7
Please cite this article in press as: Valkanova V, Ebmeier KP. Neuroimaging in dementia. Maturitas (2014), http://dx.doi.org/10.1016/j.maturitas.2014.02.016 ARTICLE IN PRESS G Model MAT-6131; No. of Pages 7 Maturitas xxx (2014) xxx–xxx Contents lists available at ScienceDirect Maturitas jo u r n al hom ep age: www.elsevier.com/locate/maturitas Review Neuroimaging in dementia Vyara Valkanova, Klaus P. Ebmeier Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK a r t i c l e i n f o Article history: Available online xxx Keywords: Dementia Alzheimer’s disease Lewy body dementia Fronto-temporal dementia Vascular dementia PET a b s t r a c t Over the last few years, advances in neuroimaging have generated biomarkers, which increase diagnostic certainty, provide valuable information about prognosis, and suggest a particular pathology underlying the clinical dementia syndrome. We aim to review the evidence for use of already established imaging modalities, along with selected techniques that have a great potential to guide clinical decisions in the future. We discuss structural, functional and molecular imaging, focusing on the most common demen- tias: Alzheimer’s disease, fronto-temporal dementia, dementia with Lewy bodies and vascular dementia. Finally, we stress the importance of conducting research using representative cohorts and in a naturalis- tic set up, in order to build a strong evidence base for translating imaging methods for a National Health Service. If we assess a broad range of patients referred to memory clinic with a variety of imaging modal- ities, we will make a step towards accumulating robust evidence and ultimately closing the gap between the dramatic advances in neurosciences and meaningful clinical applications for the maximum benefit of our patients. © 2014 Elsevier Ireland Ltd. All rights reserved. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 2. Structural imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 2.1. Alzheimer’s dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 2.2. Fronto-temporal dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 2.3. Dementia with Lewy bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 2.4. Vascular dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 3. Functional and molecular imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 3.1. Alzheimer’s dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 3.1.1. Perfusion SPECT and FDG-PET imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 3.1.2. Amyloid imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 3.2. Fronto-temporal dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 3.3. Dementia with Lewy bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 3.4. Vascular dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 Competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 Provenance and peer review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 Abbreviations: 123-I-FP-CIT, 123-I labelled ioflupane (DatSCAN ® ); AD, Alzheimer’s dementia; bv-FTD, behavioural variant fronto-temporal dementia; CERAD, consortium to establish a registry for Alzheimer’s disease; CT, (X-ray) computed tomography; FTD, fronto-temporal dementia; LBD, dementia with Lewy bodies; lv-P, palogopenic variant PPA; MCI, mild cognitive impairment; MRI, magnetic resonance imaging; MTA, medial temporal lobe atrophy; NICE, National Institute for Health and Care Excellence; nv-PPA, non-fluent PPA; PET, positron emission tomography; PiB, Pittsburgh compound B; PPA, primary progressive aphasia; SPECT, single photon emission computed tomography; sv-PPA, semantic variant PPA; VBM, voxel-based morphometry; VD, vascular dementia; WMH, white matter magnetic resonance hyperintensities. Corresponding author. Tel.: +44 1865 226469; fax: +44 1865 793101. E-mail address: [email protected] (K.P. Ebmeier). http://dx.doi.org/10.1016/j.maturitas.2014.02.016 0378-5122/© 2014 Elsevier Ireland Ltd. All rights reserved.

Neuroimaging in dementia

  • Upload
    klaus-p

  • View
    223

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Neuroimaging in dementia

M

R

N

VD

a

AA

KDALFVP

C

tPns

h0

ARTICLE IN PRESSG ModelAT-6131; No. of Pages 7

Maturitas xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Maturitas

jo u r n al hom ep age: www.elsev ier .com/ locate /matur i tas

eview

euroimaging in dementia

yara Valkanova, Klaus P. Ebmeier ∗

epartment of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK

r t i c l e i n f o

rticle history:vailable online xxx

eywords:ementialzheimer’s diseaseewy body dementiaronto-temporal dementia

a b s t r a c t

Over the last few years, advances in neuroimaging have generated biomarkers, which increase diagnosticcertainty, provide valuable information about prognosis, and suggest a particular pathology underlyingthe clinical dementia syndrome. We aim to review the evidence for use of already established imagingmodalities, along with selected techniques that have a great potential to guide clinical decisions in thefuture. We discuss structural, functional and molecular imaging, focusing on the most common demen-tias: Alzheimer’s disease, fronto-temporal dementia, dementia with Lewy bodies and vascular dementia.Finally, we stress the importance of conducting research using representative cohorts and in a naturalis-

ascular dementiaET

tic set up, in order to build a strong evidence base for translating imaging methods for a National HealthService. If we assess a broad range of patients referred to memory clinic with a variety of imaging modal-ities, we will make a step towards accumulating robust evidence and ultimately closing the gap betweenthe dramatic advances in neurosciences and meaningful clinical applications for the maximum benefitof our patients.

© 2014 Elsevier Ireland Ltd. All rights reserved.

ontents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 002. Structural imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

2.1. Alzheimer’s dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 002.2. Fronto-temporal dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 002.3. Dementia with Lewy bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 002.4. Vascular dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

3. Functional and molecular imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 003.1. Alzheimer’s dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

3.1.1. Perfusion SPECT and FDG-PET imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 003.1.2. Amyloid imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

3.2. Fronto-temporal dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 003.3. Dementia with Lewy bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 003.4. Vascular dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

Please cite this article in press as: Valkanova V, Ebmehttp://dx.doi.org/10.1016/j.maturitas.2014.02.016

Competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Provenance and peer review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Abbreviations: 123-I-FP-CIT, 123-I labelled ioflupane (DatSCAN®); AD, Alzheimer’s demo establish a registry for Alzheimer’s disease; CT, (X-ray) computed tomography; FTD, fronPA; MCI, mild cognitive impairment; MRI, magnetic resonance imaging; MTA, medial temon-fluent PPA; PET, positron emission tomography; PiB, Pittsburgh compound B; PPA, prv-PPA, semantic variant PPA; VBM, voxel-based morphometry; VD, vascular dementia; W∗ Corresponding author. Tel.: +44 1865 226469; fax: +44 1865 793101.

E-mail address: [email protected] (K.P. Ebmeier).

ttp://dx.doi.org/10.1016/j.maturitas.2014.02.016378-5122/© 2014 Elsevier Ireland Ltd. All rights reserved.

ier KP. Neuroimaging in dementia. Maturitas (2014),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00

entia; bv-FTD, behavioural variant fronto-temporal dementia; CERAD, consortiumto-temporal dementia; LBD, dementia with Lewy bodies; lv-P, palogopenic variantporal lobe atrophy; NICE, National Institute for Health and Care Excellence; nv-PPA,imary progressive aphasia; SPECT, single photon emission computed tomography;

MH, white matter magnetic resonance hyperintensities.

Page 2: Neuroimaging in dementia

ING ModelM

2 / Mat

1

evpaobta

igd(tbr

2

2

iIpttTaacpo

tiwodsast[

Fcsd

elws

vocsaMbM

ARTICLEAT-6131; No. of Pages 7

V. Valkanova, K.P. Ebmeier

. Introduction

Over the last few years, advances in neuroimaging have gen-rated biomarkers, which increase diagnostic certainty, providealuable information about prognosis, and suggest a particularathology underlying the clinical dementia syndrome. This is andvance over the role imaging plays in simply excluding rare causesf dementia, such as mass lesions [1,2]. Although the use of specificiomarkers is generally limited to research studies, it is likely toranslate into clinical practice with increased standardization andccess to biomarkers.

We aim to review the evidence for established imaging modal-ties, along with selected techniques that have the potential touide clinical decisions in the future, focusing on the most commonementias: Alzheimer’s disease (AD), fronto-temporal dementiaFTD), dementia with Lewy bodies (DLB) and vascular demen-ia (VD). Discussion of other dementia syndromes and the theoryehind the various imaging modalities is beyond the scope of thiseview.

. Structural imaging

.1. Alzheimer’s dementia

In many centres, X-ray computed tomography is the standardnvestigation to exclude any space occupying and mass lesions.n fact, some authors have used this technique to estimate hip-ocampal atrophy and thus provide added information supportinghe diagnosis of Alzheimer’s dementia [3]. However, the struc-ural imaging technique most widely used in clinical research is1-weighted magnetic resonance imaging (MRI). The most char-cteristic feature of AD is early, localized medial temporal lobetrophy (MTA) affecting primarily the hippocampus and entorhinalortex [4–8]. MRI evidence of disproportionate MTA has been incor-orated into revised diagnostic criteria as a topographical markerf downstream neuronal injury [1,2].

In clinical practice visual assessment is used most often. One ofhe more widely validated rating scales is the Scheltens’ MTA rat-ng scale [9], which assesses hippocampal atrophy according to the

idth of the choroid fissure, width of the temporal horn, and heightf the hippocampus, using a 0–4 severity scale. Visual inspectionifferentiates mild AD from normal ageing with a sensitivity andpecificity of 80–85% [9–11]. The specificity of MTA decreases withge because of age-related hippocampal atrophy [12]. In researchtudies, mainly volumetric techniques are used and they appearo correlate well with both neuropathological disease progression13–15] and the degree of cognitive impairment [16,17].

Although MTA has been found in other dementias, includingTD, VD and PD, it is less severe there than in AD when matched forlinical severity [18,19]. Hippocampal atrophy develops graduallytarting about 5 years before diagnosis of AD, while 3 years prior toiagnosis hippocampal volumes are reduced by 10% [19].

In atypical forms of AD, in younger patients, or early in the dis-ase course it is possible to have greater atrophy of the parietalobes and less MTA [20–25]. A rating scale based on the degree of

idening of the posterior cingulate, parietal and parieto-occipitalulci has been developed [26].

Particularly in individuals with MCI, structural imaging providesaluable information about prognosis. Although the significantverlap in volumetric measures between patients with MCI andontrols sets some limitations, a recent meta-analysis of 6 VBMtudies found that decreased grey matter in the left hippocampus

Please cite this article in press as: Valkanova V, Ebmehttp://dx.doi.org/10.1016/j.maturitas.2014.02.016

nd parahippocampal gyrus was associated with conversion fromCI to AD [27]. Further, Lehmann et al. [28] found that the proba-

ility of converting from MCI to AD increased with greater baselineTA scores; e.g. after three years, fewer than 40% of patients with

PRESSuritas xxx (2014) xxx–xxx

an MTA score of 0 converted to AD, compared with more than 75%with baseline MTA score of 3.

2.2. Fronto-temporal dementia

FTD encompasses a heterogeneous group of conditions andcan be broadly divided into behavioural variant fronto-temporaldementia (bv-FTD) and primary progressive aphasia (PPA). Bv-FTDis associated with predominant atrophy in the frontal and para-limbic areas, including the anterior cingulate cortex, as well asorbitofrontal and medial frontal cortices and subcortical structures[29–32]. Ratings of orbitofrontal atrophy in conjunction with anexecutive function test classified 92% of patients correctly intobvFTD or AD [33].

PPA is itself categorized into three clinical phenotypes: semanticvariant PPA (sv-PPA), non-fluent PPA (nv-PPA) and logopenic vari-ant PPA (lv-PPA). In semantic variant PPA, there is typically atrophyof the anterior and inferior temporal lobes, including the fusiformgyrus, while the non-fluent variant PPA is characterized by perisyl-vian atrophy and involvement of the anterior insula [31,34,35]. Thelogopenic variant PPA is commonly associated with Alzheimer’stype pathology and the atrophy involves the posterior temporalcortex and inferior parietal lobule [36]. In PPA the atrophy is moreoften asymmetrical, with the left side being more affected [31]. Inaddition to distinct patterns of regional atrophy that are associatedwith each clinical phenotype, rate of atrophy was found to be twiceas great in FTD and SD, compared with AD [37]. However, in theearly stages, functional imaging may be more useful because thestructural scan can be normal [32,38]. The most recently publishedguidelines for FTD proposed, in addition to a clinical diagnosis, evi-dence for abnormalities on either structural or functional brainimaging as a criterion for establishing a diagnosis of ‘probable’ FTD[36,39].

2.3. Dementia with Lewy bodies

DLB is associated with diffuse atrophy, which is greater than incontrols, but less than in patients with AD. Relatively focused dorsalmeso-pontine grey matter atrophy, with a relative sparing of themedial temporal lobes, supports a clinical diagnosis of DLB ratherthan AD [40–42].

2.4. Vascular dementia

Evidence from structural neuroimaging is mandatory for diag-nosing vascular dementia (VD), with MRI being the preferredmodality. Small-vessel disease is the commonest cause of VD [43],although large artery ischaemic disease may lead to VD, as well.

Small-vessel disease is usually defined as lesions involving>25% of the white matter. Signs of small vessel disease on MRIinclude white matter magnetic resonance hyperintensities (WMH),recent small subcortical infarcts, lacunes, prominent perivascularspaces, cerebral microbleeds and atrophy. Their defining featuresare summarized in an excellent paper aiming to provide standardsfor reporting vascular changes on neuroimaging (STRIVE [44]).Although white matter changes can be detected on X-ray CT scans,the tissue contrast tends to be discrete, and this method is lesssensitive than MRI.

White matter lesions appear as bilateral, mostly symmetricalhyperintensities on T2-weighted MRI. They become more commonwith advancing age and are found in 10–90% of cognitively nor-mal elderly depending on the study. Although WMH are strongly

ier KP. Neuroimaging in dementia. Maturitas (2014),

associated with vascular risk factors, as well as predicting anincreased risk of stroke and dementia [45], they are clinically andpathologically heterogeneous [46]. WMH are not specific to vas-cular dementia and can be found in a variety of other conditions

Page 3: Neuroimaging in dementia

ING ModelM

/ Mat

icbbdaIWsvLg

piins

hfMcheap

cevm

3

3

3

ncbbpPpiriaSctawPvi

apASsc

ARTICLEAT-6131; No. of Pages 7

V. Valkanova, K.P. Ebmeier

ncluding leucodystrophies, leucoencephalopathies, inflammatoryonditions (multiple sclerosis) and infections [47]. The relationshipetween vascular damage and cognition is not fully understood,ut it is increasingly recognized that whether cognitive deficitsevelop in the presence of vascular damage depends on the bal-nce between factors conferring resilience (education, premorbidQ) and risk (age, vascular risk factors, and lifestyle). However, as

MH become more extensive they are more likely to be clinicallyignificant [48]. The severity of white matter disease can be gradedisually using established scales such as the Fazekas scale [49].arge irregular periventricular or confluent deep WMH (Fazekasrade 3) are characteristic of VD.

Silent infarcts and lacunes are also common in healthy elderlyeople (between 20 and 50%), but they are associated with an

ncreased risk of future dementia and stroke [50]. Although MRIs more sensitive than CT for detecting ischaemic injury, it wasegative in up to 30% of patients with symptomatic lacunar strokeyndromes, suggesting that it cannot detect all infarcts [51].

Up to 65% of patients with VD and 10–20% of healthy elderlyave microbleeds which on T2*-gradient echo image appear as

ocal hypointensities (typically 2–5 mm, but up to 10 mm) [52,53].icrobleeds related to amyloid angiopathy most commonly have

ortico-subcortical distribution, while microbleeds associated withypertension are located centrally. The two conditions often co-xist [54–56]. Patients with vascular dementia also have globaltrophy, probably due to subclinical diffuse ischaemia, or focal atro-hy corresponding to an area of infarction [57,58].

Finally, it is increasingly recognized that mixed pathologies areommon. VD and AD share risk factors [59,60] and can have a syn-rgistic relationship [61]. This implies that even when extensiveascular damage is suggested by a structural scan, the presence ofixed pathology should be considered.

. Functional and molecular imaging

.1. Alzheimer’s dementia

.1.1. Perfusion SPECT and FDG-PET imagingFunctional and molecular imaging has an important role in the

euroimaging of dementias. Changes in function and molecularomposition of brain tissue typically precede atrophy detectabley structural imaging. Jack et al. [62] have suggested the dynamiciomarkers model of AD: at first markers of amyloidosis becameositive, followed by markers of cortical hypometabolism on FDG-ET, and last, markers of brain atrophy. The characteristic ADatterns of abnormal brain perfusion or metabolism are found

n the association cortex while primary sensory-motor cortex iselatively preserved [63], with a ratio of association cortex activ-ty over primary sensory-motor cortex activity being suggesteds a diagnostic index for AD [64]. Early in the disease course,PECT and FDG-PET show reduction in posterior cingulate and pre-uneus perfusion or metabolism, followed by bilateral posterioremporo-parietal reductions and involvement of the frontal areas indvanced disease [63–65]. The findings in functional scans correlateith CSF biomarkers [66], as well as with cognitive measures [67].

erfusion abnormalities in AD-related regions are predictive of con-ersion from MCI to AD [68–70]. Hypometabolism was found evenn cognitively normal individuals at increased risk of AD [71,72].

An autopsy-confirmed study found that SPECT improves theccuracy of the diagnoses, with a positive scan in patients withossible AD increasing the likelihood of pathologically confirmed

Please cite this article in press as: Valkanova V, Ebmehttp://dx.doi.org/10.1016/j.maturitas.2014.02.016

D from 67% to 84% [73]. A recent meta-analysis of 11 studies usingPECT and 20 studies using PET found pooled sensitivity of 80% andpecificity of 85% for SPECT to differentiate patients with AD fromontrols, while PET showed pooled sensitivity of 90% and specificity

PRESSuritas xxx (2014) xxx–xxx 3

of 89% [74]. These results suggest that PET is more sensitive thanclinical assessment in detecting AD (90% vs 81%), while both SPECTand PET are more specific than clinical criteria (85% and 89% vs 70%)[2].

However a prospective community-based study of 102 individ-uals with early-onset dementia found PET to have considerablylower sensitivity and specificity for AD (78% and 81%, respectively)than reported in the meta-analysis [75]. Although the results couldbe explained by sample characteristics (e.g. early-onset dementia),or the lack of pathological confirmation, this study highlights thesignificance of ecologically more valid research with ‘real’ worldsamples.

It is also important to investigate the added value of imagingmarkers above a standard work-up, as well as how imaging mark-ers perform in combination. A study of 154 memory clinic patientsfound that combined imaging (PiB and FDG-PET) led to change in23% of the initial clinical diagnoses, while the diagnosis establishedafter PET remained unchanged in 96% of cases after two years.Combined PiB and FDG-PET contributed to diagnosis in 104 cases,followed by PiB only (29 cases) and FDG-PET only (11 cases) [76].

While both PET and SPECT are good enough to assist in thedifferential diagnosis of dementia [63], SPECT is currently morewidely available. This has been translated into guidelines, with NICEstating that ‘HMPAO-SPECT should be used to help differentiatebetween AD, VD and FTD if the diagnosis is in doubt’ [77]. 18F-FDG-PET is included as a topographical biomarker of neuronal injury inthe revised international diagnostic criteria for AD [1,2]. A recentreview concluded that although studies suggest superiority of PETover SPECT, the evidence base for this is quite limited [78].

3.1.2. Amyloid imagingAmyloid imaging provides direct evidence of the presence of

Alzheimer’s type pathology. A� plaque markers become positiveyears before clinical symptoms and reach a plateau by the timethese appear [62].

The best characterized amyloid PET tracer is Pittsburgh com-pound B (PiB) which is labelled with C-11 and binds mostly tofibrillar �-amyloid. Amyloid PET with PiB has very high sensitivityfor detecting amyloid deposition. More than 90% of patients withAD show increased cortical binding [79], and false–negative casesare reported only rarely [80]. As a result, it has been included in therevised guidelines as a pathophysiological marker of AD [1,2].

Its positive predictive value is low, as some healthy elderly peo-ple show higher cortical binding. The reported proportions vary,but frequencies of 15–30% are most commonly reported. A� depo-sition is affected by the imaging method, the definition of whatconstitutes a positive result, and by the two main risk factorsfor AD, namely age and ApoE genotype [81,82]. The frequency ofamyloid-positive scans increased from 0% below the age of 50 to30% at age 80 [83]. Non-carriers of the allele were less than half aslikely to have a positive scan as ApoE4 carriers (21% vs 49%) [84].Independently of the effect of ApoE4, maternal familial history ofAD has also been associated with higher cortical binding [85,86].

A major disadvantage for the clinical application of PiB PET isthe short half-life of C-11, which limits its use to centres withan on-site cyclotron. However, over the last years tracers labelledwith 18F such as Flumetamol, Florbetapir and Florbetaben havebeen developed. 18F has a longer half-life (110 min), allowing cen-tral production and distribution, which is already making amyloidimaging more widely available [87].

Clinical trials have demonstrated that the new 18F-compoundshave properties similar to PiB. Comparative studies within the same

ier KP. Neuroimaging in dementia. Maturitas (2014),

subjects show excellent correlation between PiB and each of them[88–90], as well as similar effect sizes for distinguishing AD fromhealthy controls [89,91]. In a prospective phase 3 study with Flor-betapir, the PET scan results of 59 patients were dichotomized and

Page 4: Neuroimaging in dementia

ING ModelM

4 / Mat

csTVft

t3dw

nicfifpdsw3Wp

3

itFrucd

tr

3

tvaf7oo

(alcpiapo

ic4iao

ARTICLEAT-6131; No. of Pages 7

V. Valkanova, K.P. Ebmeier

ompared to their dichotomized CERAD neuritic amyloid plaquecores obtained from autopsy within 1 to 2 years of PET imaging.he study included healthy subjects, as well as patients with AD,D and FTD, with a varying degree of cognitive impairment and

ound a sensitivity and specificity of PET for detection of moderateo frequent plaques of 92–96% and 100%, respectively [92].

Amyloid imaging has very good predictive value for conversiono AD in patients with MCI, as demonstrated in studies with up to

years follow-up [93–95]. Negative scans in individuals with MCIo not discount progression, as other neurodegenerative diseasesithout amyloidosis, such as FTD, cannot be excluded.

Amyloid imaging is also excellent in differentiating AD fromon-amyloid dementias such as FTD [96–98], and there is no uptake

n most cases with PD dementia [99]. However positive scans areommon in DLB [98,100,101] which is consistent with pathologicalndings [102]. This implies that amyloid imaging may be most use-

ul in atypical presentations or in early-onset dementia, when therevalence of AD equals that of FTD and the frequency of amyloideposition in controls is low. Positive scan in cases with exten-ive vascular damage can confirm the presence of mixed pathology,hich would have implications for treatment [103]. For instance,

1% of cases who met DSM-IV criteria for VD and had extensiveMH without large-vessel stroke or macro-haemorrhage were PiB

ositive [104].

.2. Fronto-temporal dementia

The patterns seen on functional imaging in FTD tend to be sim-lar to those seen on structural scans, but they are visible earlier inhe disease course [105]. A study of 134 patients with suspectedTD found that SPECT/PET increased sensitivity of consensus crite-ia from 36.5% to 90.5%, when clinical diagnosis after 2 years wassed as a gold standard [106]. Another study with pathologicallyonfirmed diagnoses of FTD or AD also showed that PET increasesiagnostic accuracy beyond clinical assessment [107].

Amyloid imaging in FTD confirms the lack of amyloid deposi-ion in this condition, with patients showing values of cortical PiBetention close to those found in controls [108].

.3. Dementia with Lewy bodies

There are few publications for perfusion imaging in DLB, but theypical pattern involves occipital reductions, including the primaryisual cortices [109–111]. Although parieto-temporal reductionsre observed in both AD and DLB, occipital hypometabolism dif-erentiated between the two conditions with 90% sensitivity and1–80% specificity [65,109]. Amyloid imaging in DLB shows levelsf cortical PiB retention similar to those observed in AD, with higherccipital retention [100,112].

The most reliable imaging biomarker of DLB is 123-I-FP-CITioflupane) SPECT of the dopamine transporter. Ioflupane showssymmetrical (anterior-posterior) striatal uptake in DLB, witharger decrease of uptake in putamen than in caudate nucleus. Inontrast, age-related nigro-striatal degeneration affects both theutamen and caudate nucleus, and the putamen-to-caudate ratio

s preserved [113]. Normal ioflupane scans in patients with DLBre not common, but have been reported; it is possible that theseatients have exclusive cortical involvement with relative sparingf basal ganglia [114].

Compared with autopsy results, dopamine transporter imagings sensitive and specific (88% and 100%, respectively), whereaslinical diagnosis had a sensitivity of 75% and specificity of only

Please cite this article in press as: Valkanova V, Ebmehttp://dx.doi.org/10.1016/j.maturitas.2014.02.016

2% [115]. Abnormal ioflupane scans may be particularly valuablen the group of patients with possible DLB, as this seems to ben unstable diagnosis. A multi-centre study found that only 41%f patients with ‘possible’ DLB have this diagnosis at 12 months

PRESSuritas xxx (2014) xxx–xxx

follow up, compared with 93% of patients diagnosed with ‘probable’DLB; scan results can help to classify them correctly [116].

Ioflupane scans have also an important role in the differentialdiagnosis of DLB from AD [117]. A recent meta-analysis of four 123-I-FP-CIT SPECT studies, including a total of 419 patients, reported apooled sensitivity of 86.5% and a specificity of 93.6% for the differ-entiation of DLB from non-DLB, predominantly AD [118]. Howeverabnormal ioflupane binding is less reliable in differentiating DLBfrom FTD, because about 30% of FTD patients were have positiveioflupane scans [119]. Ioflupane scans also cannot differentiatebetween syndromes characterized by dopaminergic loss, includingDLB, Parkinson’s disease, multiple system atrophy or progressivesupranuclear palsy. Reflecting the increasing evidence for the clin-ical utility of ioflupane SPECT, it has been incorporated in reviseddiagnostic criteria for DLB [120]. It has also been recommended byNICE to help with the diagnosis of DLB when the diagnosis is indoubt [77].

3.4. Vascular dementia

In patients with VD and no infarcts on structural imaging, func-tional scans typically show scattered areas of reduced perfusion ormetabolism. The lesions are often multiple, asymmetrical or local-ized in ‘watershed’ regions of the brain [63]. Compared with AD, inVD there is more pronounced hypometabolism in subcortical areasand primary sensorimotor cortex whereas the association areas aretypically less affected [121].

4. Conclusion

At present, neuroimaging is most likely to be used in the dif-ferential diagnosis of dementia, as well as to aid in establishing aprognosis. When disease-modifying treatments become available,this is likely to change, and imaging methods can be used to screenpatients, with function-based and ligand-based techniques havinga particular role in the detection of early changes.

The future of neuroimaging will involve incorporating newmodalities into routine clinical practice. However, introducingimaging methods as routine in a National Health Service requiresa strong evidence base for their clinical utility and added value.When considering the clinical utility of neuroimaging, it is impor-tant to realize that mixed pathologies commonly co-exist in thesame individual, and there is a substantial overlap of pathologi-cal changes even with health. This will impose limitations on thediagnostic performance of any test and implies that a combina-tion of imaging biomarkers will be most useful. Therefore, studiesinvestigating how different modalities perform in combination willbe particularly useful.

In addition, strong evidence can only come from studies usingrepresentative cohorts and conducted in a naturalistic clinicalenvironment. Currently, studies are conducted mainly in highlyspecialized centres and often include subjects from clear-cutdiagnostic groups, which limits the generalizability of results.Establishment of pilot services is crucial, because each clinicalcontext is associated with characteristic variables, such as demo-graphics of the sample, a priori probability of dementia types,frequency of atypical presentations, and clinical expertise of healthcare professionals; all these factors have an impact on the valuethat imaging methods add above routine clinical assessment. If weassess a broad range of patients referred to memory clinic with a

ier KP. Neuroimaging in dementia. Maturitas (2014),

variety of imaging modalities, we will make a step towards accu-mulating reliable evidence and ultimately closing the gap betweenthe dramatic advances in neurosciences and meaningful clinicalapplications for the maximum benefit of our patients.

Page 5: Neuroimaging in dementia

ING ModelM

/ Mat

C

E

C

f

F

tH

P

R

ARTICLEAT-6131; No. of Pages 7

V. Valkanova, K.P. Ebmeier

ontributors

Vyara Valkanova – first draft (part), revisions (whole). Klaus P.bmeier – first draft (part), revisions (whole)

ompeting interest

Vyara Valkanova – none; Klaus P. Ebmeier – reports consultationees received from Lily in relation to Amyvid TM

unding

Klaus P. Ebmeier – UK Medical Research Council (G1001354),he Gordon Edward Small’s Charitable Trust (SC008962), and theDH Wills 1965 Charitable Trust.

rovenance and peer review

Commissioned and externally peer reviewed.

eferences

[1] Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-GateauP, et al. Revising the definition of Alzheimer’s disease: a new lexicon. LancetNeurol 2010;9(11):1118–27.

[2] McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, KawasCH, et al. The diagnosis of dementia due to Alzheimer’s disease: recom-mendations from the National Institute on Aging-Alzheimer’s Associationworkgroups on diagnostic guidelines for Alzheimer’s disease. AlzheimersDement 2011;7(3):263–9.

[3] Jobst KA, Smith AD, Szatmari M, Molyneux A, Esiri ME, King E, et al.Detection in life of confirmed Alzheimer’s disease using a simple measure-ment of medial temporal lobe atrophy by computed tomography. Lancet1992;340(8829):1179–83.

[4] Chan D, Fox NC, Scahill RI, Crum WR, Whitwell JL, Leschziner G, et al. Patternsof temporal lobe atrophy in semantic dementia and Alzheimer’s disease. AnnNeurol 2001;49(4):433–42.

[5] Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imag-ing in the practical assessment of dementia: beyond exclusion. Lancet Neurol2002;1(1):13–21.

[6] Killiany RJ, Hyman BT, Gomez-Isla T, Moss MB, Kikinis R, Jolesz F, et al. MRImeasures of entorhinal cortex vs hippocampus in preclinical AD. Neurology2002;58(8):1188–96.

[7] Frisoni GB, Fox NC, Jack Jr CR, Scheltens P, Thompson PM. The clinical use ofstructural MRI in Alzheimer disease. Nat Rev Neurol 2010;6(2):67–77.

[8] van der Flier WM, Pijnenburg YA, Fox NC, Scheltens P. Early-onset versus late-onset Alzheimer’s disease: the case of the missing APOE varepsilon4 allele.Lancet Neurol 2011;10(3):280–8.

[9] Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al.Atrophy of medial temporal lobes on MRI in probable Alzheimer’s disease andnormal ageing: diagnostic value and neuropsychological correlates. J NeurolNeurosurg Psychiatry 1992;55(10):967–72.

[10] Duara R, Loewenstein DA, Potter E, Appel J, Greig MT, Urs R, et al. Medialtemporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease.Neurology 2008;71(24):1986–92.

[11] Burton EJ, Barber R, Mukaetova-Ladinska EB, Robson J, Perry RH, Jaros E, et al.Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease fromdementia with Lewy bodies and vascular cognitive impairment: a prospec-tive study with pathological verification of diagnosis. Brain 2009;132(Pt1):195–203.

[12] van de Pol LA, Hensel A, Barkhof F, Gertz HJ, Scheltens P, van der FlierWM. Hippocampal atrophy in Alzheimer disease: age matters. Neurology2006;66(2):236–8.

[13] Gosche KM, Mortimer JA, Smith CD, Markesbery WR, Snowdon DA. Hip-pocampal volume as an index of Alzheimer neuropathology: findings fromthe Nun Study. Neurology 2002;58(10):1476–82.

[14] Jack Jr CR, Dickson DW, Parisi JE, Xu YC, Cha RH, O’Brien PC, et al. AntemortemMRI findings correlate with hippocampal neuropathology in typical aging anddementia. Neurology 2002;58(5):750–7.

[15] Vemuri P, Whitwell JL, Kantarci K, Josephs KA, Parisi JE, Shiung MS, et al.Antemortem MRI based STructural Abnormality iNDex (STAND)-scores cor-relate with postmortem Braak neurofibrillary tangle stage. Neuroimage2008;42(2):559–67.

[16] Hua X, Leow AD, Lee S, Klunder AD, Toga AW, Lepore N, et al. 3D characteriza-

Please cite this article in press as: Valkanova V, Ebmehttp://dx.doi.org/10.1016/j.maturitas.2014.02.016

tion of brain atrophy in Alzheimer’s disease and mild cognitive impairmentusing tensor-based morphometry. Neuroimage 2008;41(1):19–34.

[17] Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW,et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnosticdiscrimination and cognitive correlations. Neurology 2009;73(4):287–93.

PRESSuritas xxx (2014) xxx–xxx 5

[18] van de Pol L, Gertz HJ, Scheltens P, Wolf H. Hippocampal atrophy in subcorticalvascular dementia. Neurodegener Dis 2011;8(6):465–9.

[19] Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer dis-ease. Cold Spring Harb Perspect Med 2012;2(4):a006213.

[20] Galton CJ, Patterson K, Xuereb JH, Hodges JR. Atypical and typical presen-tations of Alzheimer’s disease: a clinical, neuropsychological, neuroimagingand pathological study of 13 cases. Brain 2000;123(Pt 3):484–98.

[21] Frisoni GB, Geroldi C, Binetti G, Zanetti O. The heterogeneity and naturalhistory of mild cognitive impairment. Arch Neurol 2005;62(1):163, authorreply-4.

[22] Ishii K, Kawachi T, Sasaki H, Kono AK, Fukuda T, Kojima Y, et al. Voxel-basedmorphometric comparison between early- and late-onset mild Alzheimer’sdisease and assessment of diagnostic performance of z score images. AJNRAm J Neuroradiol 2005;26(2):333–40.

[23] Frisoni GB, Pievani M, Testa C, Sabattoli F, Bresciani L, Bonetti M, et al. Thetopography of grey matter involvement in early and late onset Alzheimer’sdisease. Brain 2007;130(Pt 3):720–30.

[24] Karas G, Scheltens P, Rombouts S, van Schijndel R, Klein M, Jones B, et al.Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric struc-tural MRI study. Neuroradiology 2007;49(12):967–76.

[25] Josephs KA, Whitwell JL, Duffy JR, Vanvoorst WA, Strand EA, Hu WT, et al.Progressive aphasia secondary to Alzheimer disease vs FTLD pathology. Neu-rology 2008;70(1):25–34.

[26] Koedam EL, Lehmann M, van der Flier WM, Scheltens P, Pijnenburg YA, FoxN, et al. Visual assessment of posterior atrophy development of a MRI ratingscale. Eur Radiol 2011;21(12):2618–25.

[27] Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV. Neurostructuralpredictors of Alzheimer’s disease: a meta-analysis of VBM studies. NeurobiolAging 2011;32(10):1733–41.

[28] Lehmann M, Koedam EL, Barnes J, Bartlett JW, Barkhof F, Wattjes MP, et al.Visual ratings of atrophy in MCI: prediction of conversion and relationshipwith CSF biomarkers. Neurobiol Aging 2013;34(1):73–82.

[29] Lindberg O, Ostberg P, Zandbelt BB, Oberg J, Zhang Y, Andersen C, et al. Corticalmorphometric subclassification of frontotemporal lobar degeneration. AJNRAm J Neuroradiol 2009;30(6):1233–9.

[30] Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM. Individual patientdiagnosis of AD and FTD via high-dimensional pattern classification of MRI.Neuroimage 2008;41(4):1220–7.

[31] Seelaar H, Rohrer JD, Pijnenburg YA, Fox NC, van Swieten JC. Clinical, geneticand pathological heterogeneity of frontotemporal dementia: a review. J Neu-rol Neurosurg Psychiatry 2011;82(5):476–86.

[32] Piguet O, Hornberger M, Mioshi E, Hodges JR. Behavioural-variant frontotem-poral dementia: diagnosis, clinical staging, and management. Lancet Neurol2011;10(2):162–72.

[33] Hornberger M, Savage S, Hsieh S, Mioshi E, Piguet O, Hodges JR. Orbitofrontaldysfunction discriminates behavioral variant frontotemporal dementia fromAlzheimer’s disease. Dement Geriatr Cogn Disord 2010;30(6):547–52.

[34] Rohrer JD, Warren JD, Modat M, Ridgway GR, Douiri A, Rossor MN, et al. Pat-terns of cortical thinning in the language variants of frontotemporal lobardegeneration. Neurology 2009;72(18):1562–9.

[35] Kipps CM, Davies RR, Mitchell J, Kril JJ, Halliday GM, Hodges JR. Clinical sig-nificance of lobar atrophy in frontotemporal dementia: application of an MRIvisual rating scale. Dement Geriatr Cogn Disord 2007;23(5):334–42.

[36] Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, RosenHJ, et al. Cognition and anatomy in three variants of primary progressiveaphasia. Ann Neurol 2004;55(3):335–46.

[37] Krueger CE, Dean DL, Rosen HJ, Halabi C, Weiner M, Miller BL, et al. Longitu-dinal rates of lobar atrophy in frontotemporal dementia, semantic dementia,and Alzheimer’s disease. Alzheimer Dis Assoc Disord 2010;24(1):43–8.

[38] Perry RJ, Graham A, Williams G, Rosen H, Erzinclioglu S, Weiner M, et al.Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetricMRI study. Dement Geriatr Cogn Disord 2006;22(4):278–87.

[39] Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J,et al. Sensitivity of revised diagnostic criteria for the behavioural variant offrontotemporal dementia. Brain 2011;134(Pt 9):2456–77.

[40] Whitwell JL, Weigand SD, Shiung MM, Boeve BF, Ferman TJ, Smith GE, et al.Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern fromAlzheimer’s disease. Brain 2007;130(Pt 3):708–19.

[41] Vemuri P, Simon G, Kantarci K, Whitwell JL, Senjem ML, Przybelski SA, et al.Antemortem differential diagnosis of dementia pathology using structuralMRI: differential-STAND. Neuroimage 2011;55(2):522–31.

[42] Kantarci K, Ferman TJ, Boeve BF, Weigand SD, Przybelski S, Vemuri P, et al.Focal atrophy on MRI and neuropathologic classification of dementia withLewy bodies. Neurology 2012;79(6):553–60.

[43] Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical char-acteristics to therapeutic challenges. Lancet Neurol 2010;9(7):689–701.

[44] Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al.Neuroimaging standards for research into small vessel disease and its contri-bution to ageing and neurodegeneration. Lancet Neurol 2013;12(8):822–38.

[45] Debette S, Markus HS. The clinical importance of white matter hyper-intensities on brain magnetic resonance imaging: systematic review and

ier KP. Neuroimaging in dementia. Maturitas (2014),

meta-analysis. BMJ 2010;341:c3666.[46] Gouw AA, Seewann A, van der Flier WM, Barkhof F, Rozemuller AM, Schel-

tens P, et al. Heterogeneity of small vessel disease: a systematic reviewof MRI and histopathology correlations. J Neurol Neurosurg Psychiatry2011;82(2):126–35.

Page 6: Neuroimaging in dementia

ING ModelM

6 / Mat

ARTICLEAT-6131; No. of Pages 7

V. Valkanova, K.P. Ebmeier

[47] Harper L, Barkhof F, Scheltens P, Schott JM, Fox NC. An algorithmic approachto structural imaging in dementia. J Neurol Neurosurg Psychiatry 2013.

[48] Dufouil C, Godin O, Chalmers J, Coskun O, MacMahon S, Tzourio-MazoyerN, et al. Severe cerebral white matter hyperintensities predict severecognitive decline in patients with cerebrovascular disease history. Stroke2009;40(6):2219–21.

[49] Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnor-malities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am JRoentgenol 1987;149(2):351–6.

[50] Vermeer SE, Longstreth Jr WT, Koudstaal PJ. Silent brain infarcts: a systematicreview. Lancet Neurol 2007;6(7):611–9.

[51] Doubal FN, Dennis MS, Wardlaw JM. Characteristics of patients with minorischaemic strokes and negative MRI: a cross-sectional study. J Neurol Neuro-surg Psychiatry 2011;82(5):540–2.

[52] Poels MM, Vernooij MW, Ikram MA, Hofman A, Krestin GP, van der Lugt A,et al. Prevalence and risk factors of cerebral microbleeds: an update of theRotterdam scan study. Stroke 2010;41(10 Suppl.):S103–6.

[53] Cordonnier C, van der Flier WM, Sluimer JD, Leys D, Barkhof F, Scheltens P.Prevalence and severity of microbleeds in a memory clinic setting. Neurology2006;66(9):1356–60.

[54] Lee SH, Kim SM, Kim N, Yoon BW, Roh JK. Cortico-subcortical distribu-tion of microbleeds is different between hypertension and cerebral amyloidangiopathy. J Neurol Sci 2007;258(1-2):111–4.

[55] Yamada S, Saiki M, Satow T, Fukuda A, Ito M, Minami S, et al. Periventricularand deep white matter leukoaraiosis have a closer association with cerebralmicrobleeds than age. Eur J Neurol 2012;19(1):98–104.

[56] Cordonnier C, van der Flier WM. Brain microbleeds and Alzheimer’s disease:innocent observation or key player? Brain 2011;134(Pt 2):335–44.

[57] Logue MW, Posner H, Green RC, Moline M, Cupples LA, Lunetta KL, et al.Magnetic resonance imaging-measured atrophy and its relationship to cog-nitive functioning in vascular dementia and Alzheimer’s disease patients.Alzheimers Dement 2011;7(5):493–500.

[58] Seo SW, Lee JM, Im K, Park JS, Kim SH, Kim ST, et al. Cardiovascular risk fac-tors cause cortical thinning in cognitively impaired patients: relationshipsamong cardiovascular risk factors, white matter hyperintensities, and corticalatrophy. Alzheimer Dis Assoc Disord 2012;26(2):106–12.

[59] Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, AlhainenK, et al. Midlife vascular risk factors and Alzheimer’s disease in later life:longitudinal, population based study. BMJ 2001;322(7300):1447–51.

[60] Dichgans M, Zietemann V. Prevention of vascular cognitive impairment.Stroke 2012;43(11):3137–46.

[61] Leys D, Henon H, Mackowiak-Cordoliani MA, Pasquier F. Poststroke dementia.Lancet Neurol 2005;4(11):752–9.

[62] Jack Jr CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al.Hypothetical model of dynamic biomarkers of the Alzheimer’s pathologicalcascade. Lancet Neurol 2010;9(1):119–28.

[63] Ebmeier KP. Is there Still a Place for Perfusion SPECT in the Diagnosis ofDementia? Open Nucl Med J 2010;2:40–5.

[64] Herholz K, Nordberg A, Salmon E, Perani D, Kessler J, Mielke R, et al. Impair-ment of neocortical metabolism predicts progression in Alzheimer’s disease.Dement Geriatr Cogn Disord 1999;10(6):494–504.

[65] Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Mul-ticenter standardized 18F-FDG PET diagnosis of mild cognitive impairment,Alzheimer’s disease, and other dementias. J Nucl Med 2008;49(3):390–8.

[66] Ceravolo R, Borghetti D, Kiferle L, Tognoni G, Giorgetti A, Neglia D, et al. CSFphosporylated TAU protein levels correlate with cerebral glucose metabolismassessed with PET in Alzheimer’s disease. Brain Res Bull 2008;76(1-2):80–4.

[67] Arlt S, Brassen S, Jahn H, Wilke F, Eichenlaub M, Apostolova I, et al. Associ-ation between FDG uptake, CSF biomarkers and cognitive performance inpatients with probable Alzheimer’s disease. Eur J Nucl Med Mol Imaging2009;36(7):1090–100.

[68] Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H,Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by meansof genetic assessment and (18)F-FDG PET. J Nucl Med 2005;46(10):1625–32.

[69] Borroni B, Anchisi D, Paghera B, Vicini B, Kerrouche N, Garibotto V, et al.Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for theassessment of conversion to AD. Neurobiol Aging 2006;27(1):24–31.

[70] Nobili F, De Carli F, Frisoni GB, Portet F, Verhey F, Rodriguez G, et al. SPECTpredictors of cognitive decline and Alzheimer’s disease in mild cognitiveimpairment. J Alzheimers Dis 2009;17(4):761–72.

[71] Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, et al.Functional brain abnormalities in young adults at genetic risk for late-onsetAlzheimer’s dementia. Proc Natl Acad Sci U S A 2004;101(1):284–9.

[72] Mosconi L, Brys M, Switalski R, Mistur R, Glodzik L, Pirraglia E, et al. Maternalfamily history of Alzheimer’s disease predisposes to reduced brain glucosemetabolism. Proc Natl Acad Sci U S A 2007;104(48):19067–72.

[73] Jagust W, Thisted R, Devous Sr MD, Van Heertum R, Mayberg H, Jobst K, et al.SPECT perfusion imaging in the diagnosis of Alzheimer’s disease: a clinical-pathologic study. Neurology 2001;56(7):950–6.

[74] Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J

Please cite this article in press as: Valkanova V, Ebmehttp://dx.doi.org/10.1016/j.maturitas.2014.02.016

Alzheimers Dis 2011;26(4):627–45.[75] Panegyres PK, Rogers JM, McCarthy M, Campbell A, Wu JS.

Fluorodeoxyglucose-positron emission tomography in the differentialdiagnosis of early-onset dementia: a prospective, community-based study.BMC Neurol 2009;9:41.

PRESSuritas xxx (2014) xxx–xxx

[76] Ossenkoppele R, Prins ND, Pijnenburg YA, Lemstra AW, van der Flier WM,Adriaanse SF, et al. Impact of molecular imaging on the diagnostic process ina memory clinic. Alzheimers Dement 2013;9(4):414–21.

[77] National Institute of Health and Care Excellence. A NICE–SCIE guideline onsupporting people with dementia and their carers in health and social care(clinical guideline number 42). London: The British Psychological Society &Gaskell; 2011.

[78] Davison CM, O’Brien JT. A comparison of FDG-PET and blood flow SPECT in thediagnosis of neurodegenerative dementias: a systematic review. Int J GeriatrPsychiatry 2013.

[79] Rabinovici GD, Jagust WJ. Amyloid imaging in aging and dementia: testingthe amyloid hypothesis in vivo. Behav Neurol 2009;21(1):117–28.

[80] Cairns NJ, Ikonomovic MD, Benzinger T, Storandt M, Fagan AM, Shah AR, et al.Absence of Pittsburgh compound B detection of cerebral amyloid beta in apatient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimerdisease: a case report. Arch Neurol 2009;66(12):1557–62.

[81] Chetelat G, La Joie R, Villain N, Perrotin A, de La Sayette V, Eustache F, et al.Amyloid imaging in cognitively normal individuals, at-risk populations andpreclinical Alzheimer’s disease. Neuroimage Clin 2013;2:356–65.

[82] Mielke MM, Wiste HJ, Weigand SD, Knopman DS, Lowe VJ, Roberts RO, et al.Indicators of amyloid burden in a population-based study of cognitively nor-mal elderly. Neurology 2012;79(15):1570–7.

[83] Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, et al. APOEpredicts amyloid-beta but not tau Alzheimer pathology in cognitively normalaging. Ann Neurol 2010;67(1):122–31.

[84] Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, et al. Amyloidimaging results from the Australian imaging, biomarkers and lifestyle (AIBL)study of aging. Neurobiol Aging 2010;31(8):1275–83.

[85] Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, et al. Fibrillar amyloid-betaburden in cognitively normal people at 3 levels of genetic risk for Alzheimer’sdisease. Proc Natl Acad Sci U S A 2009;106(16):6820–5.

[86] Mosconi L, Rinne JO, Tsui WH, Berti V, Li Y, Wang H, et al. Increased fibrillaramyloid-{beta} burden in normal individuals with a family history of late-onset Alzheimer’s. Proc Natl Acad Sci U S A 2010;107(13):5949–54.

[87] Herholz K, Ebmeier K. Clinical amyloid imaging in Alzheimer’s disease. LancetNeurol 2011;10(7):667–70.

[88] Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al.18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitiveimpairment: a phase 2 trial. Ann Neurol 2010;68(3):319–29.

[89] Villemagne VL, Mulligan RS, Pejoska S, Ong K, Jones G, O’Keefe G, et al.Comparison of 11C-PiB and 18F-florbetaben for Abeta imaging in age-ing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2012;39(6):983–9.

[90] Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al.Amyloid-beta imaging with Pittsburgh compound B and florbetapir: compar-ing radiotracers and quantification methods. J Nucl Med 2013;54(1):70–7.

[91] Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amy-loid imaging in Alzheimer’s disease: comparison of florbetapir and Pittsburghcompound-B positron emission tomography. J Neurol Neurosurg Psychiatry2012;83(9):923–6.

[92] Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM,et al. Cerebral PET with florbetapir compared with neuropathology at autopsyfor detection of neuritic amyloid-beta plaques: a prospective cohort study.Lancet Neurol 2012;11(8):669–78.

[93] Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PETimaging of amyloid deposition in patients with mild cognitive impairment.Neurobiol Aging 2008;29(10):1456–65.

[94] Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, et al.Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 2009;73(10):754–60.

[95] Nordberg A, Carter SF, Rinne J, Drzezga A, Brooks DJ, Vandenberghe R, et al.A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease.Eur J Nucl Med Mol Imaging 2013;40(1):104–14.

[96] Rabinovici GD, Furst AJ, O’Neil JP, Racine CA, Mormino EC, Baker SL, et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration.Neurology 2007;68(15):1205–12.

[97] Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amy-loid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology2011;77(23):2034–42.

[98] Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007;68(20):1718–25.

[99] Maetzler W, Reimold M, Liepelt I, Solbach C, Leyhe T, Schweitzer K,et al. [11C]PIB binding in Parkinson’s disease dementia. Neuroimage2008;39(3):1027–33.

[100] Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE,et al. Microglia, amyloid, and cognition in Alzheimer’s disease:An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis2008;32(3):412–9.

[101] Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloidimaging with (18)F-florbetaben in Alzheimer disease and other dementias. JNucl Med 2011;52(8):1210–7.

ier KP. Neuroimaging in dementia. Maturitas (2014),

[102] Harding AJ, Halliday GM. Cortical Lewy body pathology in the diagnosis ofdementia. Acta Neuropathol 2001;102(4):355–63.

[103] Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chetelat G. Amyloid PETin clinical practice: Its place in the multidimensional space of Alzheimer’sdisease. Neuroimage Clin 2013;2:497–511.

Page 7: Neuroimaging in dementia

ING ModelM

/ Mat

[

[

[

[

[

[

[

[

[

ARTICLEAT-6131; No. of Pages 7

V. Valkanova, K.P. Ebmeier

104] Lee JH, Kim SH, Kim GH, Seo SW, Park HK, Oh SJ, et al. Identification of puresubcortical vascular dementia using 11C-Pittsburgh compound B. Neurology2011;77(1):18–25.

105] Rohrer JD, Rosen HJ. Neuroimaging in frontotemporal dementia. Int Rev Psy-chiatry 2013;25(2):221–9.

106] Mendez MF, Shapira JS, McMurtray A, Licht E, Miller BL. Accuracy of the clinicalevaluation for frontotemporal dementia. Arch Neurol 2007;64(6):830–5.

107] Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al.FDG-PET improves accuracy in distinguishing frontotemporal dementia andAlzheimer’s disease. Brain 2007;130(Pt 10):2616–35.

108] Engler H, Santillo AF, Wang SX, Lindau M, Savitcheva I, Nordberg A, et al.In vivo amyloid imaging with PET in frontotemporal dementia. Eur J NuclMed Mol Imaging 2008;35(1):100–6.

109] Minoshima S, Foster NL, Sima AA, Frey KA, Albin RL, Kuhl DE. Alzheimer’sdisease versus dementia with Lewy bodies: cerebral metabolic distinctionwith autopsy confirmation. Ann Neurol 2001;50(3):358–65.

110] Ishii K, Soma T, Kono AK, Sofue K, Miyamoto N, Yoshikawa T, et al. Comparisonof regional brain volume and glucose metabolism between patients with milddementia with lewy bodies and those with mild Alzheimer’s disease. J NuclMed 2007;48(5):704–11.

Please cite this article in press as: Valkanova V, Ebmehttp://dx.doi.org/10.1016/j.maturitas.2014.02.016

111] Sinha N, Firbank M, O’Brien JT. Biomarkers in dementia with Lewy bodies: areview. Int J Geriatr Psychiatry 2012;27(5):443–53.

112] Gomperts SN, Rentz DM, Moran E, Becker JA, Locascio JJ, Klunk WE,et al. Imaging amyloid deposition in Lewy body diseases. Neurology2008;71(12):903–10.

PRESSuritas xxx (2014) xxx–xxx 7

[113] Tatsch K, Poepperl G. Nigrostriatal dopamine terminal imaging withdopamine transporter SPECT: an update. J Nucl Med 2013;54(8):1331–8.

[114] Siepel FJ, Rongve A, Buter TC, Beyer MK, Ballard CG, Booij J, et al. (123I)FP-CITSPECT in suspected dementia with Lewy bodies: a longitudinal case study.BMJ Open 2013;3(4.).

[115] Walker Z, Jaros E, Walker RW, Lee L, Costa DC, Livingston G, et al. Dementiawith Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photonemission computed tomography imaging and autopsy. J Neurol NeurosurgPsychiatry 2007;78(11):1176–81.

[116] O’Brien JT, McKeith IG, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Diagnosticaccuracy of 123I-FP-CIT SPECT in possible dementia with Lewy bodies. Br JPsychiatry 2009;194(1):34–9.

[117] Warr L, Walker Z. Identification of biomarkers in Lewy-body disorders. Q JNucl Med Mol Imaging 2012;56(1):39–54.

[118] Papathanasiou ND, Boutsiadis A, Dickson J, Bomanji JB. Diagnostic accuracyof 123I-FP-CIT (DaTSCAN) in dementia with Lewy bodies: a meta-analysis ofpublished studies. Parkinsonism Relat Disord 2012;18(3):225–9.

[119] Morgan S, Kemp P, Booij J, Costa DC, Padayachee S, Lee L, et al. Differentiationof frontotemporal dementia from dementia with Lewy bodies using FP-CITSPECT. J Neurol Neurosurg Psychiatry 2012;83(11):1063–70.

ier KP. Neuroimaging in dementia. Maturitas (2014),

[120] McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, et al. Diag-nosis and management of dementia with Lewy bodies: third report of the DLBConsortium. Neurology 2005;65(12):1863–72.

[121] Heiss WD, Zimmermann-Meinzingen S. PET imaging in the differential diag-nosis of vascular dementia. J Neurol Sci 2012;322(1-2):268–73.