- - Z WAVE1. X _4 .0 . 4U.0 a 00r00Q (7% Q7 z cf. X 4 LU D * 0 1" -- - LUC -4 <cc -o -4 M~ Z M.I1' "00 0 )Lu (f05-H 4 0 * 9- " '%% X -41 q-p 9 -

Q. CoLUL -4 N- Z.L ul - +- -. 1

X Z<X)-++ . I-cx 0 x of- CL * .W 0. Z., ILU z.-

of V)WU--00 -- C;L0 * -<X G-4- U. Q ~ 1--. 0 - L

CL NI 'V 4 z _j % x Q.O 0. 41( U L. " - zLf0~ 's , 0 Q ON L/) 06 4j 9-- Zcx "eN 4

C3 '0..>r-Z*O0~ 9 t.J -q VIM* LUJ - Q-41 IJ- A; Z.LU t 'J zo cx 0.* z +. X.~ - La/) 0.1 -. 1

0~Ii-*O.4-f Z N %i' 0" "C. 2:- "e - n <lZ rooo<- U Q --% 6 )( L) z YWLULI)J QWL '4,z 1,

0. 00 9-e-4c00e. - a IC0- -4'.D440 Z-,: --- 4 (D< Xl 0-L.L W -I-Z- 9. 9-* Q I-LnI* * * (J '..- LUI 9Z 1,-l'- W Zn4.j j4-xo. 3- - 0 >- Qao- :d C11ci= 1:7A

V, .- Quj ix0 aj4 Lj q~ CU Ur *0L~VLL UPJ' 9j 5 L--49 4~~j 0 * * Zq4 q L. r. cf. -- ) " 1 ~-.1i4ca is -j "-Co <Z U.

01 CL.1 1 Ij r3.-4cU ZZL> LUA N Q- r. M4 I-- X -4-J < b- dc LU CX- 0 .1....UCLL - (OOC). 4q it ii.'j 11U vp r.~.-~- ^"" oil Q I N .'- LUZ If .1~ if

-q 11 1%1%M y L -1M ai U. . ,.V4- LU '1 99 of LA.- 1-4 IU .dr#Lj LUJ "LA. if If 11 _Jc: 4 LU If If of -4A.. L w.~- U . U *9..

X~I < Lu4 '-'-"<o 44 1,- -r--4<'(3 - Y--r LL UII-j Z -C IL L

4j 4 U.

Q 0

I I.

rn Ln04 N

Q 4 Q 000 JQo0(4 OQQQQ 0

83

Page 86: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

0 -IMt n4- MON Ic4(Otn'or u0-4"% qn 9r.-cMo~

..- .- .~' . . . 4 . .. -. -~- . ~~ .-- .. 99. 4~4-~ - ~. 49 4.4. .

LU L

Li Li

LLi

LU

LU I

Z 0L

a/ CLuq -U(-

I u.-4 c-

z Xe x

L L LU~ Cc LU6 C'J*,

- I-- - L3. r(- Z LU Li) LUWL 4. I. ~ Iq 2LI. -4'.~j

C39 LL 0 0Q. (36 LUL 0N a.deL 0.t LL CL LUo M4.-..

Ne LUm 1- LL3 (V10. x4 -X Li..

z .JJ-0L Z OQ+ 0- -L~4O0'- a0Lz U.0 * _* 4 ce -JO3 *i * NO

X- Z -14 ap mmm (A. LU LJw Qi N Z " LU J~

i/)( z Z--.No Lw 0.Q-a.mZZ w x H _j + *- LU zQZ <~L 0tQ- LUCe Q QQ Z -'Z 0 s4. LU Z N Y.4N-

1%' N'XC-41 z 1ill,, 1-- LU x HOJ. Lwi-.-N(J I Z*H-*- '-4j- 11 11 110.a.LL x LUJ X I n * i-% *.% X

<Z Q Zi-D0. 00ti M0....JX <~ "-0 0 MQ.i' " 0Z 0.6 NCC.e LL. ~4-4 i 0 L~~ q~ Y)JX Q m 4 .-o * Q * II) dc z -.

.-- Li (.tI-.'4

CL0 WQt'J** Li U. w' X-- I-- I 4i +

Rr~w-= C -.. o z Lr :n 0 <~ -4'z XN:W. V XQ-XQC C3)(L60ItLLgZ$I/) C I~ 0)- '-4.-4-ZZZ 0. N- -$'ow ar-y-WuCC - I4i) .. " < o N -4 UL '-00 L6. w H . -vfi))Li'0 H f-~Z -d 3 7r'NN ce -. 0 ()XX 0 1- m. Z Qi --

on ,4 - 11 >xu Qi WwWZZ7 0 14- - c 0 If LU Ifif II II )11 I)>-P 1 QIL LUicZ 9 o -0A -9- .L. - J.-. (.1 -% V)JIr

1-1 0 I )-UjjUJ of CrLj LnotL3 II g It 11 H u- I,- H 11.t')V -Ji w ci44- ( 'J-JW.P-za "A. -. -) -.3)L.0. 0. I- X Q HZ 4 r-N 0. C3 -q tLU

qL- ~q (4_ C3 -J.J0.0.a -j "-iL z~ if ac II d& i -J " XXJL.J. -j t- Li ' .U.V-a. 1. mL~ LU w 01..J.. w WU L 1.1.AU A.-- LUZ - L tJQ44 I- ALI -J L4-d -A La - I.J 1

F--4 H' L LA.. 4

LU

0 CCC

-jot4

84

Page 87: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

. . . . . . ~ .~....-. . - - - - ..s.. *- -Q

-4r- u

Z00oe L.>o0, 4a

Oo m CDonw V) L

0 L. <r-goUo

o1cc 1 i 0zLoaz

111 % LL-% -. -

on CDj -%0 t L

03- .4..1 ==C < 3X414g- 0-.u CD -. 1 0 Cl- y t 7 - C -1

P-CI- - (L .. - " " 0 L - j -w NI4 0x " Li)(L NI4- -4>.V Nq00 0C0 0cr0 0 (0 0

0. L~3 -q >.cj tnNQ )<- ;$ . .1 1 U1 Ui l

LL. LU Lu. cxi L-1."- L ii f-10 LL - LV 0 I LV fI l ; o i0 4o qV

zu Z ao- L - >. 1- - -3 D>

4 x) 0 I -q . uC

co 0+ -I- CD(' CDL CD -.Q QQ CQZ U. ~ c

o -

o~~~ (nQ 4 DL) D C C

22L 00 0n 0n 0

o '%%Li ~ I85

Page 88: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

I1 I' r-r-rftl r 1 % r (I- r~ir rft rfr frl !lr=wrI%-rft r-r-r- r-rl- upj .uico LU wS woo '1) ~u'J' .ajj j uj WO

a

N c~4

> - (

Qo ' (n 4 4

14 V) V) V

(9L (9.4ij it -j z LL 4-

0I 0 C:CI 00 U. 0 LA 1- I oI 0 nQ

It (9 :3 LL* a . a0 413 0. + 3 '0)% -w w x w- 7

a U z 40 0) Q 0VV 0)QV Q, Ll-Ij

0U 4nk m Wa LU 0 .o 10-- I- maz Jr.9

0r . 0j a CL - q- .4'*'2 UVOD '0L!

-4 r- -4 Q Oi U.O'.-J It.0 70Xt- Cb0 '0 ( * < " C0aa 0 9-

+ U 9 C 0 '0 1(1I) 130<r- 3I/) L ot- 4( - 4N~ W 1 ~ .1 UNFLO e I~ (/- If~ 11it-e c D - -< .

-q O 0 oe M3 0 cc.. Q ~tjzl 4J-/Lx rv - .L .44 a ( *~9 ((

%. of AA%%j v 4u U6 -Op-aJ *a)*-K-jaCa ~ a ~ a .

N 6a LU (AA-U( .3 or. Z.J U>V-J.<a~0 CFLU-CF 0. a -4 _j( *)) * IZ4jI- (x _(3

.eonN -w P QC tNOV I (L I A-xu -- + +I 1- -4 -46 u- LJ L u.( L. 4.J14LUJL. if *UJ :3 U. Z) if if::).a a). (.D :tL 0 u Z 0 4

* W . 9 **aIaa(Q...('3(-~( ~ . > 0"

1--cO Ic0 10-~43 4 4 ~-0 .44

(JQ fl(J.-q Q4039 4 4 -

86

Page 89: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

f-.4 M '. 4'4 - 4N . 4 ..4..1. -M .O -10s.4 Mtin4r- 00q.. (j%04 -4... -t. *-4'.. .4." ao7 0- q'4 In 4 ..4 r- 04 (3: .4 N.4,.d-t

N ^4

ce

0~ 0 -3

W4 LJ W6

NU CO ). >

I .- 4. a.0

V- a 3-4 - f 0e-U3 'U -n .~. 4 cx Q.-

Q~ C6 C6..7J * 360 CI -- <. - -1

0 0l 0l iZV <J -z ,- . .co) POO co 0 Ul 1- +

-~~ 0. A 01 0(X1 O Ll CL -1 W 0 x LL CV 0 Z--U

o 0 0- cr. Uj C) 0j - O OW-i -4 ZOuj I, *L 0.-t .-4 9. .-4 x X j j0-j

I-- *LO 0.4V -: --. * * UL .4Lj .

-L Qc 1q- cz ft. F1 4 r. -N% N N4 O-rU.S M3U I'r -q .4 r- L* u -C fU . 4 L3 14 -4L*

IC- --UJ-C:l)I 0 - WUU. 0 LJL3*'-4 '-4 V'-q (AV) '. L -4 11 Z1- 0-4 4.3 4z C I

I -4Z -4 L3> -Q.4 Q - 4*-c4 . + ZO 1- 4 Q >a I 'Cie~ 4- !oMY

LAJ ~ ~ > ** >4-" 0..CJ -L U -- LUL+Q-.&S0

04 V -j 4 ( 1 a 0 Q- QI I'04 IQcJX Z i.) X* -43' '4 - I L,6 -j -O A.)14LL~wud Lu - (3j-C0u

170"-ewe.u- 1-1OWL 0 (4 0. 91111u 0~ _j*.000 -000cCjzc)ZV)P-3N LLV %. LU UC cII C -t-0'CLJC LIJQ CO cCA.) C

U.aUS UJ WI- .3 c.CCJ- - WOCC W LU U OJO .WU1'L-uI 0-. (3L-~iQ" * W (04 ~ t Ag'r ,,4Xo ALJ 1c2 -4.&Q (3 OAJUJ-4LicLU" 0 OALL r3U

10 fl r- /C) N.(J ( L . C U N ~ U .10 NI) N4.J ).4' . l - ~ i L J' 3

Q Q * UOL . JJJ~LW.JJ. L~UGU

'J~9L~S* 4.5 I -4J4J T'f 87

Page 90: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

o0~~~4N~~~~1if~~~ 6A r%.4Nf'~% N V~O-c'OI~~I3104rJW W 0 ( 3- 4 l

LU

V) Q

+ -<

C; LU i 0

-, N -U .U Nj

_- -" Ln

oLU . -4 " q :

(9 N Q4 t U U

- *4

u LU(. CD (/(/ 0 </W LL-4 '.D -LL 1 J 111-1 U

-4 NZ -J 0 ( LJ -4 (-

'-4 I.. Q): U (UzV~ Q LJJ..A -() )3

L- -f fz'V) 4 -e"9 < - " ~-" D-4 Lx

I-4 0 1- +-( -*+ A-Z 0,-N ALAJ A t LU C2

UJ -Cc Q q- 0001--f- 0)(9 Z c )

-9 0 -d -0 C- (n*4 X0. - < I-*7- q-*- (3d U ft--tf t W. Ll-I0U 'cc- I 0 C -- 000--(^ " >. "*- 1-w1- 1-1 4 b

Z.Luu-J+ A- )-r- l-x < * .- jW- -qj - -J- WLJ WJ O- . A L

-J *OU 0 Q -4'-7 0 1 LU CwC±'s- WWLA(D j-w wr(9A(9 0',7 cx MVL.:I

4 U. Q*e L4 ot;-jx. 4 kLA.j.Q -Z 4Z 4 -

LUJ~(gZIIZZ: Z-Jgg 0 LLU2zwl~ux<QO~ U.rL4.J-0~) <4uifJZ-00"CC 11 DO"J- LU Ifr--)11~i~I-C 1 0Ifl ~ s . < LJ (1c

I4- .l U.l-Uttlw zxa. 4w

88

.7.

Page 91: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

~- - - - -- -- -q~ -4 - '4q-44 ,- - ~ 4" -4--~ --- -4- - - - - - -4 4--

(3~1(.I-~D( -~e3 1(~~J 3~L~j3 ~(3(3 (3e(3(3U(>.J >q3333~(eJj3~!L~

* *.*q *A LL)

*t ftI* * 1IQ

* * CL U.

** Zc -4'

* -* .- U-

Q(% *. *3r44 -

<11 Q5 . r- S ~

NQ~ ~ ~ * ~ Q .u ftf- . F-

II *j * x. LA. ~ jor a c:A

0 X-- Il Q0 q * 2* j -%I-) ft )4 0.p M00aO ' - I. -, UO* *n 141 NI * LL ("..a6 -D~ 4-4

6LA z +I-. D.. ,,- *=* 0. a. "- ~ "(- XL , -.xol-4 -ro-w~." Q(2-rU-- if *-i * 0 X-4 M-~ -A U_ U. 1c--

c c*0* Ceoz>* N (3 (3D*Jjc)L LiL zI *V) * W(J'.d 1-

~.' U. 0 * * * .- I-4UV.( I1- *- *'V (3 .. N u *.4

(0 O D 0 L * ..J OD c4. 00 wO ) aO- 03

O (~ * * 0. 4W 4 0 0OS489-

Page 92: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

kpUU (JAV.J'J V%%"' -%J F'U'U' nv D'UU1

L'U vv'(J'U %Lp%pJn v(Jnw'J'U U'%JN VN M'JJ 0IJJ.0

0. - R.NNJ '%.Ce *

*%-)I->X * t- QiALtnz '(4t- <Z <4 .

*L * N.N exi.:3 cCa LL < CN -3

11.0 ~ALL ~NLL Il-Li _j e .4.s -u .N

04- wieu.) -4 a: -4ft(W7. f -. 41 zfCV -4 a*- <X.~) -

t- N47 N 40 ft >z LiJC U.11 N.j -Z - Q.-4 0.3 zLL.L. n

a x) m > LLLUZ U.N N <0 -: 0-I .Ul-l.LA a _i44w -ill I1 .0).0 0 I

-I-0 ft . a - 4. <. 4'-. MC WMO QftcoCC a WI) r- 0 XLW a -314-3.4 LitU.

Lu C300if LL N Q 0 a-4 -CX V )ZOLL. Qi 4)jj . f -~ . LW.Zk 4 A 9 LJ LJ -4 q LJ4-- tJ LUJ 4.

Oz k QZ(IM 0 U.l- LAW >C4)~i- N- _D -j uJiZ. a ft<Z OCCC) .> -.1 n ZZLU L6 ce

ca~i ZI --') NO -. ( D NI-Mfl0 Wu

AL.. .24 w VIM(I %(-4 L- " " M4 .-4 .r j .j -- MXIA W4 I.- 0]- -4

41 -LAnW- NCLUN AA- Ill -e-s 0: zN*LN LU N U)) *NS0IL < cf.

ft - XN%(37L N l. qLn WWl >.C M .I We- u- c.-. 1 Wj LnLnQ 9z )( a 0. 0 I-- - .4 * .)0 LU Z

*A- ft *%w-0 .*cor- L UJQ A CL.. 0 0 c .CQ . 1--ft"D -ft -ftNV-a U. 9-" -d U L. 2: ZUJOJ -4r-4LJU WJ ZzON U6 ft %- Q.NI" - qq4 1,- X .U.L41--Q .

C4 0 -X )C 41- X a CeC ZJ (A 4,~~zrC34 (-4 .00 LA t- -4 "ON II a4 O LJI"-, W 4.1-C3 (- V IN IfC/1 0 N L .11 W %0%I- .41- .4 Lf

M10 QJU LAI-4~. ( (3 *% La(c~ Q- I- 9 dd L:" -4 W LL1.-x Lk. 0 01 -L 0A> <4 mnc1-4ZUJ" Z

c - l l-V'-4c(0 r-4 't .- e0Q' (iZ z .-4.- 1- .-WAv WO 2: UJZ - )- 0+I- U.~ Z W < X-4 ULL.m Z~-

U.)L cu - X".- I*U- XQL %LU CL - -1 N- 9- t*.r f4 a .(- 4i . Dq0 zN OWU- .4 I NcG. )r- r- r- x( F-

Z ft- CC CC.- *3 rC.4 1% NIA LUi 04 lot 0 .f, 0 (\J1

Ow Al-~~tA .- u. (-J .4 V) r--i.'-.- r 4,.o p...LWU. wZQZ *- OV)l4.4 cf 4 sUL. OU. OU. 0 U.

IX r-LjM -a AX)<4Wr- -00 Uf. -0 X QNf2('JON 0 NI-rI *Z0':)q-4-*- ZN-eC.JU. )(-4ZZC4 A)0 -4 ft-4 9.-I ft -4zlI-0-4Z If 0% - LUI .- U. .- 4'AU.. 0:3 U.1 N U.-.?U.4U..'.. U. '4.WU a-4Z.% f-0 (A * j-Lui 4) 4.W.j.>NV- -- V t-N.e N

'LWr -N- CC-4.. eNcd I% 'CX cC - AM)- ...

-071, -1 UP LJLJW4W -. 1. - -L Q If ft,r"4,qp-. U- lr.%.4r 'r-~4-- A

u'.qg 4- ' am W LjqL. -M LU ft-4 - a 14~ "~J ( %.- 9. .~~

L U 9 * CJ L h .4 I -U ) L - I J J ? ,- X - P "* AS . L 0 4 a m V ) I " - U . * . i . a t 1 L.q

fs-.W4..4OCCo "O~ un'w -4m -- ae. 44 ">~.ZM-.-40C ft K444444Nx .4

NQ-C I- 0I-I-0 -O-00 0. 0

- 0 -1-44.4 -- 4 4- 4f ,-44 .- 4 -4

-4k4 W4Q I- L t N-)k 04 1-4 UAAO rr --4

90

Page 93: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

O00000tn-O- 0000000000fW(J00000L01"000000000000

m ( 1'- TTr rr UIAIIIA1AI1

Jt~ 244 .4'4.442 .v'it'a 4- - 4 ~ 4~4 -'.~4~ 4'4- .- 4* 444

w,: a: -4K,:3W LAU *

9-Xwxmm.-4 0'3- Zoe',-Z -- C4 *:D* 49- (3.D4P1% ce-q 1-4 Z:.- 3 *0.* F-LU

LLU.- N.J,V. C)9-V) 0i.LU -' *I-* o

<a0 )(. -1 LU C4 -4LLU.JLU -4 *0:* :-Ci one0. (face .3W "-0 **U

)( LL/o. LL4U3*~ LU

ZZ(3c4-W - ZF--J.jJ 40o ?p4 '0 . -"Lux) 0 *4 0:3C3LWW%1.ta -. LU-10 - LU CL LAi4. . --a 7r~ -u X *- CO

T < - ft.A X)<O%>W~ - %LU 0 -M* *-. UJZm I11- (-D- .)L0 0.)-4u.N x~%- ZNp a *4* "LU

00QZ-sZ Q xZ)(Cm" 0'-. O0" r-4 * ->AU'. - AWW'4A Al- "4-4f'. am A 0 * a NWU Ou *'4*0

-J-j-4 0" c:-j)- Q0' a 4% = (_fV.. 110 a Lu * '. 0 4 *.*4L.J~-L- 1%q- I r-- 'U uLii.J Q- is P- X. -.jd-4q Ex

WJuj 9-Wx) M'~01111 9-0-4LX4 0) LU N-0WLRL-4 C *LA.acw~~a 0. >:rLA. <0 00o. w, 4i -. N%4U.L w *>* LJU

2Z~--%U..L(Fl-0 )-ZO.' UJI 0 . *- a - 0. *ULn* c.. J4JLULUW 4.L)-4 LJUJWU "44. Iq 14 A. l* LUJ* L.J *N4* I.-,CX<44IJ- -. <"4 Cr..<ZLIJ( 04 -) ac Lj -Ixz -0 cr. L6.Z, zx~z Z,4 ZW XL r. atio 0 <*ni-UJ (6 C* 0L4C1UC-b.-. 00W..-lc a<4 go cr. E% 01,- X )w*LLJWULJL-3 '%. I JZ9LA.A. '.1 U' (J - - V) 0 OLL'4 0 *a *E

9*- P'-W 0%U.' ( oL - 4 - a:XLW- * ~ uj9-)()AA-- OCA: OWU cOZ <4 .- I X 0 UcrT). 0-oO **.% OW *WJLUI-1,- *c4LW WZ~Z Wucic ".- 0 -4 so4g WO).'%F- *-4* N% z2%A

.JU~J.3.WL9 U9-() LU. 1x <- 9-U09 ' Z*

.44 Ct% ccmr3Ai,-% ".40.0 9 '0 W..4 ~ **UOO. 0F---' CC < 0.9.-LLJO.0%. -. 04-40 LL. M-cf o.,mUJWLA0n ***2

04C9- J..'- 9-' o- -J Q. LL. -4 .0 NL 0 -U.nfl09-~ v * * -. LJ LU1-1,-.cxc~u 00-?-J.Z3J(N~ Wji-- -j U. x -J*..WI. * ZLO0/) *>** 0 Niq

-. 12 "-<W0.4c')4-. C0- * -4 . - ~ r4* .i"W-4-3 00.o (A) LC cl .

'- CICU) -Z0%WU'LU._. 0% QX L L.02U.- *L 0z *uj~Z--- 4ccWz- 020 q c3V) 99 < U.0 *~ "W 9-a 0. * * I-Lw.-n1

*** l. C1WL '.WU JL 9 0 a 99 99 xlu~ Q : a <4 *a -4* <...xfr-)r- :ZI..J of'/)Cc Q C30 Z oU .4(3 < (%Q9--O *%40* .2 4N1 ON go WU: _Ljz9 .Or9- nc0C4-o~ 0-*OU

*A0 '0 *tYWLLUUJU.<V)Cj N"-< *.Z.4 X (_qCCwUL'q0*u. w).. *** (.J-)CIr-.-pOA-t Oa.W I-< "-4U'PUJX )W <LA.Q a - WtUt" *xft -j < a4

*U. *U.. q 4-44'-4CCLW,-.. -t-4%0LLL0(. (/) "2. 0 LJWQO< * -4 0* <UW WON40.h..4tn.jQ 20 )'.-q44 ')' -00u.4-.w)(04WLZ *N)(* Q4 Z a-1 -r-4 ft-<31.-9-0. WU<'%W4- 0W.J Av* r- UI "~-N *a aJ.* I.- )(

U. AL..-4LI 0:3 UIX-...ILU)C00( *F* @- V)--.4%k1C1C0( * X 0* LUN-4N-N0LUZ!m.0C X4 <-4002 ceo- cx0--* .* WUIrz 0

0 000-m-4 ()''4%.I 0~ 0 - o ~ Q9 .0JOI- "0r 0** LUx~xT% r r9Li.L 9-ILA^X~ oil S ~~~ cx)) tj4.q)w )(*^* '-UViV de

~%ZZ% ~'*Z 40. XZ 19J0 *% %ZZ)4 0 *. *0. l.JryI) (xWMOWV (~ZL- C(LCXLLC VIM -UCXLLOCLL* *.* LJ CL .4a

00--300 nO-C0o= -- 1--0011r-411-0000o.6 "X- 00)-*>(*F-Z in60 D

4- 144- 4 -44-- 4.4 4 -444

0400000 00 L0ooo 0 0

-4 -4-- 44 44- 4 -4

91

Page 94: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

-44-4 44444 - 4--444-4..4- ..-4 - -4 -414 4-4-44-4-4 -4,4 -0-4.- -4,.4- 4 -4-4 .- 4-4-4 4-4 4 r-4-4

LU

10- 0Z

-j U-

U. - ft)ccl Z t.

Uu Q. Lt - UQ4i -. 4 et _ Lt.

LUA U.wL

aci P) Lj . LU LU4)U z U LUJ (X .. Q

z ri f C6-aot- - - IZ<" 4 <LU4~ U..

uo -- - Li) LU(.2 "U.0-4X U 0

'-Qi Cl CC~- "OLL LU 0(1) 01,- *J . ,j <

0/U < 4 xU +:3c U- .~ ULe0 < W. ..JoD < Ll .4.LU '-4 Li)L4L/7LiE LU V )+

L~Id0 .4 M- MJ Q-0<NI 4-.4c4 UWCX (3 :z - 0)Q I

LU z ~ W*0 << c 0-JU 0 LU C

.iJO N-N 4 rn AZrx7 - -.% L Li)-* 0- 4)<- We * 4UL-3 +. (3 +~ O~o W -.IW

w 4 d - ft* . L .'ac ft Q~ *)Ck'*

LUa LU. V)C 0- * Z L 4--CAC .4/) 0 .* '/)-.L -4 LL C34 0

4g.... .-4 0 -'-LU of-o 02 ZOZV* 0C-.* 7-N 'N- 0 -4 *I- 0 (

<t0- x x I *OLJ1N OtL <4 0i I Occ < L(4a ** x " *o0- (j-0.* * 4 M "4M * .4 Q.qw0

L4* -4C) N-I * 4i-q6 " 0 CC(JCUI LU U j 0()0 *CX.t4 L.4. 9"'lC *xovPc Uc" LU .4 .JW *x 0-

%4C -. - 0..C 0 N-Cc )-J.N ..I

.1ccl .-3 -D Z -4 L <. i) If * 11 -4 QC -. 11 Cr nU-

CQL C 11 O /C) L-3 o, - c)1 Z 0Z/)-wi . U-0 It UZ M.O I-.-4 -, <-(/)0 3 C X'%* <Lu n <4 :D-o cL iW * -4c--L j QC~z4x~ -)J. v)( I--.q) *W x~N-. m O-IL cc LnM1-4UI 4CrJ. C w

V) UI )(U-3-J'**~~-.*I-,-, rf(J ~*-J4ZI~fl ~ Q .UU.,U~Z L.

u~a ~ J W44 UJ*.4.04 0 ~() W UJ*-'~92

7z s u . U. .I -3~/I- J-.J Z.L~A20 .

Page 95: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

-4-44 - 4 4 r" 1 4 "r.4 4 -4-4-4 4 -4"4~4 el'44-- , 4 -44 "-4 -4 -4--

r-14 P414 I- -44'4 44 4 44-4 -444 4 4-4-444 -4 -4 '4 4 -4 '1~ - *j - 4 -4-

LICL

LU I-.1 a a a

LU~ - 4:zI)

-%AZ-3 aL.. i~-.Q C6 J N

0 f . LU CAC. 0 )ec-.1 0. 031 04 3 4e-t d 0.J LU

.4- oe~ W+- ft*LU 'JCLQ CIU)0 UL ( 0.0 ft L

w aZZLU ft IXa LUj 0<-44 .4-. Q 0 <O 1- 0.It. Ix. I.. 0 9ag CDLLLJ-.

> 0.3OXO CLU .4oaqN U. )<F4 4 -i-- F-N L/) 00 0

c F-C Z _j f c m0. 0LUJ A ft 4C ca "4Li w-U .C3 X. caZ U. >. QJ4 U -

S.) 4t I-4 .0 < -0 CC U.I- LUM ft ICEZ x) "VILL. ft* f

;L -f CL -q4 I- LU I-9 u--aG (D J)>.0-. M L-a Luo 8.0 ft "a "=-0I.

I) /)4 <N i-i- I -M ~ " IX1.0La LJI- l--. -o-C F-L) ftccO 0: "_.j

aC L s.W W* LUZ ftcL CL o C. -Qa

Lu .1- -- - 2:00LI .-. 4 "CL. o - 0_-4s .Qm £r x 0 WJO I-4 )3 (*1 x %

W -. oIz4q LJZ0. 1-0.. WZ1- L *Mo1 00(./ "I. - U-.-<4 LUZ 04~ a X I In (j L/) $I- -.0c-. 1 1-4.-4 Q(J'. CC a ac = - ft- 1-ZO I- . -*0-IL. Ano<4 X-- LUID I F- >- Q~ X1-- 11O Q U0.Q 0 if<C 0 .-1

* *I- 0. z .0U a -W.. - I-..j'-ZQ.JZ "14M L. I 0ZWI -4 LI) /)'.d u Li c) q~3L V 4W CC'~. 400 CI f) LJ -411z > I + (A -cr=f- (D(D- F->(> =0.'Z0D aJfl CL I--a Q.1-

4 .I-F-A -C - : - UJIJ* ft ( I.-tl. 04-I-Z - IQ-e"-4 C 0..i LI. LU VI) j( .1r. -6 C% LLU LU Li "LU 4LJqw (/)X

wl 0. X <<o uu. Z -Ou.Wu f-(0 X 1 -~y<4y- M 0u_ -)LUM LU-J - %I- I--* kuL r-4Q. -I- L6 " (3% 1-V-c~ L)'- >XZ(3 LI)Z CXWW() M LLU (Xc3Z o+- a -4"~ 0.4C'. s.Q(I .)nz :31- x211~ I WIl- = LU sX-U.UW in~ Cew 4 *A ocao'.. 1 *0.4 0-4 %>.I-I--ft 1-C.- l-F->-I.-J-0= M~ QkjL - 0 -0 *04 < SX-4 0

LI3 "+LJ4'iVM C4IC (L. 0L(. CC - .) 0 qLULUJ.L -L"j- I * 9U.jL 0LU QI -4*'-40- crz QI aLW-LI 64- N 1-1 -01 s 01-C 9CZQ7'%%- I =OF-

- WU .-4.-4vlIQLU WUJLJ. LJ--4 QI LU.!,4 UnJ% 4~( 7 '-X

LA. ZCX s.-)(tJ- a,-U --- ZXJ Ul 1-- 9 *>LLJ.3LL.LJ 0 4L-~ 9 ~ij~ww- ~ ",LJLI. kJLL4U1 9..4UJLJJJLWD& I LI-43JLUplD.AjU

LU.J 0'-~-()mfl~lZZ -. LUJ .)Z<LU(I)W -MY. 0oX-4Z-LULW-.JL/) s...Jr3 1g1-14>a. Q JL )11 1.o0 l-c OWL.) 00 -(C.D ..JZr 11WLL 9'- 1 M= '10 044I-0 (M0IL(Avdiz £XaWIIC.J-If gu)..j mx£4 (XJ ILU-.jtuiI- 0.I-Cq1-1-I-1-JULL.JNLL6(LJ1-0 11 F-L)

q M:0NM> t(23?-Lj aJF-U. U I)X-4.:o.I I.J.J If ZJ--.-J - 1 LJLI-UJ4,4Il MO -A 10 :-UJwZ 0 :ZI: :001.7ZLLJ4-J 0:" 0 40L<LL.MLX<L.7")

XLI /)LI. W-4L L. LI)WLI 4-4 0 ~ -4 0 -

-4

QQQ.

93

...........................................

Page 96: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

41 I 4 JU I QO I -0-404"U Q 4 1fJ

- -- 4-4 4 ~ 44 ~ 4 44-4 P-4- 4 -44 4 -4- -4 -4

-4-4 -4-4 4 -44-4 -1-4--f-

LI)-

wiz 0o. 014 ..J -4

z VXX L")

-1 LU .a. J w-L

=Z z Q.J .< 0I.-< Z-I I a.

QZ1 cx 0. >-Oc

"I- - e 0C 0

(.j ILWL L.JL3

<C0 0

-Li) LLJAJ4

CA Q. tzii-f..I-2 O -C I - ft-0.. 1

l' --3 - "C. .4L0*"VL)i 0.C) qN.L-j 0 N

o-s cc . cx T. CD-z LiQ U~) C1.0 WLJX L.) e Li)n 7

o LL. .. Z. 0 < .e I-- "~ f-)N 0 CC-4 LU I,- ft3 <.i) -) D-

In 1 - WU CC uJ0 -1) )-x 0 CXIC cic 00. 0.3-

Q L LUJ z 4.0 I-OD)-J -MW0J W~-J -N--(%g-LLI- .0.JU.. 1-~0 x ~ -4 ft.. 0 r4

Li .1 z l'- QI CL. LA.ILZC V 3 - 0 Ci).O . I 03. tLi '-4 LI LAUI mN r* 0.M C 0

(3 U. WUZCZ -0 CZL C Z- N- C( cl%0~4. N. LIJP- 0 *-%*W %*4C) (-20

0 0 -.1 W)>.I) LU ... J-CLiJCZ W.'1Q I -

x % 0" 0 1-4:D I,'--U...- - se Q.ZI -Oc. 0'wj -otn ZcW-I ZoU LL -V) 0.Wet x .0

0 ~ -LI "LL ftL .".LCJ NJ i.-JO... '- Q. --41- L36L UJ-4 z <4 Z <4IuQ)LLO. -* Qzvi)I-I,-CV) p-- *0 -j

1:-LU .3 +A Z4) W'-c~ LLJ l-cr *Lu.JZ **C"~U.W-Xfl U.J 1- 0 1--*L4 0CLU *'4J-4 za CX'J<ZZ4-er'cA-" _C Q)- LA'UJ

p- WU (.g.4UJ *%JLA. %.:JLL *LjLI "-w LL -PLX.IJ-J IP *i - J.6

4400Ig4OZZ - 40W04- C)I.Li D 0.4(3 J( -i O-ON lIi4IIQ. OcO.1Q-c1If

N4 00

94

Page 97: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

0

N 06.'. Ln'

C:) < 04 , a.0. -4 LL U. 2.* 0 V1 cri).

N0. *LUJ 7:

WLJ N 0 *) - 4 Xx .41-).- 0L z . ZZ CL.4.

a -J CL Z (D 40.6 LJ" _C

*. LIs -4 oaZ -~j - N&ox wo )( V) 0.. +*4 4 I-w. N .I- I.- vm cc CJ -41-1 P- Li %.J.L LA -

~d0-'IZ X w-*4 NC0z e 1: a a -ft ziX* -.. 4 " x .w~ IaUJLua C) 1%C3 0L ca C'14~ *Lit- L.

<4j no V) if)- zi VZ 0, Ci Z fteacZWWz -j. L/)-i)) (X. 0. -V'.) NN C14 Q

q . -44 -4 -JU-0 - 4N LJ L.J* ?-p- LL)i-(.D 11.4 tj _V .4 NM0* z q* +-. i.L mcr

X . "-- -q x 0 -- 4 *X* < I.- < N"NULJf(ILL~i)I. ZO. 0.'-Nml- min ;:0 CC 0-.)-LJWO.6 .3..J 4V.JJLJ 11.1 La -* a: -4%) -

zlq OW~ '-4<~ S0 0.L "Q3 <Q< lX * 0--C~j LULUW Q "-iI-ce CC 3/,00 . L -.N~m a. M *Mr 4 ~ 4Nf ~ -*a0 >(A)ct -AL .-.- MO* d O4o 0.<XC ON*4-<- -Z (X -coCW'-q'-qUJ I-X NJ4C: 5 a -% d J*...JNCf Y3 d *NI X -

- - OX aorJccv-Qc <Q0411 'fl q X < '(NNry'j V) LIju./)I.4U.z at-) 0.Ce44i* 9 I-. Cec - I--fo *0<CDC0 11.11. "Jl

LUJ > cd-4 (t ft Z t-.LL"<1 ZNZNW I- WO* 00.C-- i-a:: a. . fI-UL.3 .0. -. XNMi)I- 4.4i..)-ZC4 X-w *Z-%* * 4 -4J00-

..J LU LUJ *..J 0<C0o-wQ0..QQN1J-lV) '-oCLLJ I <NN14 DZ -1-j)DI-O *Z <L.) aI- -- ZZ + -0.J* * L.-o d/)...4.0.0Zq 0* Q"3- CL -ti.JC q 4 I- f 4LU<N-4"'-'.JX*ZU* WA* WZOJXC.3*LJQ0 -Jo XE'ai..JLwP.-p- uwa. -X~ -q c*..-Ceqi rJ- 0. W Y

QOCe-XL I- i 0 - 1 +V).<4 94/4 *OU I C3-%* * *aIce** LU I-

1.-0 Q CO . -Zo01344<LLLU<0-N. +1--CLX q*NvWJ QI-. WO~O.-C Z ZW 7 CeoceX . . I-wc0CD-CL+c0 e *-k->ONjCflo*- ul C'-0

wd V. .) §*rL"A. 0C"JJO(*0*-JW4'L.LkJ001J4* IJN*'.3 -4. Q..-

LULWZA1 CQ.j G-Li-4 C0*J.f 0 v.*Li CCeo)-Nj s<** 0 .30.WLUCj-<I-- LUA OW Lq%--Lj%...* +ZN 1-,4%% U41N' )- LLUWO.

LUuj A -"'I *1L4 Li~ WLUJS.PrLU4f-W)N* + e-* ~ LLP- . L . 1-Jwm L A.Uw.j 1 4'd* w~C.L4 it q*-- v I W U w *u~s~.' t-- I-. I I

z ) wD W0a044Z.OJ-.JQJ.L CO .'3NRI4<Z I-.c ..)uJ0.0 0/ 4') 00.3 -i-JO i AU.uU.* *uZ3"N:DI04q<00.4 1 W :DW 0-j<lz V) z _- cxNJLU.Jjfl4 -< ..d.4.Ja0gWLi4 U.CAiti IJL) It 1 1~ IVOLJO-.aj c~d C'g jua3-- UJ £Ia 0%J -4.3 ...J .- q4I 1 1i 11-J I - JJ.UI 1g of11C%'JN 11 11 ,* Li -o Cr. /) aj J'a:ncjr3>cC --3 WL00-<-LWifit 11NNCNcu.L1 <<m<~Cnciqro~rmn'r'JOwZ M DV)LJU-4i. -4eC1 ) /QC.~Qcw .q 1)0WLL

,.JOQ1.U. .-4 -44.- i

QI

95

Page 98: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

~~~~ -4a. -4 -'4. -4 -4 - --- - -.. -I44. - -0~ - - -- - --. . P4. . .

0 If

0. -. X.(

a.La. V.

N. 0. LI

L. 0. Q 0

C3 '- LNC U. I

00 0. cc 0.Z CN 0 I-NLA'1~u CI4 CM (1 0. 1A % .IN Q 0. 14_

(.D N c 0 #N 0>. 14' '4 I-

(I4,4*CL -. 0-~ L-C J e -. x* IL. 0 . 0. V-% *1 *-. m' -CL N3 cc x -J

C6 Q.V'r- z QV * .2 L *N ) -* QD> acI*NUUC -* .0. *- -LO N4* C * t L I .j * 1 1 Cf.

tdW *I9-a 0.I- 01)-.. * *N 0 0. C C CLXIC* -%;1-I *('4L CC CLV *N ' M 0 ) *( - * ' e

WIUC ) 13* '4 WO NO. -4 0.1 '4 o<

-- )1 *%4 * w IJ I- S *%%NJI-. 0 *L-JS -e4(2(29 *)(ZZI I ix- ~I * -0-4 Cf- 4i I-w(J.-4 CL w'4 04

0 . - %~%0~.CM t/)L4 S NJ%040M) L/ 0- 7-1n (LI-TN :

w6L6> A"OL)- L a A PA ^e-0'a- ~ Q.Li AL.C 4. . 00 1m m-0 Q.-. cc .. Ce44L) '-'a -- *~ Zc.4JC. 0 9.

o ~> zo4Q0 1/) NJ- Z= -0C L')Lfl QC k..9 00'n -L

I O. cW/) .r .j.j (ja.- , . Jj LtLu.2 _t..jc_,uI rj) -j..jUJ *IV)WD 9 +V##.JLLJe-uJ*. 4 aJj* IUL4u J-.4U 00*

*114I 9*j.u I 1 _zII 1 11 0Z4.II *QL3 if I -- zI It ~ If 1-z 11 I -z< 1 1 If 7:)~Z I-

C.UL.LLL O.G.O. 'D0U.LL. C6C.0. 0 )u.. ou. -4JU

96

Page 99: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

. 0 .. . ......

0.

-70 9l

NN

*t. *. Ma %9Q . * 0 I

-4 0. Cf.N-.0 (1. c

CCN )( 0l **xC10~U .. 1- 10 **. Li L

x * Cy . I 0 (30zCO CCC N *C -. Ni 0- * * M -%.-1% 4 zU M*--C 0 M 0-%0 'I ( 9L Q -J 04; 9 0t

e*- )-~ + I *o/* I * N"*QCLJ * n 0.6C. G -Qr4 1 o * /) N

.4ax -* + 0 00. z u~ * -*.zlcr 1'4C CL oa.m*c-~

*1N c -%* 06-%410 ** aco . 4

%I.V- U.q o .L 0 N*)( % *LCC**.->-o.CocL() 0 6.0.0 X *%._

C~wVW-%-0 IVIt0 . L.6~ zUL*q-) NI>.40jL') ) .*JJCL OIdI~ .0 %U. NoL4* 0 '

cL.**-v 9 Id) 0* *A I *t..)N%.U -4~i 1OL43QLUg I a.r *c'J-40 II-IUOL.# IO) IC- $L6. * OL~di0.N

C'1) 0* * JCZV-.-* If.'- 11 t/ I\C36CLQ6QQWM'

O.CA U.0.0.Q0 >C'M.u0 01.1 0.%LC-.. zs0.U1U11.J'%p IXO I. UI. ou QlJU.U.* WQ U.1

II 10*LL Q~4JN)0.. *.U*4J.'0

&*.J.~t~~UI ****D.JUp.~u I~J ).~.u*L97

Page 100: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

APPENDIX B

ujUU LL UJUJUUUU~JJUUUUJJJUJUL JUUWUILJUUUUUiLJUL LU UL

~ .O Q~0-N1-U~ O Q~04Nr~rL-C J014 IJI.0( 4..14.4 e~Jc'JC J J'.4CIC1I~ C 'l ?'r4~ '~ J o

~ccjij .~jLIL ~OL J~~i .J JI~i JOCJLL. ICi 3(~UL IOII(~JCLJJ t 3J00600071

UJ LIWW JWLIWW W WWWWWW W w w w ~s w w u~ w ww~uww uswLaIL JLI ILJ)LULL cY.d .JILL LCC j KOOLLCJL .C DL~ iJ~.J. J. J.L JJ4J

** ** Q***/*CZ*a < .4O

*(-0 U. U.0*.1

*j-z 1- 0'z~ ixc*-0

0-- I W,4 *q r_ Liob 4V

Q= M u~I- jW U. 3 <~ LU < - ."...* N 4W-..1...i (3 .-q ) cr e 3-

*. Q I.-c~ C* W. qu. 0 qL"* * LJ .2-4 Q: c ~ o LUZ cm

*~ * C 3-.4* 4 4 )~d I-j~

*0C ** 0( LU L<(<w * <1 -0 -4 0)CLUW0. *< Z U%' <.A * w-00 We.La *1- - 1 Z>,"C *c I- 0 z (J.01 a

*4 -c * 0.W-i* ZL ) III%5* "- I.- ad * 44xf-C < tA *.C/I>.

* <,* 000:w cc* cc~ z z CA* * .-q41)W * U.o1

* L * LUJC omDIw * 0 * LUL P(-LZZ (2O* * 00"-4p- CC* tn -4-'5 - z~.%i -Ln...C'.J

<: CC 0I iP * Z (4O<-( 4W -*)U *: Li L) * W I-zq-"vo, AC- )N x "-UUV

0 *--- -:)-C- wwO. * UJ /) ) LA. 0. I- *> 0I.

*q z- * - 0 441t cc4 X W uJJ .L4 f(C31-4 X C* * -,U..L * " Z--g 3 S. 0.0.li0 & -

*WU * 0 .)* 0 W C.)4L34U.U I I-- w .ZN X.4 u*Q * .OS- 00 Cc w4Ze.~ -04wU

*U _jj *U w-s-3w 0.4 .40 ft ft ft ca

* * Cl).MLi'.L* q . Ql 0-4"-~ OW L 3*~~~~~p LU * uaua4w* . 4wi -iiJZZJ. &M- cc tjc;

*~~~~~" * qcnu.w~ ft"C ft-.J3 '-Z W4 0.41cC4 _j* j *J 40c. *tuo Z. O(Z'UZ4W L- u.-00-i tn . n~* ~ ~ ~ ~ 0 0 * lU LI i 4 p~~)-4x o (nc~ ft C- (vLJ) M. )

*~ ~ L %J *M W-JW-4-4 C.4 L~t S-O L -- 3 - I S00.J-.*~u p* _..qL G-* S.- -4 -q.4 L11S Z zJ-~~i(*~~~~~C * :AlI-* 0* *t- -iO W-.-5-(0 00W ) AZ 0*~~~~~V *1. " v W QS-I- f- cc444 I~C) ~ Z L . (0.4O -)

* * - J 2LI-- JWL LU * -4 ))4LJ) 4<* * 3Z~e'-4.* . cS-5-- .Li~.Jh..JZ S- . 0 .I~.Li ce - >* * ceU.0(J* L Li4-44uce.J~3~L 4 -. .~w w 3cr )

* * ceU O.0* 0 (3Z Z4~.40Z Z-I - c ZN~U.~Li 3 -

* * Q~. U * Li 4uCl)ce ) Cl 5 O-Q-LIC98

Page 101: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

woLIu O ci Q wci oJawOJ~.OL OwJ wu tuwlzIjjuOL.aJOi Q QOl-(j u

WWWWWWWWWWWWUWWWWWWLLUJWWLJLJUJWWWWWULUMI U LAJUJLJULILLLUUWWL:UWWWLUWU UJW

* 0 --.1

NI z

ZU L Icc qU (xI 4

4- NN~

*NO-o. * 0, * -

NAL * -.. cic " *%0 0-4 00If %LI-- I-- -c CC Acx II Z0ONZ -J N1- - W

NOj 0 >4.X'. 9 *-%, I.1-CieV9-).V) C0 *-~ N < LI)

AU LIWOMO0 "- WN Z 0 Z - ..(n -- i.:LJ v*-4 A) -* "G 0 l -i +

U% c *-4 ZJP + < .J* "~ 0.%* * LjO ca A -(NN 4 < x C MO+ OfLW -. 111 CC~I

A'O V)~ 0(A N..0-NZ-' Ot-?* 0. LI Ln "Ln C . 1-~ Z OQ*+%I 0+r4 w. QI 0.L(n +0 0 .J- L (0-ONl -- 40 NJN- ... N --

Ln - 1 04.. LI **0z4t 6z* - I "- 0-~-1-4 0 Lu ( .-j Z-4?*OC..I*. 0.6*Z LILL up I .LI-) .4

('4 w& u) V- x>. U.I aq..j0W.L q*A4p"L34 0 Lu .40.x qAn 0J N-j -q I)-..~ -- )- -(J0L+eI . -4* I-

S "d WCIJ r- it aL -%1 -2 J .4 Lj.j-qI-C.JU#I g .4 LX-ADj. 9 dr' UD40J

w 1r% -J'~Z a 7- * I-=dLX-IO~f4_ILJLAP-o P- qZ I ^ itI--4-4OQW If)I. >- w .4- NOW(J'-440 '4vII I Si- (A t- q D* (.

tn .0. *%%0(A 4 0-411 1-- -4)'() g- '-e4/ O~IIC3(0*OC NI-A Cl of-l-N<4 0 1 If .-4 -4uLL M Q -= 10. M<>.- 'q MI.-" -j. 11 O-JmoL 11 Z-s-o "-. I L-'ii--LI of 04 11 11 "W- vJU ..-" J -1 11 -J Ifj gU- If .. J0.uI- O.3-4oCr( LL. if ig 01 11 wLQ4 L4..NJ~q.14. 1- OiIto cc D AI: D -=L04-AO.LA-I' Itoc 1 LU -#4N._-4

0.0.6zz~cz- cl: L-Ji- ki X>-) ki ~ I4.L4Lc- La AAwl.-

99

Page 102: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

000000000000000000000000000000000000000000000C0,UU.L -,tLLULULILjLLUL LJLUULJ LUJLULLUL~

~~ U

LU Iz

-i LU

.

z -Jacc

06 1- '-9. (

+ rL-44 Lc

:3 In 440u~ .40L M-0- 0 LU * N

0. E~o -M OLt J 0 11 of A.* -1-

11h. coO QI *CJL 0t 0 '- I'4 0l OqxU N W.. Z4 *"j.-i4L ) 0 i N~f "% IA

>.-. Cf. ul < emCL qJQ (NZ60 0

1-- C WWA u "I V) *0.LIM-O 0N c LJ *- * N .)

0 04 (4 CCZ C3 OO..L *A'- Ux 4 * I I 00+) CC 41 u0 N A..1-U. U )5 1 O. :- 0 LUL'3 N-Q..

ON h. L IJ (3i 1- 0 -0 UfIA-~ U. * -0-+4(~J ' *j-' <m% A 1Di o- .LI-ZLU- 0 UJIflU(/):LC 0

'-4 I- u 9>j-jrc .X cOOoiIc4 40-I(-. 0 *0IU.zziqJ k.q *AJ .4 v-----) Z- I I -OOCO 0 sl'- O 4A NLCI-t-U 0 'j I

0,- -0 0 c. * 11 qq-S 14d' 0-X *00.LJ* )x(44C) v x i cx - I -N 0t it a 9r'0.4V LL v LU WLUUU-0.(4cxx( t-.-I- *.-4 0 11 .I4 c -iO 0.4Zwm.4LL.L U.I

ON LU I- L-* L6.P-. if '-4Z4I--'I-4A1- e.0*V~ W- W q- + . i . i tWL/.60' . w .0 "-1-uW0w-.ILU wl -- . a

I-ul 1- -0 1-*I~D 013. ~ LJUL~-4 ~

S.. LUI A... . L.v qI DL~QL U I

wig %j I. - .

LL0.W~1 3~i 1000

Page 103: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

LLLUWWUJLJWJLUWLJLLIULJJ.JJLJU JJLU11LUIJIU WILJWLL L U LULLJLJLLUW. LALJUJWULJLU.J LIJULJ .U.LIJ

V) 0- W

LU QLi.

'33

w 0.

J6 I-

e00 j LUW~-0-

LIc 0 i C0M.- (LU 13 (n (AN (A c

Z on 'I)or zU,%LZ a6 P4 fo . 1 . -. I'. -... L .) co C I

V ) Q. l-o 0A 4 0C- _j <I

0 0 1 -~ 0 <;- L1*. -"0 <t(LJ N . f"Z ZE C4il- it LI U01 (0L .4 C) -CL O

1- (6 C-4Z I- LU. '0 0 < LLJ ac4 ZW'LZ <. -SU%-Ii- L < >. '0 U...0 Q T* w 8-W 4.4-1,p Womx~ m 00 + 060r -CLQ I.-0 *'*

C') 0 LL '007 wr ' '0- .Z Mfl*I- 0 LU Z--t~o '- 0 4 X ,)- L.-4 = 0< z/W

4j z -,4 tt 0 S~ U-. 14 1.- -- Z Qt. I.% AJC .4m ""- 4 q4 wqr4- 00 C\W-. i LU 0 q C0. -4 Q4 CZ

4 _j1 I CdIA A cK ^ LILJV - r-W 0.LL.LLU -. 9Z64 a- -0 v4A-J ~o P- "6A.~* lWW ~-.LI- I 0.'4 OL %Vp .- L 0u -j.0 cx .- W0

U. L-3!M LU O -La0l---Z Z-t4 0U L-11 ".4 -4(\0 -311Z Dc Z1,- -4 A~ 0 oW X'440" 000 4 (a- :3 i-j O--e-( I.~ .0 Z .

-J If 11 11 04 ifU' _j 0--a "Z I&J.' M.. Li cr - w- -4 fZU. <O.I VZ.LW NOLL. 0LN 0.) . 0 LU Cfl'? 300 Z J m . )-3:3U.

Q v).vJ I-- *Q-A x 0.*.LA0. LI u'... 0 Q . oW L

m. ILU4 D U .L8- 4 Io *- .n Lt 'I . .U . .~' L.I..J..1 0 ~ I ~J..j D%4 __ L P 44.-4-4-4'.'

** '~CL4I--4I '.10 LI ~ ** i10 '1 4 ' 4 8- -

Page 104: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

m A -3 % 4'LN m~a04N'Vu 4r.L0nC~"-4" 4 4 4 t tU'4 04 t,41%4 J4 j-404( ..k .4 tM-0C4t4 t M,~J w4 1 m~

W WW W WUWJWJ.WW W WUJWWUU LULLULUWWIt UWLULAJ LjLU UjWLJJI U

JzlaJ a Ca-M .

ZI-- I

i-c -i -q WI-

fW LU z

*U . z C4 l'-WWU 0 C3 4t'.P L - U a

-1j 0U . 0.:cZ(3', * LU 4.1

IC 0 LA. Q*l-LU Q UP N tZ i

-.) "0 4. 'W If _LU

w. .-q 4w.0 LU LaU rx. (3 0.-i -A- * -4 j N. f "

'-4 CI 2C. ( 0 1 (Li xvC 3 1-4

41. * .G -0C 1- '-4 LL.- L.J 1 -- .hL/LI + ~ :r- L II IJ L/ C

4'A -j Z CZ 0 'A 0 (A'L 4- (n( -c- "U C-4LJA.0 L 0 a L4 _jZ~ ;:. ix -.

<-a (3 M 3 0C-% --% .I (.W Q.)t/

-30 4. 4W(41-. LULL. ()%* 9 0 C<A*-"

-j UN. 4. -- Dl 2mI--

LU . L 00'%3* '0 9 QI-U '- -<w -. * U 0 I')j *4.-? * - I3 -% <-i 0.U--.

V'A Z WLJw~ *Vq z Q~ 0 (A~zuJ.)/

>. U 1.W WIO 0 z1 :-'--9AI

noZ alw IOZ'AWW 1 -1 j3 CAL'Jlq4 M- "-( *I- _ * - c L. i (-*L.

LI. LJ-Lu"-* (3 *3 W-4 LULU 2 >;uj

' LLLJL& I--VlLUJ LJ- LI. ".~ *LA. UPL.JP-.

'4LU ~ ~ ~ ~ LL_ "-~ I4'J..SL* t.J 1-0-06, 0 -:WWLZ+I--4qWZCC<4. +Z W 3W1-')i )ZZ

Li CXW(3l hJ1- -J / )W Of j- -L U -J EIJJC30-LJZ co = Dz 8cA:LL 1LA. Ce0 U. L.W z Ce c~(. 3 t4-WLZLU -- 'A V)-".4.,CU Cl.A. On 'AX C LTLU

102

Page 105: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

APPENDIX C

WOW" W 00Q0 000Q00000 WW W ou U0Li 0i0QQW(4Wo00W Q,0W W0o W00u00

~%0-4r~ ~ tr~a~-4ccC) 04. 0-'.

o J .iJ -' ~I0 ~C~~J'- QIO .JQ~J JOLJJ -'JQ~.JC.0tD''JJ0J ~c~ .. OJ J 10C00)L00000000000000000000000c% 0O)-00000000000

H H~~~~ H~~-I-I-I~( HH HHL HH H H H H HUIHWWUJLULJW L LU WWUJWU .IL LW JWLJ LUULJWWJ L LUJJ L WUOF-Jt U

* * *U 0 0 0

* * 0C) Ln o

* * LULU -lm-Q H ** *x Q-J of C* -- D

X <-4wt * C, 0-:* j H H 1. ) a>-

* ~-I-- c *J6.: LUO LALi 327 oo

*- 1- 0 J0/ * (-,I oJr 0 -Ln

*~~~a * zcO-rH* LUL.>C L ;K* - * J W W cOwa. = 6 1,

* * H OWXLO LZ (LU 0-ca <LL 0 C'JOO

a.*- * Z~~uf--4 *31 c~cI-I- c LIi

* ~ L H .4 OWO L.W00 -40CL

* L * ~ IL- * ~ 0. Luz L<<.q -I 0u* 0 UJ)GUj 4,- * HL')4 U 0 X cneH LUW A. At-.*7Z 0A-- * ()wi r-4 *ZL: .W4-U....'O0*w -LI.. *Y. C) L,)Wj *n wj~ ...- .H* * I- CL)HL *o a *QV"Q ~ v CL~~z~nn w* *

* U * j (3/).. * O-"j LI) 0ozz C) S-10 <* )~ -JU.L) o * Hcd--Joo o 0 nA a.00O i.

* L C)0 0Q#-4Z~m * U.-41-40-. U I-----N U'

* -44.1 t.LLW .-i -0La rjlj 0 w . -4. U- a.* U * UU WW C4iI LI) WloLCjC~jC W W1eLt X -i M .jo Z _j

* * XI-..L * LJ * z W.ZL ).jQ C01C)Lx).)- Wj H 0 <* .0 * 'WHC-4-1 (0 * C) Z< t--'9~ -: etA o t-"*o Ox ~C)0 0-i* q U L3'300QOOWW -4 0 (L-- L) U.

0 ~O (~a H - HWJ-LJwCH - fto00 Z C13* ~ OOn olbz<L. nz _j <IZ~-c!....... A- O). 0

m 4- Ui 94 - "W WW" x f .L a 14 -*Q~~ *x.0 I 0JLO Z XN%-x C)

* * WtUJ-.J< 4 U. ftx Z-I)42 VD C0* LU . 9 * LAU .4~ -"

WW' * LI UI-646L V L.J r4,dr*d L.j -4 LU - LU

* * -.LZ~U).U.C;LL *- .. J-4(J -.~J Ul* ~ ~ ~ ~ ~ < W -. ~o~ U ~ .JJ-- LU .. 2J0)-J

* * -Ce cC -.J -ZZbL~..>-J ".z - -4 00 z.X* * WL LIL.LL * u 0. .LL?-f-4z* r 0 -3- L6. wLJZ-4n - "4 0

* *WLZJ.qc.L * Q U. -JJUU" LJ)CldLiu -4*~- Q 44-H4*~'0Z 00 ( ZWLUC 00- LU

(x** LU -I-CXN- < cr* 0 . -4 r4 -e LU

103

Page 106: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

000000000I0Uu)U Ut'nIQIVIVQ00IV00 w 0 000rr 000 00000(.00 00000O000

O j(J3 JLj LC QJLJ LjLjLJ3Ca t-JL4Co LL LJL.JLCa LjLJ C3jQ JLLLj L JLOJCZLUJ OLJ LJ LILJ

I

LUJ

adLLJ 0

cc 00 LU0 0 1LA LUI.- - 4A

LU -

CO . -UULJ Q

LU JON- M: acU

0 -- I-.-0

-i X LJOO (.

0~~-L' .JD 'LiIEOC

eALU :c LiUJ U -J..4

0 I. .4 rQ. .- 05- 7 QUJ <, X.*% +.

0 LjQ *j o U.JC" .JLU .1'Q- LUL~w

=/) - .5 0WIZ 0+iI-OG. 0. C LU 0 -+<-.%

0oj NN-JN 4 9 . j N 0.4. ( - * 00 <- 0 '5)--

0< I- * 0)- O0iJ Z

I LI-%- 0 U *II'- 040 -7 -J *.4W. (x-JU V

00. X- La % (ZC -4 cc -CIC il- 0

r- 1 W44 %J C* 00- -w P- * 4-

V) -"0-411 a C) f 1 Lnc.-. 0 0 w w w i- N L

5 (7 No )4rw. I.Jj-4,UJUJ -- F -4 F-J0. (. I )

I- LI.L cz a .F- L F- -3.3 -j -4t- -% IIx-4q 3- U k Q' >Li

LU '4 z S MJ- J L 1 q.J9.

5--~OQ QQQ-~ L) Q')L (D ) QJLJ ).

104

Page 107: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

LU AJIJJWUEUWW U WW W U WW WUJUWW LUJUWLUWWW LU ~Lu-U LLULU ULuu ijLU LLJLLU~ L.LJL(JC-0 ULJ3 LJLJLJ LjQ Li Lica LJLJ LILJ OLjLj(LJ- LJLJLJ

LU I

LI7: +- La

LLLUtm 0 '-4 LU

(3 x LIt * (.3U

Wj %.:j - i ...J LI0 %0 LU > -4 L

N N (..c j < r43 "nIV) L). . - cr (I I-, LU

CC CC _j cL--1(NJ

ac -1 0 ~ L3 -I-CAL -J -7 A; c U -U ft4 CL -0 -"

Nd u - - 4-4 i-

i V (A(/( 0.-'.LLn Li Q- 1-4 0 * LI - ~ .l-

-3 -6~ 00 LL d41

.4 I L ~ * LI 0 -C-o

x. _j L.-- -7 * * Q 'L

o 10 - %4 Xus -.. WU *N 7.- - - LU IL -4 0r l -I-

co 0 >.( (A -7-, **jw Zz -LI pq X WLIj QI ft -- M. -_

I. - -~L LI Q- Iw x~L Q LL w.LI*0) ~ ..J.J -1~ -o-.J -3 QQILWI LU -CIII-*4 CC) + + IV U- LU

(3 (A X.NN ~'J\ N3 -x- JW~ -j + + +* -* L6 Q-i-L Z --%X** Z 00 < Nli- V)*.UJ L-- - * ..J* 0 LWw 0 -)--4* * - 9 0 x 000

AL z P- 10 0 7v- 14 --- 0 "- ".j.~- 9- 0 U I L.Ut LU UL..U.m O-.- L * * -4 0X -J X--~ -A "- 01--4 X . oLU IIIIaia Niv 0 w > .LILI0LI .1- 'J e-. 0 p LU * -

r- "I IV .4 M41- -4 VDV I vp *.)-. 1.'dN VD tJ \1 U. J ' V

# W6. eL.JJI-- r- I" k'..J-Q W P-w 1 .IL 4 . " j IV U-j4j -' r- ' -

LU QC <0 . It 11 QC J Cr. LILa - LJgI 11( -3 Z- -'Z ( --" i-i -%L--oW-. "- +1 I QU Z o--C') (o00 .- LUOW.-.X, -- 7 11#t-VC'jv'D U II W 10 I - '-4 - ~VJI )-)-I-Ln9--0Q "

-~~~~~.- ,g,..-4 C - - -L=U.44 '44LL.. 0 .4XxxCeuLOu. 0 e-jx;: 0 N00OU.LI. Z U.LL0 O- CUQ 04- X 0

-4 Z OX,)N.S"LI 4 LLILIEA Z - -4 -D "" -.'.3 - LI-S0-.J.') M '. L.U

U.U. U. 44S . 0'.JU.0 0 000

LIIL I ILL LILLIILIIL LL LI)Q LILILI LI

105

Page 108: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

LU LU L LU WUJ LULi Li Q Li Li L)

-4 U 1

Qf- '0 '

.- 40C0OL6. -4 -4 -4

IU. LAU. LU

0 IDJ 1 13 z

106

Page 109: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

- - - - - - - - - - -

- -- - - - - - - - - I - - - I - * - - I - - -

a I I i i 0u

--- -- - - -----

. . . - - - - - - - -. . -I . . . .

, a i i

-- - -------

I i 9iI,

---~ ~ ~ ~ ~ --- -. . -.. .. -.. . . .. . . .- .............- ,

9i I 9 9i,

, JJ

- - - - - ----- ---- -

~1* i- - ---- I--C

. . .. . 7 . . . . . . . 7 . . 7 . . .9. . . . 7 . . .

- - - - - - - - --- - -- - - - --- - - - - - - - - - - - -. I

I I . I I

-- -- - --I - ----...........------ ----------

i,,.-,.ir i i r 9.-

- i ! I

- - - -- - - - - - - - -- - - - - --'-",,

7.. .. . .. "- -i.. .. 7.. .. . .. 7 .... . z9

oopI I I o Z I I

I' - -. . .. " .. . .. . I . . . . . - ... .. n.

• .. ,' f : ' ,, , ,

-....- - . ..... .. .-.. .. ... ...-.... - 4- - . .T-_--_. J . ~j. . -- - .. . I. .. J . .. ' 1

..

. . ."I" i . . ., . . 7I.. . I.. . 7 .. . . 7 . . 7 . . . . . .- . "- _,I

.:. ~- .. . ..... ..-. 9- 4 -. 4.. .. -,.. .. -. ..... ., ....- ......- .. ,

II 9 I I I I i~..*I I I I 9 I I U

.. ..- . .. - - 1-.. .-~ - - ---- - ------ . .. 1. . . - - - - - --.... .- C9 I I I I i I "

a 9I I I I9 9 I 9 9

I 9 I j 9 I

I i I 9I I a

. a a I I I I I

"+ I II i IIi-I I I I I

aI aI

' 9 ' t a t I ' " I"t ' eo , o9c o9. oa o9, oo o9 oa u

9r 9ro

ai

a , . . " , - - o o , - -. I % O o , , , oI~. " . . ~ ~ . . . , o o o . , o , , - . - - , - , - -

Page 110: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

- - - - - - - -

I I 3 I I I II

SI I I

- -I -

I . . . - ---

I II I 3UU

I II i I i I i

~~- ---------- - .3n

III i Ii ,

, I I

---------------------------------------

S- - - --...- ..-- 4J

. .. i. 3 3 3. . . . 3. . .. . . .

S -- -.....-- --- ------ ---. ,

-.- - ,----3 '-------... i.. . -. -

t 0"I I . . . I " "1

°

"L - - - I" "

S I I : I i I I 0------ --- a ---- a 4I

. .. "i" - -3.. ", .- - "' - "©3

-- -- -- - - .c 4-JII I~' I I .. U I

*------------------- '"- ---------- *------

, , 3 ' , On , , O \I I %3

I II 3 i3 I 3I

I i A 5

a ......a..".3 - a -... ...

I I i iI I I I I I

II I I i 3

I I I3 ." - - . . . . i . . . i

I I I I I I i

00 I0 1 0 i 0I 1 00 I9 03 IU O

S.1108

. . .. . . I I " . . . ' - .' - . . '. " . "I" - . . . .' ' . - . , . .' ' . - .'.I, * . - ' . . , - $

_ -I - i,. ,; ' .. . ,.". I . p I,, 3 . . . . . . . ....

Page 111: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

. . .: ....... ... . . .I I . 4

C 'J' I 4 i 4 4 I

i 4 I I i i

" - 4 4,. . . I . . . . .. . " . . .- I . . . "1. . . "1. . . C . . . . 0 )

~~~~~~~~~~~~- -- -. -- . . .. -" -.. . . . -. . .. -. . . . . . . ." . . ." . . .r.

Q I I 4 I i I H . C iV,

i 4 4 I 4 4 i :

I 4 4 4 4 4 i

I 4 4 4 n4

-- - - - -

- - -I -I -

.... - - --

-- - - - - -

4 4 I 4 4- 4 Lz. J

- - - - - - - - - - - - 4 1

. ... -------------

~~' -i- ~ . -- "------------------

-- -- -- -- - .- - -- - --- - -- -- -- -- -- -

. . , o O 0 , 0

*• "*- - - - - - _h . -'-_ .. . I .

. . .. . . . . .. ..

4.4.4.- 4 , - - -

...... 44\.. .S4 I 4 4 I I 4 I .

*44I I 4 I

. .. "4 1 "1 " "I "4 "1 . . . "--- " ---- a

.1I .4I.. -- - i4 4 4 *iI '

. . . . -11. . . . . .. . - -.. . - -... .. . . . .. ... . . . . .. - --.. . . j . ..

I 4 .. .. . .4 t 4' '

O4V 9 OI OO4 OIZ 00 04 O4 4 0 01

109

* - - - - "- " " " "-'" - " -4

4 4 4 -2-4", "4.I_ .,' 4

Page 112: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

, 4 4 4. ....I I Co I --d -. . -4 . . . . -4 - - - . . . . - - . .... - - -

4 I i 4 I 74 - - - - - - - - - - -- - - - - -- - - - - - - - - - - - -

4 •

i ,

I , , 4 , , 4 ,

-- --- - -------------- ------- J - -

- -.- - - - - -.- - --

14 4 I ii ( i

i ,I I t ii I i ,-

iiIIiI . . - I 4 I | .

- 4 i , -- I 4 4 0I-A, , ,- -------- ,-,-,- --

i 4 I 4 4 4 I

*2- cc 4--- -.-- ---- , . ...

. -- - 4,-

4 - 4 - - -

I I 4 I I S I

------ ------ -- - - - --- -- - -- --- 1-

_ 4 I_ I_ _ .. '... 4 . . . 4 _ . . ...'---- - --------- --

---- - - --- -I - -- I. -

-4.,

. . .. . . . . . . .. . . . . . . . .- --- c. . ,-4 .,. =.1..4 4r.. . 4 4..

I I4 I4 I I I 4

-----------

.. . .4 . . -I .-.... . . . . . . I . . 4 . . - C,* , 4 i I -... i

4 4 * 4 0- "

0 1~~~' 09 t 21 01 0 0 v D

I i Ii 1. i0

' - '4 . - . - . - . - . ..-- - - -- k !

4 I 4 4 I I

I 4 4 I I I 4 4 7"

I I 4 I I 4 4

I I I 4 4 4 I . . .4

4 I I I 4 4 4 o]4

I I 4 I 4 I 4 ',.S I t I

OO OUiT 09T 011,1 O0aT 001 Ofl 09 01, O 0 -"ILNfl03 AVH :

110

o o"4-- -. -. . . .- ' *o-.. . . . . . _ __ _ _-.___ _ _

Page 113: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

coiI I I I I I . .

-- ~~~ ~ . . . -i . . .. -I -. . - -. . -- -.. . . . .- A . - - - - ---- -

- -- -L - -. . ---- - - - I . .-. -. .-4 -. .- -. . .- -. . . . . .- - - - - -

I - I - I

--- -. . "- -.. . -.. . . --. .. - , ... .. . - - - , n -- -- 'p

Z ........- '- --

----- ,_- - - co

., , , ,C)

---------------- --------

I I I i I i I I C.

- -- .. ... . _ --- ------

I * i I r I I i I V"

I~. + .. . . . . . . . + . . . + . . .. . . .1 . . . I. . .

0

-------------- --- -.----------------

S I I I i I I

. . . . . .- - - - ---. --'-',

0 i o 19 i I

I x Io IM

K.-' ' *- , - ., L , ,- _' .c.

-- .. . .. .. .. , .. .... .. .. ... % '--, . .... __ .

....----

I I I ' 0 ( ' "

. .. 4 - .4 - ... ,..... -,,. . . -.. . .. - "'

I I ., \.J , I I '

. .. ,i I I I . . . .. .

I I ~ I I , i U

' o I I , ,,.

* I I I I i --- - - -

!i Ii I I Ii I

I I I I I I I * I

.. . ..4 -.... ..- - - -4 ---- ,. ....- - - ..

. . .. ,) . . . I . . . . ,, . ,,I I o , . . .

' ' I ' 'I " :* * f I I ' - I i i '-

00 *U 01I 01, O I 0I OU 09 01 (:1 0 "I . I E O IV I':"

* I I I I I I

I- - - - -4 *- - - - - - - - - - - - -

., " :. ' .: .: -: : .-: :::- -'-'. - - oI.: .:. .-: ' .:.I. '..: ...: ': , :. ; : :: ... .I: : : : . .... .-. .. .:.I -I:: .:: : : :.. ...

Page 114: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

------ - -:o-- -U - - - -

4J4

411

c -)

I i-I-I i i- - I I

I * , -* UQ a I , * I I

* i I IC

-. - J- ....-... J - .J----------------------------

- I I i IaaI.

- -- I I.. . . ., I . . . . .. . . . . . . . . -- . . .

- - -- ---- -.. - . . . - _... . ..

a Lfo AM

-.. - . .. .. a. . . - . . . . . . . .a . - . ) . . . -. . S-.. .i '

I I I If , . I ,

. .. Z. -*. . . " . . . . . . I l b ,; . . . . . . . 'Z. . .-. ..r. . .

-, --......--"-J... .-... ..-.. .. ..-.. ..-- . . .. . i . .. .. .. . . .. o . .. .. . . . .. _ _ a

" - - ' . . "a. . "- ' . . i a

II ii. .. . . . . - . . .a. . -I "a -

I III -i *-

. .... I I ii =a I I - Ii

a a -i i * i i

a I a ' 1 . i I 1a~ 0 a0 OI 0 ag 0-. ag O

• I,~ O ,SV Ia" I

,C,

a a a ai

a a i a2

Page 115: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

e I i

S-: - - ~ ------ ----

S-; I 4 Ii0

4 I t I 4 - , +'

I - - -- - -

I 4 I I

J4 I * *_, o-

, I i I .- ,

--- --- - - - - -. ...

i 4 I i 4

- 44J

*~~- --------- ~------

- - - -4

I 4 4 1*~~~- -- -------

------------ - _ - t- -- - - - - I - - - - - - - - - -

_ _ z .. ... .. 4 .. . .. . . ..+ . .. . . . . . .+ . . : ._ ._ , . .."

I 4In

-p_ ,.~ ,4 .j.

o I i i l 0 ot l 0 4

*0 I ' ' , _,I lI f I l

(4*4I J I - .44 ,

- - - -- - - -----. 44 -- - --- - - - - - - --.. .. .

I J l I Ir.4.- - - - - -- - - -,--.

i 4 i4 4 $ i "I1

I 4 ' 1 " ,' -. 4.. 4 -,:..--- --- --- -...--- i.-i.L--* 4 I I l 4

4( "i Il" 4l t -, --- " .,1.. - -. . . .-- - - .j.- - - ->'-j- - -'.. ...- ..- .4 . .- - .. J.*...- ...... 4 .4 ... --- '----- - - -- *

.. .- - --.....- "*-.....- - - --.... -. . 1. . .m . ." ... " ... .. - .0-4 I I I 4 i 4 4 I "i |

. .. . . . . .I. . . 1 . . . 1 . . . " 4 - . . . - - . .'.

44I , I 4 I --

I 4 I I 4 t

I I 4 I 4 $ I" I I It I I - +O01 06 01 OL. 09 Og 0t' O O 01 0

• LNa03 AV I ""

113

4 - . . . . .- - 4.- 4 .-.

Page 116: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

- -- - - -- -.

- - I

r AI I I

-- - - -I I I i I

-- i~- -- ------ ii ,

--------------------------

i I -Ii I I i I

i ilI I i I "

-- - - - - - - I .....

--------- ---- -- -- ,

I. .. I... . . . r..

-.- - --. . . .------

--- ---, - , - - - --... . -------

--- -- - - I -- - - - - - -- - - - - -- - --- --

- - - --i i..L--..-- ..... 0

I |I I I I I

--------- ---- ---- ---------- -- -

. ..I, . . n . . .n . . .. . .... I-. - . . . ", . . .I . . . . .

S I _ I I.-. I I I,- I I . . . . .

0, S p op, g c , oz .1 of ,

- ,I--- _.-,

i I l I I' I I

I I I I I I I I

I I I I

---- i - -i - . . ... ...- " f

S--I

.- .

• "-" . -. -." . . - - " . .- . - . " -.- .- , .''.'. .', .. '.- - -" ." -" -i .. '.. .. .'. -...- ,, l,-; . .,. ,...-, .-. .,, v -.-l.. ,. .,-.,- .-.,:,,a,....,...--..,....---.-------. ". ••• :".-,-- -------- 4---- W.... •...

Page 117: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

. -4- - --- -J - . ...

--------------

- - - - - -- - -

-- - -- - - -- - -- - - I

09 Gp 9 9C 9c g ? 1 9 0

9 9 I .. I 9 9

- -'*- 115

Page 118: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

, I i I i I

SI 4i . i I

i 0i i * 4 "...... -. .- . .-. .-. .--. ....- -- ----

I 4 I i I

H S I I t

" - --.-- ---

-, ---- - --, ---,- " -- -, -- - ---

I I I H 4 I I

- I I I04

- . . - . . .. . . . . . .. . - - ., -._.=. i ---" -.. . . ---.. . . .- - - . ..-- - - - .-.- - L

- iI r , I II l -

- - - -In 4 1

I 4i I ,- - - --- i . -I

_ _ - - .. .. - - - - - . . ... - -- . . --

- --- .- --- > - ------ ------------------- C

- -- - - - ---I-I -, -------- --- ..- ---------

09 st it 91 ..u G 9 l

4I I i .aiiI +..

* i4 , + 4 4 , I , I

4 I I I 4-.- _

-4-4.4. ... ...,- - - - -

4 4 ,, iI I I I i it) --

---- --- - - - -..' ,. . .4--, i

* . .. ... ..... .... . . . . . . . . .

. . .4.. .. .. . ....- - - . - ....... .. .. -

I I I I aI I-I

I I 44 4

- - -- - - -- -- . . . " . . . -. . . . - --.. . . . .. . - -. . . . -"; . . . .

. -* l I I I 4 I I . . .

I I I

INC-*i*kva" 4 ' I I ' I I ' " 1

OIl O4 4l Oa I OI 4~ OI

I X COJ ,AVU

116 .-

. . . . . . . . ." " ' "- - " " -.-- "- -- -- ------- - - - - -."."- "-" + . . . .. ..-- - - -. ..- ..

Page 119: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

LIST OF REFERENCES

1. Frazier, Robert L., Exterior Ballistics, Guidance Laws

and Optics for a Gun-Launched Missile, M. S. Thesis,Naval Postgraduate School, Monterey, California,Decenber 1980.

2. Terrell, James M., Conical Lens for a 5'"/54 GunLaunched Missile, M. S. Thesis, Naval Postgraduate

School, Monterey, California, June 1981.

3. Amichai, Oded, Sharp Nose Lens Design Using RefractiveIndex Gradient, Naval Postgraduate School ContractorReport NPS67-82-003CR, Monterey, California,June 1982.

4. Carr, Herbert M., Aerodynamically Efficient GradientRefractive Index Missile Seeker Lens, M. S. Thesis,Naval Postgraduate School, Monterey, California,

October 1982.

5. Marchand, Erich W., Gradient Index Optics, AcademicPress, 1978.

6. U. S. Army Missile Command Technical Report RG-CR-32-6,Gradient Index Lens Research-Final Report, by D. T.Moore, p. 36, 19 October 1981.

7. U. S. Army Missile Command Technical Report H8 3-3-B020-1, Gradient Index Optics Application by R. L.

Light, 30 September 1983.

8. D. S. Davidson and A. E. Fuhs, Tracing Nearly RadialLines in a Spherically Symmetric Gradient Index Lens,Applied Optics, Letter to Editor (in press).

117

"-'--""---'" " -''-- " -- -- ' '. i..a..,,m i v- ' t

. . ...- ,, .... i....." .............................

Page 120: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2Cameron StationAlexandria, Virginia 22314

2. Library, Code 0142 2Naval Postgraduate SchoolMonterey, California 93943

3. DiLectorate of Land Armament and Electronics 2Engineering and MaintenanceAttn: Colonel B. L. CodeNational Defense HeadquartersOttawa, Ontario, Canada KlA 0K2

4. Distinguished Professor A. E. Fuhs 4Code 67FuDepartment of AeronauticsNaval Postgraduate SchoolMonterey, California 93943

5. Col. R. Larriva, USMC 2Defense Advanced Research Projects Agency1400 Wilson Boulevard

Arlington, Virginia 22209

6. Charles R. ChristensenResearch Directorate U. S. Army Missile Command(DRSMI- RRO)Redstone Arsenal, Alabama 35898

7. Commander, U. S. Army Missile Command(DRSMI- ROA)Redstone Arsenal, Alabama 35898Attn: CAPT H. Carr

8. Professor A. E. MilneCode 61MnNaval Postgraduate SchoolMonterey California 93943

9. Professor D. T. MooreUniversity of RochesterRochester, New York 14627

118

. ..i

Page 121: NAVAL POSTGRADUATE SCHOOL · rgr derivative with respect nondimensional to angle of radius to GRIN ray ri ray vector incident to nondimensional-nirror rxi, components of ray vector

10. Dr. Lloyd Smith 1Code 3205Naval Weapons CenterChina LaKe, California 93535

Ii. Directorate of Land Armament and Electronics 2Engineering and MaintenanceAttn: Capt. D. DavidsonNational Defense HeadquartersOttawa, Ontario, Canada KlA OK2

12. Directorate of Personnel Education 1and Development (DPED)National Defense HeadquartersOttawa, Ontario, Canada KlA OK2

119

L•.'t L v - -L <-' . . [ L 'L ' oT ' > -. i ' il .• L II<L . I , • . .L- • [ I- - -- :. .. . . . . . . . . I.