38
Original Article New laboratory procedure using a modal approach to obtain vibration attenuation properties of unaged and aged asphalt mixtures Teresa Real, Laura Montalbán, Claudio Masanet and Julia Real Institute for Multidisciplinary Mathematics, Polytechnic University of Valencia, Spain Corresponding author: Teresa Real, Institute for Multidisciplinary Mathematics, Polytechnic University of Valencia, Camino de Vera s/n, Valencia 46022, Spain Email: [email protected]

New laboratory procedure using a modal approach to obtain

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: New laboratory procedure using a modal approach to obtain

OriginalArticle

Newlaboratoryprocedureusingamodalapproachtoobtainvibrationattenuation

propertiesofunagedandagedasphaltmixtures

Teresa Real, Laura Montalbán, Claudio Masanet and Julia Real

Institute for Multidisciplinary Mathematics, Polytechnic University of Valencia, Spain

Correspondingauthor:

Teresa Real, Institute for Multidisciplinary Mathematics, Polytechnic University of Valencia,

Camino de Vera s/n, Valencia 46022, Spain

Email: [email protected]

Page 2: New laboratory procedure using a modal approach to obtain

Abstract

During asphaltmixture service life, its structural and physical capabilities deteriorate progressively. A

modalanalysisusingimpacthammerexcitationtechniqueisputforwardtomeasurethedampingfactor

instead of the commonly destructive test described in the standards. Concerning to this modal

approach, an agingprocedure is presented toobtain and compare the vibration attenuation capacity

variationofthemixturesconsideringagingdeterioration.Inthisresearch,thisnewprocedurehasbeen

appliedtoasphaltconcreteandstonemasticasphaltmixtureswithdifferentamountsofPolyethylene

Terephthalete. It has been validated using results from four-point bending test. Finally, the results

confirmed that asphalt mixtures with 0-2% of Polyethylene Terephthalete present better vibration

attenuationcapacitythanmixtureswithoutit,evenwhenagingappeared.

Keywords

Asphaltmixture;oxidation;PolyethyleneTerephthalete;wastematerial;modalanalysis.

Introduction

Asphaltmixtureisanimportantcompositeconstructionmaterialwhichisbasicallyformedbybituminous

binder,aggregatesandmixtureairvoids[1,2].Foralongtime,thesemixtureshavebeenwidelyusedin

roadpaving[3],and,inrecentdecadesintracksuperstructuredesigninrailroadnetworks[4,5].

Nowadays, it iswell known thatphysical and chemical propertiesof asphaltmixtures changeduring its

service life [3]. This situation is produced by asphalt binder aging which produces the pavement

deterioration[6,7].

Page 3: New laboratory procedure using a modal approach to obtain

As stated by Fernandez-Gomez, et al [8], the change of asphalt mixture properties depends on both

intrinsicandextrinsicvariables.Thus,asphaltaging is subjected to the typeofmixtureused (contentof

binder,mixturevoidcontent,natureandparticlesizedistributionoftheaggregates,etc.),environmental

conditions (e.g. temperature, UV irradiation, oxygen) and time [9]. The mixture aging process may be

dividedintwostages:short-termaging,whichisproducedduringmixing,storage,layingandcompactation

operations,andlong-termaging,whichisproducedduringitsservicelife[10].

In addition, the aging phenomenon consists of two types of deterioration mechanisms classified as

reversibleor irreversibleones [6]. The reversiblemechanismcorresponds to themolecular structuring,

also called physical hardening, and the second one is characterized by chemical changes (oxidation,

volatilization,exudation,UVirradiation)ofthebinderaffectingitsrheologicalproperties[8,11].

The current state of knowledge on this topic shows that oxidation is one of the most important

environmental factors affecting the durability of the asphalt mixtures [3, 12, 13, 14, 15]. Oxidation is

defined as the chemical interaction between the asphalt and the atmospheric oxygen resulting in an

irreversible transformation of the asphalt composition, hence changing its chemical and physical

properties [14]. Themain structural consequences produced by oxidation aging are the hardening and

embrittlementoftheasphalt[15].Regardingtotheviscosityoftheasphaltmixture,theoxidationreduces

the phase angle and, consequently, the damping factor therefore decreasing its vibration attenuation

capacity[9].

Inviewofthis,previousinvestigationsuseddifferentlaboratoryagingteststosimulateinanaccelerated

mannertheagingoftheasphaltduringthetwostagesdescribedabove.Theaimwastoobtainthedesired

information about the agedmixtures, and compare themwith the unaged ones. For instance, Lu and

Isacsson[9]usedtheThinFilmOvenTest (TFOT), theRollingThinFilmOvenTest (RTFOT)andmodified

Page 4: New laboratory procedure using a modal approach to obtain

RTFOT (MRTFOT) to characterize theagingbehaviorofdifferent typesofpolymermodifiedasphalts.As

reportedbyShenoy[7],RTFOThasbeenacceptedasareliableagingproceduretosimulatetheshort-term

aging.Tosimulatethelong-termaging,Shenoy[7]proposedtoapplythePressureAgingVessel(PAV)on

theRTFOTresidue.

Atthispoint,itisimportanttotakeintoaccountthatpreviousaginglaboratoryprocedureswereusedto

evaluatetheasphaltbindersaging[15].Nevertheless,agingofasphaltmixturescanbequitedifferentthan

theasphaltbinderitself,asreportedbyOngelandHugener[14].Inotherwords,thereisaneedtotake

into account asphalt-aggregate interaction effects on aging since the asphalt molecules interact with

aggregates.

TheStrategicHighwayResearchProgram[14]consideredthattheresultsobtainedforanasphaltmixture

maybedifferent from the asphalt binder results and, therefore, proposeddifferent agingprotocols for

them. Themost commonused have been the short-termoven aging (STOA) and long-termoven aging

(LTOA).STOAisappliedtoasphaltmixturespriortocompactationusingadraftovenat135oCfor4h.Inthe

caseof LTOA, theagingof theasphaltmixtures isobtainedafter introducingcompactedsamples in the

ovenat85oCduringalmost120h.

Until now, the introduction of polymers is popularly used to enhance asphalt mixture performance.

However,itrepresentsanimportantdrawbacksincetheyraisespectacularlythecostofthefinalproduct

[9,13,16].Currently,agreaterenvironmentalconcernexistsandwastematerialisusedasanadditiveto

improvetheasphaltmixtureperformance.OneexampleofthisisthePolyethyleneTerephthalete(PET)re-

utilization. This material comes from waste plastic bottles and is stored in landfills creating an

environmentalproblemduetoitsnon-biodegradability[17].

Page 5: New laboratory procedure using a modal approach to obtain

Moghaddametal.[17,18]studiedpermanentdeformationcharacteristicsofPolyethyleneTerephthalate

(PET) modified stone mastic asphalt mixtures under static and dynamic loads. Ahmadinia et al. [19]

investigatedtheeffectsofincorporatingwastePETinSMA.Thevolumetricandmechanicalpropertiesof

thismixtureconsideringvariouspercentagesofPETwerecalculatedandassessedwithdifferentlaboratory

tests.Theresultscontributetoencouragewastematerialre-useinthepavementindustry.PETincreased

thestiffnesslevelofthemixtureimprovingitsresistancelevelagainstpermanentdeformation.Ahmadinia

etal[20]concludedthattheadditionofwastePETintothemixturehasasignificantpositiveeffectonthe

propertiesofSMAsuchas:mixture’sresistanceagainstpermanentdeformation(rutting),stiffnessofthe

mixandlowerbinderdraindown.Moghaddam,KarimandSyammaun[21]researchedSMAmixtureswith

different amount of PET with the objective to study their stiffness and fatigue resistance. The results

obtainedfromtheindirecttensilestiffnessmodulustestandindirecttensilefatiguetestshowedthatlower

amountofPET content increases the stiffnessmodulusof themixture, andhigherPETamount content

makes mixture softer. Additionally, PET reinforced mixtures exhibit significantly higher fatigue lives

comparedtotheoneswithoutit.

However,althoughthere isnotsufficientup-to-date informationabouttheapplicationofPETtoasphalt

mixtures,itisnoteworthytomentionthatnoneoftheknownstudiespreviouslyconductedhavefocused

ontheapplicationofwastePETasanadditivetoasphaltconcreteandstonemasticasphaltfocusedonthe

vibrationattenuationcapacity.

Inthisresearch,analternativeprocedureusingmodalapproachtostudythevibrationattenuationcapacity

ofanunagedandagedasphaltmixtureispresented.Themaingoalofthisresearchistoobtaininformation

aboutthedampingfactorofanunagedandagedasphaltmixturewithPETsoastodemonstratethatthis

wastematerialplaysanimportantroleinitsvibrationandnoisemitigationproperties.

Page 6: New laboratory procedure using a modal approach to obtain

Experimentalcampaign/Methodology

Aspreviouslyexposed,theagingmethodsareprotocolsestablishedtoacceleratethedeteriorationofthe

asphalt binder or asphalt mixtures simulating short-term or long-term aging. In all cases, additional

laboratorytestarerequiredtoobtainthedesiredpropertiesoftheunagedandagedspecimenstested.

The damping factor is a very important material parameter which indicates the vibration energy

attenuated during a cycle of vibration [22]. It can be obtained from the four –point bending test on

prismaticshapedspecimensaccordingwiththeEuropeanNormativeEN-12697-24:2004[23].

The regular procedure to obtain this information would be as follows: different specimens are

manufacturedanddividedintwosets.Thefirstsetofspecimensistestedwiththefour-pointbendingtest

in accordance with the European Normative [23]. This laboratory test provides information about the

dampingfactoroftheunagedmixtures.Then,theagingmethod(LTOA)isappliedtothesecondspecimens

set.TheLTOAresiduesaretestedapplyingthefour-pointbendingtest[23].Inthiscase,theinformation

obtained is thedamping factor for theagedasphaltmixtures.Oncedamping factors informationof the

unagedandagedmixturesisobtained,theeffectofagingonthevibrationattenuationcapacityisknown.

Thiscommonresistancetofatiguetestusedtoobtainvibrationattenuationpropertiesofasphaltmixtures

isadestructive laboratorymethod.Thus, itmeanshighercostssincedifferentspecimensareneededto

characterizemixturesbeforeandaftertheagingprocedure.

Inthisway,thisresearchaimstoofferanewnon-destructivetestprocedureinwhichthesamespecimen

maybe tested to characterizebothunaged and agedmixtures.Amodal analysis using impact hammer

excitationtechniquewaselectedtosubstitutethefour-pointbendingtestduetoisoneofthewidelyused

non-destructivetechniquestoexaminethevibrationcharacteristicsofmaterials[24,25,26]. Inaddition,

Page 7: New laboratory procedure using a modal approach to obtain

impacthammerexcitation technique is the simplestmethod formodal testingwith low costs and time

[27].

The new aging procedure conducted in this research is explained afterwards. Firstly, different asphalt

mixtures(asphaltconcreteandstonemasticasphalt)withdifferentPETpercentagesweremanufactured

using dry process. Secondly, these asphaltmixtureswere tested using the experimentalmodal analysis

proposed and the four-point bending test on prismatic shaped specimen at 20oC. Then, the damping

factorsobtainedwerecomparedsoastoassesstheproperfunctioningoftheimpacthammertestused

herein.

Oncethecorrectworkingofthenewtestwasconfirmed,a long-termovenagingprocedure(LTOA)was

carriedoutinordertosimulateinanacceleratemannertheservicelifeagingofthemixture.Finally,the

LTOAresiduesweretestedagainwiththeimpacthammertechniquetestproposedwithin24hours.The

dampingfactoroftheunagedandagedmixtureswereobtainedandthus,informationaboutthevibration

attenuationcapacityoftheasphaltmixturesduringtheirservicelife.

Materials

Materialmanufacturing

Atestcampaignwascarriedoutondifferentasphaltmixtureswithdifferentamountsofpost-consumer

PET so as to characterize unaged and aged asphaltmixture behavior in terms of vibration attenuation

capacity. For thispurpose, asphalt concretemixtureand stonemastic asphaltmixtureweredeveloped

consideringdifferentPETpercentages.Thesepercentageswereadoptedconsideringtheliterature[19,20]

andthen,adaptedtopresentstudy. Themixturecombinationsconsideredforthisstudyareexposedin

Table1.

Page 8: New laboratory procedure using a modal approach to obtain

Table1.Differentasphaltmixturesanalyzed.

MIXTURETYPEOF

MIXTUREPET%wt

ASPHALTBINDER

%wt

AGGREGATES%

wt

FILLER%

wt

0% AC 0 4 91 5

0.5% AC 0.5 4 90.5 5

1% AC 1 4 90 5

1.5% AC 1.5 4 89.5 5

2% AC 2 4 89 5

4% AC 4 4 87 5

0% SMA 0 5 86.8 8.2

0.5% SMA 0.5 5 86.3 8.2

1% SMA 1 5 85.8 8.2

1.5% SMA 1.5 5 85.3 8.2

2% SMA 2 5 84.8 8.2

4% SMA 4 5 82.8 8.2

Prismatic shaped specimens were fabricated to conduct the laboratory tests proposed. The prismatic

shapedspecimenspresentedalengthof400mm,widthof60mmandheightof60mm.Allspecimenswere

preparedusingan impactcompactorwith75 impactsaccordingtoEN12697-30Standard[28].Foreach

mixtureexposedinTable1,fivespecimensweremade.Fourofthemwereusedinthefour-pointbending

testonprismatic shaped specimens so as to allow comparisonanalyseswith statistically representative

results.Theotheronewasusedtoimplementthenewagingprocedurepresented.Onlyonespecimenof

Page 9: New laboratory procedure using a modal approach to obtain

eachmixturewasnecessary for the impact hammermethod since it is a non-destructive test, thus the

specimenmaybetestedrepeatedly.

Figure1exhibitsthespecimensusedinthenewtestmethod.

Figure1.Specimensforthenewtestmethod.

Aggregatesandfiller.

For the design and production of themixtures tested, limestone aggregates and filler have been used.

Differentaggregategradationsareconsidereddependingonthemixturetypeanalyzed(asphaltconcrete

orstonemasticasphalt).

Table2showstheaggregategradationfortheACandSMAmixtures.

Table2.AdoptedAggregateGradationforACandSMAmixtures.

Page 10: New laboratory procedure using a modal approach to obtain

NOMINAL

SIZEOF

AGGREGATE

(mm)

PERCENT

PASSINGIN

ACMIXTURE

(%)

PERCENT

PASSINGIN

SMA

MIXTURE

(%)

31.500 100.00 100,00

22.400 99.00 100.00

16.000 79.00 99.00

8.000 58.00 58.00

4.000 42.00 38.00

2.000 31.00 24.00

0.500 15.00 21.00

0.250 10.00 15.00

0.063 5.00 8.50

Asphaltbinder.

Binder used in this research is B 50/70, according to the Spanish specifications [29]. The mechanic

characteristicsareshowninTable:

Table3.B50/70Characteristics[29].

Page 11: New laboratory procedure using a modal approach to obtain

CHARACTERISTICS NORMATIVE UNIT B50/70

Penetration(25oC) 1426 0.1mm 50-70

Softeningpoint 1427 oC 46-54

Agingresistance

Masschange 12607-1 % ≤0.5

Restrained

penetration1426 % ≥50

Softeningpoint

increment1427 oC ≤11

Penetrationindex

12591

13924

AppendixA

-Range-1.5to

+0.7

Flashpoint ISO2592 oC >230

Solubility 12592 % ≥99.0

Plasticwastematerial.

PET fromwaste plastic bottles has been used in this research. Thismaterial is considered as polyester

materialsinceit isasemi-crystallinethermoplasticpolymer[18].ThismaterialhasbeenstudiedforSMA

mixtures in previous researches [21]. In this research, PET has been incorporated to SMA and to AC

mixtures.ThespecificgravityofPETis1.39g/cm3,asstatedbyAhmadina,etal.[20].Thegradationofthe

PolyethyleneTerephthalate(PET)isshowninTable4.ThisgradationofPETwasobtainedasindicatedin

[18].

Page 12: New laboratory procedure using a modal approach to obtain

Table4.PETgradation.[19].

Testsconducted

Four-pointbendingtest

The four-point bending test on prismatic shaped specimens was conducted in accordance with the

EuropeanNormativeEN-12697-24:2004[23].Thistestwasconductedtovalidatetheimpacthammertest

proposedhereinbycomparisonoftheresults.

Thistestwasperformedinlaboratoryat20oCobtainingresultsforthecomplexmodulusE*andthephase

angleatthesametime.AsindicatedinEN-12697-26:2012,thecomplexmodulusE*isdefinedasthesum

of the imaginarymodulus (E’’) and realmodulus (E’). They represent the viscous and elastic behavior,

respectively.Equation1showstherelationbetweenthem.

'''* EEE += (1)

Thephaseangle(j )isprovidedbythetestasindicatedinequation2.

SIEVESIZEPERCENTPASSING

(%)

1.18mm 100

425 m 0

Page 13: New laboratory procedure using a modal approach to obtain

( ) '/''tan EE=j (2)

Thus, a phase angle reduction means that the energy attenuation capacity decreases in a cyclic

deformation[30].

Oncethephaseangleisobtained,thedampingfactoriscalculatedusingtherelationindicatedinequation

3asstatedbyRutherfordetal.[31].

( ) 2/tan jx = (3)

Wherex isthedampingfactor.

Impacthammertest

This method is based on dynamic excitation of the specimens characterizing its vibratory response by

accelerometers. In thisway,vibrationattenuationcapacityofeachmixturecouldbeobtainedanalyzing

theattenuationofthevibrationsignalinduced.

Page 14: New laboratory procedure using a modal approach to obtain

Testdeviceandtestprocedure.ThetestdeviceisshowninFigure2.

89.6 89.6220.830 30

60

1

2

3

45

6

Figure2.Schematicdiagramofthetestsystem(Measurementsinmillimeters).

Figure3.Impacthammertestpreparation.

Page 15: New laboratory procedure using a modal approach to obtain

AsillustratedinFigure2,astandardconcreteblock(1)waslocatedonaflat,horizontalandstablesurface

(6)whichismainlylocatedonthefloor.Thespecimens(2)weresupportedbytwopointsusingtwosteel

bars (3). The correct location of the specimen must be done with special care since the acceleration

dependsonthesupportdistancesandboundaryconditions.Barswerelocatedonthenodalpositionsof

the theoreticalmodeshapes inorder tosimulateadequately the freeboundarycondition in laboratory.

Elastic fasteners were used in order to maintain the bars in a fixed position (Figure 3). These elastic

fastenerswerelocatedalsointhenodalpointstonotaffectadverselythevibrationofthespecimen.

Therefore, previously to the disposition shown in Figure 2, a modal analysis of each specimen was

conducted using finite element methods by ANSYS software package (Figure 4). Nodes were selected

pointswhere the amplitude of the different vibrationmodeswas zero. In thisway, the supportswere

locatedatthetheoreticalnodalpointsofthefundamentalfirstbendingmodeofthespecimens[27].FEM

resultsshowedthatthepositionofthenodescorrespondingtothefirstbendingmodeforeachspecimen

varied insignificantly.Thus, thesupportpositionswereselectedasthemediumpointsofeachspecimen

nodes.

Atriangularcross-sectionwaschosenforthebarstoobtainasupportpointofcontactwithnodes.Inthis

situation, the specimenswere testedwithout vibration constrains, and therefore, their damping factor

couldbeobtained.

Page 16: New laboratory procedure using a modal approach to obtain

Figure4.ExampleofthedeformationofACwith0%PETregardingfirstbendingmodeofvibration.

Once the specimen model deformations were obtained for the first bending mode of vibration, the

measurementandimpactpoint locationsweredecided.Triaxialaccelerometers(4)werelocatedatboth

ends of the specimen as indicated in Figure 2. This decision was made taking into account two main

principles:maximumdistancebetweenthemandfirstbendingmodemustberegistration.Impacthammer

excitation technique was used to produce a transient impulsive force excitation in the middle of the

specimens(5).Theloadwasappliedintheverticaldirectioncoincidingwiththelongitudinalbeamaxisto

exciteverticalbendingmodesonly.Theaimofthistestistoobtainthedampingfactorinafastandlow

costway.

Itisimportanttotakeintoaccountthatdampingfactordependsontheinertia,stiffnessanddampingof

thesystem,butitdoesnotdependontheappliedload[32].Thus,anuncontrolledloadwasconsideredin

Page 17: New laboratory procedure using a modal approach to obtain

this research. Eight impactswere done on each specimen checked to obtain statistically representative

results.

Inthisresearch,onlydampingfactorofthefirstbendingmodewastheparameterofinterestconsidered

regardingthefollowingtworeasons.Firstly,itisimportanttokeepinmindthatnearthenaturalfrequency

ofamode, theoverallvibrationshapewill tend tobedominatedby themodeshapeof the resonance.

Thus, only the first bending mode was needed to be studied since the frequencies of the four-point

bendingtestwereunderthenaturalfrequencyofthismode.Secondly,dampingofthematerialdepends

onthebendingmodeanalyzedas indicatesthe literature[27,33]. Inthisway,onlythedampingfactors

consideringthefirstbendingmodewerestudiedsincethemainobjectiveofthisinvestigationistostudy

thevibrationattenuationcapacityoftheasphaltmixtureswithPETduringitsservicelife,andnottoobtain

thedampingfactoroftheallbendingmodesofthespecimens.

Test principle. Results obtained for the test are accelerations in the time domain for each specimen

analyzed. Therefore, a post-processing ofmeasured data is necessary to obtain definitely the damping

factorofeachmixture.

Regardingtoadampedvibratorysystemwithasingledegreeof freedom,thecharacteristicequationof

themovementisdefinedinequation4asstatedbyBiligiri[30].

( ) )sin(1 rwxw += - tAetx nt (4)

Page 18: New laboratory procedure using a modal approach to obtain

Wherex is thedisplacement,A is themaximumamplitudeofvibration incaseofaperfectelasticsolid,

1w is the undamped natural frequency, nw is the damped natural frequency, t is the time, x is the

dampingfactorand r thephaseangleorlag.

Figure5isarepresentationofthefundamentaltheoreticalvibrationmodeltakenintoaccount.

Figure5.Representationofthefundamentaltheoreticalvibrationmodel.

Inthiscase,thepositiveandnegativeenvelopeofaccelerationscanbeobtainedasindicatedbyequation

5.

tAetx 1)( xw-±= (5)

Page 19: New laboratory procedure using a modal approach to obtain

Figure6illustratesanexampleoftheoscillationmovementofadampedvibrationsystemwithonedegree

offreedom,andtheenvelopeoftheaccelerationsobtainedwithequation5.

Figure6.Oscillationmovementofadampedvibrationsystemafteratransientexcitationload.

Therefore,theexperimentaldatacanbeadjustedobtainingtheenvelopeofaccelerationsandobtaining

thedampingfactorasindicatedinfollowinglines.

Figure7showsanexampleoftheresultsobtainedwiththenewtestmethodforoneparticularcaseand,

moreover, the acceleration envelope adjustment. In this research, the acceleration envelope curve

adjustmentwasmadeusingthemethodofleastsquares.

Page 20: New laboratory procedure using a modal approach to obtain

Figure7.Exampleoftheresultsobtainedandcurvatureadjustmentusingthemethodofleastsquares.

Oncetheadjustmentofthecurveismade,theexpressionobtainedfortheadjustmentbythemethodof

leastsquaresisdefinedasindicatedtheequation6:

ntmey += (6)

Whereyistheverticalacceleration,tisthetimeandm,nareconstantsofthecurve.

Regardingtobothequations5and6,therelationsindicatedinequations7and8canbedrawn:

Page 21: New laboratory procedure using a modal approach to obtain

meA = (7)

1xw-=n (8)

Fromthesetwoequations,thedampingfactorcanbeobtainedasindicatedinequation9:

1wx n

-= (9)

As shown eq. 9, n and must be known to calculate the damping factor. n is obtained from the

acceleration envelope adjustment and was obtained from the numericalmodel for each specimen.

Modalanalysiswasused tocalculate the firsteigenfrequenciesofeachspecimen.Afterobtaining these

results, couldbedeterminedusingequation10[32].

nfmK pw 21 == (10)

Wherekisthestiffness,misthemassand nf istheeigenfrequency,inthiscase,thefirsteigenfrequency.

TheresultsobtainedareindicatedinTable5.

Page 22: New laboratory procedure using a modal approach to obtain

Table5.Eigenfrequencyofthefirstvibrationmodeandnaturalvibrationfrequencyforeachmixture.

MIXTURE f(Hz) (rad/s)

AC0% 888.47 5582.42

AC0.5% 740.82 4654.71

AC1% 886.04 5567.15

AC1.5% 915.29 5750.94

AC2% 719.93 4523.45

AC4% 949.09 5963.31

SMA0% 725.30 4557.19

SMA0.5% 845.02 5309.42

SMA1% 732.42 4601.93

SMA1.5% 725.46 4558.20

SMA2% 784.88 4931.55

SMA4% 715.05 4492.79

Finally,thedampingratiocanbeobtainedforeachmixtureusingtheequation9.

Agingprocedure

LTOA protocol is used as an aging procedure in this research. In this way, compacted asphaltmixture

specimenswereintroducedinsideanovenandheatedat85oCduring5days.

Page 23: New laboratory procedure using a modal approach to obtain

Resultsanddiscussion

In this section, the damping factor obtained with the four-point bending test on prismatic shaped

specimensandwiththe impacthammertestareexposed. Theunagedmixtureresultsareusedforthe

validationoftheprocedureproposedbycomparisonbetweenthem.Oncethevalidationofthemethodis

done,unagedandagedmixtureresultsareshownandcompared.

Four-pointbendingtest

The results obtained from four-point bending test are indicated in Figure 8 for both types of asphalt

mixturetested.

Figure8.Dampingfactorobtainedwiththefour-pointbendingtest.

Page 24: New laboratory procedure using a modal approach to obtain

As it can be seen in Figure 8, SMA mixtures present higher damping factors than the AC mixtures

independentlyofPETcontent.ThiscanbeexplainedconsideringthatSMAmixturespresentdiscontinuous

aggregategradationandhigherasphaltbindercontent,thusmoreviscousbehaviorwithbettervibration

attenuationcapacity.

Additionally,Figure8showsthatthesametrendisfollowedbybothasphaltmixtures.Theresultsofthe

damping ratio indicate that thevibrationattenuationcapacity ishigher inallmixtureswith0-2%wtPET

content. Then, higher PET content is not fruitful since the mixtures present worse behavior than the

expectedwithPET-lessmixtures.Thedampingfactorremainsnearlyunchangedbetween1-2%ofwaste

PET. Nevertheless, damping factor experiments a sharp increase with 0.5% of PET in both mixtures

analyzed.

This situation evidences clearly that waste PET material is a eco-friendly additive able to improve the

vibrationattenuationcapacityofanasphaltmixturewhenaproperquantityismixed(0-2%).

Impacthammertest

DampingfactorresultsobtainedwiththeimpacthammertestcanbeobservedinFigure9.

Page 25: New laboratory procedure using a modal approach to obtain

Figure9.Dampingfactorobtainedwiththeimpacthammertest.

As it canbeseen inFigure9,damping factor increasesbetween0and0.5%and thendecreasesasPET

contentrises.ThetrendshowedinFigure9isnotthesameforasphaltconcreteandstonemasticasphalt.

Onlyinthecaseofstonemasticasphalt,astabilizationofthedampingfactorappearsbetween1.5and2%

ofPET content. In the caseof asphalt concrete, an increaseofPET contentproducesadecreaseof the

dampingfactoralmostlinearly.

Inthiscase,thelargestdampingfactorvalueappearswith0.5%ofwastePETinbothasphaltconcreteand

stonemastic asphaltmixtures.Moreover, PET content between 0-2% produces a damping ratio higher

than the asphaltmixturewithoutPET inbothmixture types.Additionally, PET amountshigher than2%

worsentheabilitytoattenuatevibrations.

Page 26: New laboratory procedure using a modal approach to obtain

Validationoftheimpacthammertest

Withtheobjectivetovalidatethemethodproposed,acomparisonbetweenthedampingfactorobtained

withthefour-pointbendingtestandtheobtainedwiththeimpacthammertesthavebeencarriedoutas

indicatedinFigures10and11.

Figure10illustratestheresultsobtainedforeachtestmethodinthecaseofasphaltconcrete.

Figure10.Dampingfactorcomparison.

Figure11 shows the results foreach testmethodused to characterize thedamping factorof the stone

masticasphalt.

Page 27: New laboratory procedure using a modal approach to obtain

Figure11.Dampingfactorcomparison.

As it canbe seen in Figure 10 and11, the results obtainedwith the impact hammer test are generally

similartothatobtainedforthefour-pointbendingtest.

Ononehand,asphaltconcretepresentspracticallyequaldampingfactorvaluesforPETcontentbetween

0-1%.However,dampingfactordiffersforasphaltconcretemixturewithhigherPETamount

Ontheotherhand,stonemasticasphaltresultsobtainedwiththehammermethodareslightlylowerthan

theobtainedwiththefour-pointbendingtestexceptat4%ofPET.

Neverthelessthesametrendisobtainedwithbothprocedures.AsitcanbeseeninFigures10and11,the

dampingfactorincreaseswith0-0.5%PETcontentanddecreaseswithhigheramountsofPET.Additionally,

stonemasticasphaltpresentshigherdampingfactorthantheasphaltconcrete,andthus,highercapacity

tomitigatevibrations.

Page 28: New laboratory procedure using a modal approach to obtain

It is important to take into account that a small-scale vertical axis has been defined to appreciate the

differencesbetweenboth test results.Once thesedifferenceshavebeendiscussedbefore, the average

errorobtained ineachmixturemeasurement isanalyzed inordertoassesstheaccuracyofthehammer

test.Thedampingfactorforeachmixtureobtainedwitheachtestandtheaverageerrorcanbeobserved

inTables6and7.

Table6.ComparisonoftheACresultsobtainedwithbothimpacthammerandfour-pointbendingtests.

MixturesImpact

hammertest

Four-point

bendingtest

Average

error(%)

0% 0.166 0.172

7.640

0.50% 0.255 0.256

1% 0.230 0.229

1.50% 0.203 0.215

2% 0.169 0.209

4% 0.119 0.099

Page 29: New laboratory procedure using a modal approach to obtain

Table 7.Comparison of the SMA results obtainedwith both impact hammer and four-point bending

tests.

MixturesImpact

hammertest

Four-point

bendingtest

Average

error(%)

0% 0.249 0.285

11.281

0.50% 0.344 0.356

1% 0.312 0.325

1.50% 0.283 0.322

2% 0.279 0.32

4% 0.145 0.112

Onthatbasis,thevalidationofthishammermethodisconfirmedsinceproperdampingfactortrendshave

been obtained. Additionally, the average errors calculated in the measurements are smaller than the

acceptedintheliteraturetovalidatemethodsforestimatingdynamicparameters(frequencies,damping

factorsandmodeshapes)[34].Itcanbeconcludethattheimpacthammertestproposedcanestimatethe

damping factor with reasonable accuracy compared to the four-point bending test and, therefore it is

consideredasavalidatedmethod.

Agingresults

Oncethevalidationofthehammertesthasbeenmade,theLTOAprotocolhasbeenappliedtoforcethe

aging of the asphalt mixtures. After obtaining the aged specimens, the impact hammer test has been

applied.Inthisway,dampingfactorsofagedasphaltmixturesareobtained,ascanbeobservedinFigure

12.

Page 30: New laboratory procedure using a modal approach to obtain

Figure12.Dampingfactorofagedmixtures.

Figure 12 shows the results of the damping factor for each asphalt concrete and stonemastic asphalt

analyzed.Theseresultsshownthesametrendobtainedwiththeunagedspecimenswiththeexceptionof

thestonemasticasphaltwith2%ofwastePETmaterial. In thiscase, thedamping factorexperimentsa

slightupturn.

It is important to highlight that aggregate gradation plays an important role in asphaltmixtures. Thus,

dampingfactoroftheagedstonemasticasphaltisstilllargerthantheobtainedforagedasphaltconcrete.

The differences experimented by the damping factor can be observed in Figure 13 and Figure 14 for

asphaltconcreteandstonemasticasphaltrespectively.

Page 31: New laboratory procedure using a modal approach to obtain

Figure13.Dampingfactoroftheunagedandagedasphaltconcretemixtures.

Figure14.Dampingfactoroftheunagedandagedstonemasticasphaltmixtures.

Page 32: New laboratory procedure using a modal approach to obtain

AsillustratedbyFigure13andFigure14,thedampingfactorofeachmixturedecreaseswiththeasphalt

aging.Thismeansthatlessenergycanbedissipatedbytheasphaltmixtureandthus,theyexperimentless

vibrationattenuationcapacity,inaccordancewithZhong,ZhengandRose[22].Thissituationagreeswith

previousresearchesaboutasphaltaginginwhichasphaltbinderagingproducesareductionofphaseangle

andtherefore,adecrementoftheviscousbehaviorofthebinder[6].

In Figure 15, the differences of the damping factor of unaged and aged asphaltmixtures are shown in

percentageform.

Figure15.Dampingfactorpercentageofvariation.

AsshowninFigure15,stonemasticasphaltmixturesexperimenthigherdecrementofthedampingfactor,

thushigheragingprocedurethantheasphaltconcretemixturesisachieved.Itisexplainedbecauseasphalt

concretemixturesaremorecompactedmixturesthanstonemasticasphalt.Thus,moreoxygenmolecules

Page 33: New laboratory procedure using a modal approach to obtain

are available in the stone mastic asphalt, hence strong oxidation may appear explaining the results

achieved. This is supported by previous researches which established that void content and void

connectivityhadasignificant influenceonthechangeof themechanicalpropertiesofoxidizedmixtures

[2].

Conclusions

Inthisresearch,anewagingprocedurehasbeenproposedusinganexperimentalmodalanalysiswiththe

impacthammerexcitationtechniqueasanalternativetothefour-pointbendingtest.Themainobjective

of this test procedure is to obtain information about the damping factor of both unaged and aged

mixtures. The LTOA is theprotocol selected to force theagingof theasphaltmixtures. In thisway, the

vibrationattenuationpropertiesoftheasphaltmixtureswithpost-consumerPEThasbeenanalyzedand,

moreover,theirvariationaftertheirservicelife.

Themainconclusionsobtainedwiththisstudycanbedrawnasfollows:

- Anon-destructivetestprocedurehasbeenpresentedandassessedasanalternativetestforthe

four-pointbendingtestfromthepointofviewofvibrationattenuationproperties.

- Theresultsevidencethatvibrationattenuationpropertiesofeachmixturechangedependingon

the time and moreover, on the type of asphalt mixture. In this situation, different vibration

attenuationcapacityisobtainedforeachmixtureconsideringthesameasphaltbinder,thus,itis

demonstrated that aggregate gradation and its interaction between bindermolecules plays an

importantroleintheagingprocedure.

Page 34: New laboratory procedure using a modal approach to obtain

- The comparison between unaged and aged results demonstrates that oxidation causes a

decrementofthedampingfactor,andthereforereducesthecapacityofthemixturetomitigate

vibrations.

- Asphalt mixtures with waste PET content within 0-2% improve the asphalt mixture vibration

attenuationcapacity.HighercontentsofPETarenotbeneficialforthevibrationpropertiessince

worsedampingfactorthanthePET-lessmixtureisachieved.

- Regardingtothevibrationattenuationcapacity,asphaltmixtureswith0.5%ofwastePETpresent

thebestbehavior.Concerning thatSMAmixturespresentbettervibrationattenuationcapacity

thantheACmixtures,aSMAmixturewith0.5%wastePETcanbeproposedasthebestmixture.

- Finally,thestudyofthistestprocedureregardingdifferentasphaltmixturesanddifferentaging

procedures are recommended for improving and validating this procedure in awider range of

application.

References

1.WhiteoakD.TheShellBitumenHandbook.4thed.ShellBitumenUK,Chertsey,1990.

2.CaroS,etal.Amicromechanicalmodeltoevaluatetheimpactofairvoidcontentandconnectivityin

theoxidationofasphaltmixtures.Constr.Build.Mater.2014;61:181-190.

3. Pan T. A first-principles based chemophysical environment for studying lignins as an asphalt

antioxidant.Constr.Build.Mater.2012;36:654-664.

Page 35: New laboratory procedure using a modal approach to obtain

4. EAPA: European Asphalt Pavement Association. Asphalt in Railway Tracks. Breukelen, The

Netherlands.2003.

5. Rose J, Fonseca P and Ridgway N. Utilization of asphalt/bituminous layers and coatings in railway

trackbeds – a compendium of international applications, in: ASME 2010 Joint Rail Conference,Univ

IllinoisUrbanaChampaign,Urbana,IL,APR27-29,2010.2010JointRailConference.1pp.239-255.

6.LuXandIsacssonU.Effectofageingonbitumenchemistryandrheology.Constr.Build.Mater.2002;

16(1):15-22.

7.ShenoyA.Predictionofhightemperaturerheologicalpropertiesofagedasphaltsfromtheflowdata

oftheoriginalunagedsamples.Constr.Build.Mater.2002;16(8):509-517.

8.Fernandez-GomezWD,etal.TheeffectsofenvironmentalagingonColombianasphalts. Fuel.2014;

115:321-328.

9. Lu X and Isacsson U. Artificial aging of polymer modified bitumens. J. Appl. Polym. Sci. 2000;

76(12):1811-1824.

10. NaskarM, et al. Effect of ageing on differentmodified bituminous binders: comparison between

RTFOTandradiationageing.Mater.Struct.2013;46(7):1227-1241.

11. Feng ZG, et al. Effect of ultraviolet aging on rheology, chemistry and morphology of ultraviolet

absorbermodifiedbitumen.Mater.Struct.2013;46(7):1123-1132.

12. Siddiqui MN and Ali MF. Studies on the aging behavior of the Arabian asphalts. Fuel. 1999;78

(9):1005-1015.

Page 36: New laboratory procedure using a modal approach to obtain

13. Bulatovic VO, Rek V and Markovic J. Rheological properties of bitumen modified with ethylene

butylacrylateglycidylmethacrylate.Polym.Eng.Sci..2014;54(5):1056-1065.

14.OngelAandHugenerM.Agingofbituminousmixesforrapsimulation.Constr.Build.Mater.2014;

638:49-54.

15. Yut I and Zofka A. Correlation between rheology and chemical composition of aged polymer-

modifiedasphalts.Constr.Build.Mater.2014;62:109-117.

16. Biligiri KP and Kaloush KE. Effect of specimen geometries on asphalt mixtures’ phase angle

characteristics.Constr.Build.Mater.2014;67:249-257.

17.MoghaddamTB,SoltaniMandKarimMR.Experimentalcharacterizationofruttingperformanceof

Polyethylene Terephthalatemodified asphaltmixtures under static and dynamic loads. Constr. Build.

Mater.2014;65:487-494.

18.MoghaddamTB,SoltaniMandKarim,MR.Evaluationofpermanentdeformationcharacteristicsof

unmodifiedandPolyethyleneTerephthalatemodifiedasphaltmixturesusingdynamiccreeptest.Mater.

Des.2014;53:317-324.

19.AhmadiniaE,etal.Usingwasteplasticbottlesasadditiveforstonemasticasphalt.Mater.Des.2011;

32(10):4844-4849.

20.AhmadiniaE,etal.PerformanceevaluationofutilizationofwastePolyethyleneTerephthalate(PET)

instonemasticasphalt.Constr.Build.Mater.2012;36:984-969.

21.MoghaddamTB,KarimMRandSyammaunT. Dynamicpropertiesofstonemasticasphaltmixtures

containingwasteplasticbottles.Constr.Build.Mater.2012;34:236-242.

Page 37: New laboratory procedure using a modal approach to obtain

22.ZhongXG,ZengXandRoseJG.Shearmodulusanddampingratioofrubber-modifiedasphaltmixes

andunsaturatedsubgradesoils.J.Mater.Civ.Eng.2002;14(6):496-502.

23.EN12697-24:2012.Bituminousmixtures.Testmethods forhotmixasphalt.Part24:Resistance to

fatigue.

24. Remennikow A and Kaewunruen S. Experimental investigation on dynamic railway sleeper/ballast

interaction.Exp.Mech.2006;46(1):57-66.

25.GonilhaJA,etal.ModalidentificationofaGFRP-concretehybridfootbridgeprototype:Experimental

testsandanalyticalandnumericalsimulations.Compos.Struct.2013;106:724-733.

26.HatifiMM,FirdausMHandRazlanAY.Modalanalysisofdissimilarplatemetaljoiningwithdifferent

thicknessesusingMIGwelding.InternationalJournalofAutomotiveandMechanicalEngineering.2014;

9(1):1723-1733.

27.NdambiJM,etal.Comparisonoftechniquesformodalanalysisofconcretestructures.Eng.Struct.

2000;22(9):1159-1166.

28. EN 12697-30:2013. Bituminous mixtures. Test methods for hot mix asphalt. Part 30: Specimen

preparationbyimpactcompactor.

29.PG-3.Pliegodeprescripcionestécnicasgeneralesparaobrasdecarreteraypuentes(PG3).Centrode

PublicacionesSecretaríaGeneraldeCarreteras.MinisteriodeFomento.Madrid.Spain.2011.

30. Biligiri KP. Effect of pavement materials’ damping properties on tyre/road noise characteristics.

Constr.Build.Mater.2013;49:223-232.

Page 38: New laboratory procedure using a modal approach to obtain

31.RutherfordT,etal.Laboratoryinvestigationintomechanicalpropertiesofcementemulsifiedasphalt

mortar.Constr.Build.Mater.2014;65:76-83.

32.BalachandranBandMagrabE.Vibraciones.ThomsonLearning.Madrid.Spain.2006.

33. Real J, et al. Experimental modal analysis of railway concrete sleepers with cracks. Structural

engineeringandmechanics.2012;44(1):51-60.

34.SarparastH,etal.Estimationofmodalparameters forstructurallydampedsystemsusingwavelet

transform.Eur.J.ofMech.A.Solids.2014;47:82-91.