13
6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing probability in discrete time 6.3 Likelihood of a spike train - generative model 6.4 Comparison of noise models - escape noise vs. diffusive noise - from diffusive noise to escape noise 6.5. Rate code vs. Temporal Code - timing codes - stochastic resonance Week 6 – part 4 : Comparison of noise models Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 6 – Noise models: Escape noise Wulfram Gerstner EPFL, Lausanne, Switzerland

Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution

- Time-dependend renewal process - Firing probability in discrete time

6.3 Likelihood of a spike train - generative model 6.4 Comparison of noise models - escape noise vs. diffusive noise - from diffusive noise to escape noise 6.5. Rate code vs. Temporal Code - timing codes - stochastic resonance

Week 6 – part 4 : Comparison of noise models

Neuronal Dynamics: Computational Neuroscience of Single Neurons Week 6 – Noise models: Escape noise Wulfram Gerstner EPFL, Lausanne, Switzerland

Page 2: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution

- Time-dependend renewal process - Firing probability in discrete time

6.3 Likelihood of a spike train - generative model 6.4 Comparison of noise models - escape noise vs. diffusive noise - from diffusive noise to escape noise 6.5. Rate code vs. Temporal Code - timing codes - stochastic resonance

Week 6 – part 4 : Comparison of noise models

Page 3: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

ϑ

escape process (fast noise)

ϑ

stochastic spike arrival (diffusive noise)

u(t)

^t ^tt

)(tρ

))(()( ϑρ −= tuftescape rate

)(tRIudtdu

ii ξτ ++−=⋅

noisy integration

Neuronal Dynamics – 6.4. Comparison of Noise Models

Page 4: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

Assumption: stochastic spiking rate

Poisson spike arrival: Mean and autocorrelation of filtered signal

( ) ( )ff

S t t tδ= −∑ ( ) ( ) ( )x t F s S t s ds= −∫

mean ( )tν

( )F s

( ) ( ) ( )x t F s S t s ds= −∫( ) ( ) ( )x t F s t s dsν= −∫

( ) ( ') ( ) ( ) ( ') ( ' ') 'x t x t F s S t s ds F s S t s ds= − −∫ ∫( ) ( ') ( ) ( ') ( ) ( ' ') 'x t x t F s F s S t s S t s dsds= − −∫

Autocorrelation of output

Autocorrelation of input

Filter

Page 5: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

Stochastic spike arrival: excitation, total rate Re

inhibition, total rate Ri

)()()(','

''

,∑∑ −−−+−−=fk

fk

i

fk

fk

erest tt

Cqtt

Cquuu

dtd

δδτ

u 0u

EPSC IPSC

Synaptic current pulses

Diffusive noise (stochastic spike arrival)

)()()( ttIRuuudtd

rest ξτ ++−−=

Langevin equation, Ornstein Uhlenbeck process

Blackboard

Page 6: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

Diffusive noise (stochastic spike arrival)

ϑ

=−=ΔΔ2)()()()()( tututututu

)(tuΔ)(tu

)()()( ttIRuuudtd

rest ξτ ++−−=

( ') ( ) ( ) ( ') ( ) ( ')u t u t u t u t u t u tΔ Δ = − =

Math argument: - no threshold - trajectory starts at known value

Page 7: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

Diffusive noise (stochastic spike arrival)

=−=ΔΔ2)()()()()( tututututu

)(tuΔ

0( ) ( )u t u t=

)()()( ttIRuuudtd

rest ξτ ++−−=

Math argument

( ') ( ) ( ) ( ') ( ) ( ')u t u t u t u t u t u tΔ Δ = − =

2 2[ ( )] [1 exp( 2 / )]uu t tσ τΔ = − −

Page 8: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

u u

Membrane potential density: Gaussian

p(u) constant input rates no threshold

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival A) No threshold, stationary input

)(tRIudtdu

ii ξτ ++−=⋅

noisy integration

Page 9: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

u u

Membrane potential density: Gaussian at time t

p(u(t))

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival B) No threshold, oscillatory input

)(tRIudtdu

ii ξτ ++−=⋅

noisy integration

Page 10: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

u

Membrane potential density

ϑu

p(u)

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival C) With threshold, reset/ stationary input

Page 11: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

Superthreshold vs. Subthreshold regime

u p(u) p(u)

Nearly Gaussian subthreshold distr.

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival

Image: Gerstner et al. (2013) Cambridge Univ. Press; See: Konig et al. (1996)

Page 12: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

ϑ

escape process (fast noise)

ϑ

stochastic spike arrival (diffusive noise) A C

u(t)

noise

white (fast noise)

synapse (slow noise)

(Brunel et al., 2001)

∫−⋅=t

t

dttt^

)')'(exp()( ρρ)¦( ^ttPI : first passage

time problem

)¦( ^ttPI =Interval distribution

^t ^tt

Survivor function escape rate

)(tρ

))(()( ϑρ −= tuftescape rate

)(tRIudtdu

ii ξτ ++−=⋅

noisy integration

Neuronal Dynamics – 6.4. Comparison of Noise Models

Stationary input: - Mean ISI

- Mean firing rate Siegert 1951

Page 13: Neuronal Dynamics - courseware.epfl.ch · 6.1 Escape noise - stochastic intensity and point process 6.2 Interspike interval distribution - Time-dependend renewal process - Firing

Neuronal Dynamics – 6.4. Comparison of Noise Models

Diffusive noise - distribution of potential - mean interspike interval FOR CONSTANT INPUT - time dependent-case difficult Escape noise - time-dependent interval distribution

ϑu

p(u)