39
Neutron EDM Past, Present & Future of neutron EDM B. Filippone Symmetry Tests in Nuclei & Atoms KITP 9/20/2016

Neutron EDM - UCSBonline.kitp.ucsb.edu/online/nuclear_c16/filippone/pdf/... · 2016. 9. 21. · Symmetry Tests in Nuclei & Atoms. KITP 9/20/2016. Neutron EDM & New Physics • Small

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Neutron EDM

    • Past, Present & Future of neutron EDM

    B. FilipponeSymmetry Tests in Nuclei & AtomsKITP 9/20/2016

  • Neutron EDM & New Physics• Small EDM in standard model provides

    negligible “background” signal

    • New CP violation “natural” in new physics

    2

    cm-e 103cm-e 10

    26exp

    31

    ⋅<

    <

    n

    SMn

    dd

    e.g. dn ~ 10-25 e-cm x sinϕCP(1 TeV/MBSM)2

  • But … Theory Remains Essential• How to interpret measured EDM in terms of new

    physics/elementary EDMs– Extraction from p, n, atom EDMs

    • E.g. Lattice QCD (This workshop & program!)• Calculation of enhancement factors for certain species

    – Model constraints based on EDM limits/observations– Identify source of EDM

    3

  • Searching for a Neutron EDM

    • E.M. Purcell and N.F. Ramsey, Phys. Rev. 78, 807 (1950) – Looking for Parity Violation in Neutron Scattering– Pioneered Neutron Beam Magnetic Resonance

    E. M. Purcell N. F. Ramsey

  • 5

  • Moore’s Law for Neutron EDM Searches

    6

  • Simplified Measurement of EDM

    B-field

    E-field

    hEdB

    ⋅±⋅=

    22µν

    7

    “…always measure a frequency” How to measure a small

    frequency?• Ramsey Separated

    Oscillatory Fields (SOF)

    How to measure a small frequency?• Observation of free

    precession

    t (sec)

    dN/d

    t(H

    z)

    Measure n + 3He capture vs. time with σ>>σ

  • What is the precision for an EDM measurement?

    md TEE

    t

    ||2~

    ||2~

    ~

    2

    E

    E

    E

    ∆∆

    ⋅==

    σ

    ω

    Ed

    Sensitivity: E – Electric FieldTm – Time for single measurementm – total # of measurementsN – Total # of counts/meas.mNT|E|2

    σm

    totd

    ~

    Precise energy measurement requires long coherence/measurement time, giving

    Plus shot noise = counting statisticsN1

    ||2~

    EdE∆σUncertainty in d:

    8

    Coherence time

  • Best Present Limit on nEDM

    9

    EDM @ ILL

    N (detected n/cycle) 1.3 x 104

    |E| 10 kV/cm

    Tm 130 s

    m (cycles/day) 270

    σd (e-cm)/day 3 x 10-25

    Baker et al. Phys. Rev. Lett. 97, 131801 (2006)Pendlebury et al. Phys. Rev. D 92, 9092003 (2015)

    dn < 3.0 x 10-26 e-cm @ 90% Confidence Limit

    mNT|E|2σ

    m

    totd

    ~

    Ramsey SOF & trapped Ultra-Cold Neutrons from ILL Reactor

  • Neutron EDM Experiments Worldwide

    10

    SNS

    J-PARC

    ILL

    PSI

    FRMIITRIUMF

    RCNP

    PNPI

    LANL

  • Experiment UCN source cell Measurementtechniques

    σd Goal(10-28 e-cm)

    ILL - CryoEDM Superfluid 4He 4He Cryo HV, SuperCond., Ramsey technique, external SQUID mag.

    < 5

    ILL-PNPI ILL turbinePNPI/Solid D2

    Vac. Ramsey technique for ωE=0 cell for magnetometer

    Phase1

  • LANL nEDM

    12Slide thanks to T. Ito

  • Based on LANL UCN Source in Area B

    13Slide thanks to T. Ito

  • 14Slides thanks to T. Ito

  • UltracoldNeutronsat TRIUMF

    T. Adachi1, E. Altiere2, T. Andalib3,4, C. Bidinosti3,8, J. Birchall4, M. Chin5, C. Davis5,F. Doresty4, M. Gericke4, S. Hansen-Romu3,4, K. Hatanaka6, T. Hayamizu2, B.

    Jamieson3, S. Jeong1, D. Jones2, K. Katsika5, S. Kawasaki1, T Kikawa5,6,1, A. Konaka5,8, E. Korkmaz7 , M. Lang3, T.

    Lindner5, L. Lee4,5, K. Madison2, J. Mammei4, R. Mammei3, J.W. Martin3, Y. Masuda1, R. Matsumiya6,

    K. Matsuta8, M. Mihara8, E. Miller2, T. Momose2, S. Page4, R. Picker5, E. Pierre6,5, W.D. Ramsay5, L.

    Rebenitsch3,4, J. Sonier9, I. Tanihata6, W.T.H. van Oers4,5, Y. Watanabe1, and J. Weinands2

    1KEK, Tsukuba, Ibaraki, Japan2The University of British Columbia, Vancouver, BC, Canada

    3The University of Winnipeg, Winnipeg, MB, Canada4The University of Manitoba, Winnipeg, MB, Canada

    5TRIUMF, Vancouver, BC, Canada6RCNP, Osaka, Japan (Osaka University, Osaka, Japan)

    7The University of Northern BC, Prince George, BC, Canada8Osaka University, Osaka, Japan

    9Simon Fraser University, Burnaby, BC, Canada

    Slide thanks to J. Martin

  • TRIUMF

    Slide thanks to J. Martin

  • “Phase 1” – what will exist in 2017• use existing EDM Ramsey apparatus from RCNP, Osaka• exploit higher UCN density at TRIUMF (also more beamtime available)• room temperature, 1 small cell, vertical loading, spherical B0 coil• small incremental improvements until replaced by Phase 2

    • Active magnetic compensation system• high voltage• comagnetometer• high-flux detector

    Slide thanks to J. Martin

  • “Phase 2” – to implement by 2020

    • LD2 moderator, to increase cold flux entering the superfluid• New high-quality guides.• World-competitive nEDM experiment apparatus

    CFI Innovation Fund application in progress, in Canada. Scale $16M.

    Phase 2 sensitivityδdn ~ 10-27e-cm

    R&D on Hg and Xe co-magnetometers is underway

    Slide thanks to J. Martin

  • TUM nEDM@PTB BerlinM. Burghoff, A. Schnabel, J. Voigt @Forschungneutronenquelle Heinz Meier-LeibnitzA. Frei, T. Lauer, P. Link, A. Pichlmaier, T. Zechlau@Technische Universität MünchenI. Altarev, V. Andreev, S. Chesnevskaya, M. Daimer, W. Feldmeier, P. Fierlinger, E. Gutsmiedl, F. Kaspar, F. Kuchler, T. Lins, M. Marino, J. McAndrew, B. Niessen, S. Paul, G. Petzoldt, J. Rothe, C. Schneider, R. Schönberger, S. Seidel, R. Stoepler, T. Stolz, S. Stuiber, M. Sturm, B. Taubenheim, R. Thiele, J. Weber, D. Wurm, @University of California at BerkeleyD. Budker, B. Patton @University of Illinois at Urbana-ChampaignD. H. Beck, S. Sharma @University of MichiganT. Chupp, S. Degenkolb

    19Slide thanks to P. Fierlinger

  • Optimistic (but in principle possible) plan towards a physics result

    Options (i) Assembly of Inner and Outer shield with RT chamber(ii) Cryogenic chambers with Inner Shield (iii) Cryogenic chambers with Outer and Inner Shield (before ~ 2022 no UCN at FRM-II EDM position)

    Outer Shield at TUMOuter magnetic shield

    External field compensation

    HV R&D and assembly

    Installation at new Super-SUN Stage 1 w/o magnet (2017+), no co-magnetometerBest possible results ~ 3.10-27 ecm (stat, 1

    σ)

    Magnetometer developmentMagnetometer comparisonsSpin-clocks with polarized

    noble gasesComponent optimizationEDM runs at Super-SUN Stage 2 with

    magnet (2019+) Best possible result ~ 8.10-28 ecm (stat, 1

    σ)

    Development of cryogenic chambers

    Move Inner Shield to ILL (2016)Adapt/build new UCN components, mobile Cs

    magnetometersNo RF shield, only manual alignment control

    P. Fierlinger – MSU 4/6/2016 Slide thanks to P. Fierlinger

  • Sensitivitypotential of nEDMat Super-SUN at

    ILL

    P. Fierlinger – MSU 4/6/2016Slide thanks to P. Fierlinger

  • The next version: Super-SUN (funded + under construction at ILL)

    P. Fierlinger – MSU 4/6/2016

    STAGE 2STAGE 1

    Slide thanks to P. Fierlinger

  • 23Slides thanks to K. Kirch

  • 24

    Slide thanks to K. Kirch

  • —25—

    nEDM

    @PSI-O

    verview

    • Two UCN precession chambers with opposite electric field directions

    • Improved magnetometry Hg – laser read out of Hg-FID to avoid light shiftCs – vectorial3He – free from geometrical phase shift

    Status/Prospects:

    • Taking data atδdn ~ 1x10-26 e-cm/yr

    • n2EDM hopes to reachδdn ~ 4 x10-27 e-cm/yr

  • nEDM Experiment at Oak Ridge Spallation Neutron

    Source - SNS

    • High trapped neutron densities – Cold neutrons from spallation source cooled to “Ultra-cold” neutrons via phonon scattering in superfluid He

    • LHe as a high voltage insulator– high electric fields

    • Use of a 3He co-magnetometer and superconducting shield– Control and measure magnetic field systematics

    • Precession frequency measurement via two techniques:• free precession • “dressed spin” techniques

    • Sensitivity reach: dn ~ 2 x 10–28 e-cm (in 3 calendar yrs)

    Concept: R. Golub & S. K. Lamoreaux, Phys. Rep. 237, 1 (1994)

    “Most ambitious nEDMexperiment that is currently underway”

  • SNS Target Station

    27

  • 3He ATOMIC BEAM SOURCE

    3He DILUTION REFRIGERATOR

    CENTRAL DETECTOR

    SYSTEM

    MAGNETIC SHIELD HOUSE

    Neutron beam is into page

    SNS-nEDM Experiment

    28

  • R. Alarcon, R. DipertArizona State University

    G. SeidelBrown University

    D. BudkerUC Berkeley

    M. Blatnik, R. Carr, B. Filippone, C. Osthelder, S. Slutsky, X. Sun, C. Swank

    California Institute of Technology

    C. Crawford, T. Gorringe, W. Korsch, E. Martin, N. Nouri, B. Plaster

    University of KentuckyS. Clayton, S. Currie, T. Ito, Y, Kim, M. Makela, J. Ramsey,

    W.Sondheim. Z, Tang, W. WeiLos Alamos National Lab

    K. Dow, D. Hasell, E. Ihloff, J. Kelsey, J. Maxwell, R. Milner, R. Redwine, E. Tsentalovich, C. Vidal

    Massachusetts Institute of TechnologyD. Dutta, E. Leggett

    Mississippi State UniversityR. Golub, C. Gould, D. Haase, A. Hawari, P. Huffman, E.

    Korobkina, K. Leung, A. Reid, A. YoungNorth Carolina State University

    R. Allen, V. Cianciolo, Y. Efremenko, P. Mueller, S. Penttila, W. Yao

    Oak Ridge National LabM. Hayden

    Simon Fraser UniversityG. Greene, N. Fomin

    University of TennesseeS. Stanislaus

    Valparaiso UniversityS. Baeβler

    University of VirginiaS. Lamoreaux

    Yale University

    29Project Manager: V. CiancioloSpokesperson: BWF

    M. Ahmed, M. Busch, P. –H. Chu, H. GaoDuke University

    I. SilveraHarvard University

    M. Karcz, C.-Y. Liu, J. Long, H.O. Meyer, M. Snow

    Indiana UniversityL. Bartoszek, D. Beck, C. Daurer, J.-C. Peng,

    T. Rao, S. Williamson, L. YangUniversity of Illinois Urbana-Champaign

  • Technical Challenges for nEDM@SNS• 1200 L of superfluid Helium @ T = 0.5K

    – Must minimize heat sources• Eddy-current heating from AC B-fields minimal conducting material

    – Large cooling plant required

    • Highly sensitive to magnetic field variations and gradients– Significant magnetic shielding required– B-field uniformity of ppm/cm over measurement volume– Low-field operation: B = 3 µT

    • High electric fields: E = 75 kV/cm– Producing and maintaining V > 600 kV in cryogenic environment

    30

  • New High Voltage Concept

    31Previous concept – charging capacitor

    Cel

    l #1

    Cel

    l #2

    100 kV10

    0 kV

    600

    kV

    Cel

    l #1

    Cel

    l #2

    0 kV

    -50 kV

    +++++++Very large diameter variable capacitor (>1m) with small gap (

  • Status of the nEDM@SNSExperiment

    • Demonstration of Critical Components is Underway (2014-2017)– Construction of most technically challenging pieces:

    • HV @ LANL and light detection system @ ORNL• Polarized 3He system @ Illinois• Magnet system @ Caltech • Polarized UCN & 3He test bed at NCSU PULSTAR reactor

    • Large Subsystem Integration and Acquisition of Critical Components (2018-2020)– Begin commissioning components at Oak Ridge

    National Laboratory in 2019

  • Farther Future nEDM

    • Systematics can produce “surprises”, but if these are controlled then sensitivity is limited by counting statistics need more neutrons– 2nd Target station at SNS could give ~ 25x more cold neutrons– ESS (European Spallation Source) also promises high flux of cold

    neutrons for high density UCN• Cryogenic experiment being discussed

    33

  • Summary• A number of novel technologies are being developed

    to extend neutron EDM sensitivities by two orders-of-magnitude

    • Anticipate:– A new best sensitivity within 1-2 year– Factor of 10 improvement within 3-4 yrs– Factor of 100 improvement within 7-9 yrs– TBD > 10 years

    34

  • Extra Slides

    35

  • New External Building will House the Experiment

    36

  • T/CP Violation

    37

    EdBH

    ⋅+⋅= µP-evenT-even

    P-oddT-odd

    Non-zero d violates T and CP (via CPT)

    JJ and

    JJWith

    dd == µµ

    -+B-+J

    +-E-+d-+µTP

  • How to measure an EDM?

    BS if ; BSμ2 BμdtSdτ

    21 spinfor ; Sμ2μ ;BμH

    N

    N

    ⇒×==

    =⋅=ˆ

    Classical Picture:• If the spin is not aligned with B there will be a precession

    due to the torque • Precession frequency given by

    Recall magnetic moment in B field:

    fS

    iS

    Sd

    ϕdEin d afor E2d

    B B2μ dtdS

    S1

    dtdω

    NN

    N

    or

    γϕ ====

    ω Gyromagnetic Ratio

  • But NH3 EDM is not T-odd

    But some molecules have HUGE EDMs!H20: d = 0.4 x 10-8 e-cmNaCl: d= 1.8 x 10-8 e-cmNH3: d = 0.3 x 10-8 e-cm

    −=+=

    exist! JJdd and

    JJdd both

    JJdd

    If neutron/electron had a degenerate state, then their EDM would not violate T or CP. But they don’t!

    Ground state is actually asuperposition

    J

    J

    39

    Neutron EDMNeutron EDM & New PhysicsBut … Theory Remains EssentialSearching for a Neutron EDMSlide Number 5Moore’s Law for Neutron EDM SearchesSimplified Measurement of EDMWhat is the precision for an EDM measurement?Best Present Limit on nEDMNeutron EDM Experiments Worldwide Neutron EDM Searches LANL nEDMBased on LANL UCN Source in Area BSlide Number 14Ultracold Neutrons at TRIUMFTRIUMF Slide Number 17Slide Number 18TUM nEDMOptimistic (but in principle possible) plan towards a physics resultSensitivity potential of nEDM �at Super-SUN at ILLThe next version: Super-SUN (funded + under construction at ILL)Slide Number 23Slide Number 24Slide Number 25 nEDM Experiment at �Oak Ridge Spallation Neutron Source - SNSSNS Target StationSNS-nEDM ExperimentSlide Number 29Technical Challenges for nEDM@SNSNew High Voltage ConceptStatus of the nEDM@SNS ExperimentFarther Future nEDMSummaryExtra SlidesNew External Building will House the Experiment T/CP ViolationHow to measure an EDM?But some molecules have HUGE EDMs!